

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Glutaric acid-2-(pyridin-4-yl)-1*H*benzimidazole (1/1)

Songzhu Lin,* Ruokun Jia, Aimin He and Xiaoli Gao

Northeast Dianli University, Jilin 132012, People's Republic of China Correspondence e-mail: songzhulin@hotmail.com

Received 13 October 2011; accepted 21 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.149; data-to-parameter ratio = 11.8.

The crystal structure of the title co-crystal, $C_{12}H_9N_3 \cdot C_5H_8O_4$, $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds link the components. There are also $\pi-\pi$ stacking interactions between the imidazole rings, between the imidazole and pyridine rings and between the pyridine and benzene rings [centroid–centroid distances = 3.643 (2), 3.573 (2) and 3.740 (1)Å, respectively].

Related literature

For background to hydrogen bonds, see: Moorthy *et al.* (2002); Muthuraman *et al.* (2000); Nangia & Desiraju (1999); Bhattacharjya *et al.* (2004). For related structures, see: Bei *et al.* (2000); Ozbey *et al.* (1998).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_9N_3\cdot C_5H_8O_4\\ M_r = 327.34\\ \text{Triclinic, }P\overline{1}\\ a = 7.4384 \ (15) \ \text{\AA}\\ b = 8.9911 \ (18) \ \text{\AA}\\ c = 11.868 \ (2) \ \text{\AA}\\ \alpha = 86.67 \ (3)^\circ\\ \beta = 81.66 \ (3)^\circ \end{array}$

 $\gamma = 85.57 (3)^{\circ}$ $V = 782.1 (3) \text{ Å}^{3}$ Z = 2Mo Ka radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.17 \times 0.15 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer 6041 measured reflections 2664 independent reflections 1657 reflections with $I > 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.149$ S = 1.112664 reflections 226 parameters 1 restraint $R_{\text{int}} = 0.024$ 3 standard reflections every 100 reflections intensity decay: none

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdotsO2^{i}$ $O1-H2\cdotsN3^{ii}$ $O4-H1\cdotsN2$	0.86	2.10	2.957 (3)	176
	0.87 (1)	1.75 (1)	2.615 (3)	173 (4)
	1.02 (4)	1.71 (4)	2.686 (3)	158 (3)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x - 1, y - 1, z.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors would like to thank the National Natural Science Foundation of China (51003010) and the Natural Science Foundation of Jilin Province (201115178).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2466).

References

- Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718–719.
- Bhattacharjya, G., Savithaa, G. & Ramanathan, G. (2004). *CrystEngComm*, **6**(40), 233–235.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.
- Muthuraman, M., Fur, Y. L., Bagiur-Beucher, M., Masse, R., Nicoud, J.-F., George, S., Nangia, A. & Desiraju, G. R. (2000). *J. Solid State Chem.* **152**, 221–228.
- Nangia, A. & Desiraju, G. R. (1999). J. Mol. Struct. 474, 65-79.
- Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3463 [https://doi.org/10.1107/S1600536811049695] Glutaric acid–2-(pyridin-4-yl)-1*H*-benzimidazole (1/1)

Songzhu Lin, Ruokun Jia, Aimin He and Xiaoli Gao

S1. Comment

The strong (O—H···O) and weak (C—H···O) hydrogen bonds, the halogen bond (C—X···O) and the weak C—H··· π interaction, have been well characterized and exploited in the design of molecular assemblies (Moorthy *et al.*, 2002; Muthuraman *et al.*, 2000; Nangia and Desiraju, 1999; Bhattacharjya *et al.*, 2004). Our interest in benzimidazole stems from their biological activity (Bei *et al.*, 2000; Ozbey *et al.*, 1998). In this paper, we systemized the title compound and report its structure.

Scheme I

The compound consists of 2-(pyridin-4-yl)-1*H*-benzimidazole and glutaric acid. In the title compound, the dihedral angle between the imidazole and the benzene was $1.40 (2)^{\circ}$, while the benzimidazole and the pyridine was $5.25 (1)^{\circ}$. It results that the all atoms in the 2-(pyridin-4-yl)-1*H*-benzimidazole are not coplanar strictly. In the part of glutaric acid, four atoms O1, O2, C13, C14 are lying in a same plane (p1) with the maximum diviation of 0.002° for C13, while other four atoms O3, O4, C16, C17 lying in another plane (p2) with the maximum diviation of 0.001% for O3. The dihedral angle between p1 and p2 is $10.50 (2)^{\circ}$.

In the lattice, there exist some kinds of hydrogen bonds. It forms one-dimension stairway structure between 2-(pyridin-4-yl)-1*H*-benzimidazole and glutaric acid *via* N—H···O, O—H···N hydrogen bonds (figure 2a and 2 b). Two adjacent strairway chains formed two dimension structure *via* the C—H···O intermolecular interaction.

In addition, there exists some π - π interactions between the rings [$Cg1 \cdots Cg1=3.643$ (2), $Cg1 \cdots Cg2=3.573$ (2) and $Cg2 \cdots Cg3=3.740$ (1), respectively (Cg1, Cg2, Cg3 refer to the centroid of imidazole N1, C1, C6, N2, C7; the pyridine N3, C8, C9, C10, C11, C12 and the phenyl ring C1, C2, C3, C4, C5, C6, respectively)]. The π - π interaction, as well as the inter- and intra- hydrogen bond stabilized the crystal structure.

S2. Experimental

The title compound was obtained by 2-Pyridin-4-yl-1*H*-benzoimidazole (0.020 g, 0.1 mmol) and glutaric acid (0.013 g, 0.1 mmol) dissolved in 30 ml solution mixed with ethanol and water by 2:1(V/V) was heated to refluxed for 6 h and cooled to the room temperature. Single crystals suitable for *x*-ray measurements were obtained by recrystallization at room temperature.

S3. Refinement

The positions of H atoms, H1,H2, were found in a difference Fourier map. All the other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93-0.97 Å, N—H distance=0.86Å and with $U_{iso}=1.2-1.5U_{eq}$.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 3 Two-dimensional structure of the title compound.

Pentane-1,5-dioic acid-2-(pyridin-4-yl)-1H-benzimidazole (1/1)

Crystal data

C₁₂H₉N₃·C₅H₈O₄ $M_r = 327.34$ Triclinic, *P*I Hall symbol: -p 1 a = 7.4384 (15) Å b = 8.9911 (18) Å c = 11.868 (2) Å a = 86.67 (3)° $\beta = 81.66$ (3)° $\gamma = 85.57$ (3)° V = 782.1 (3) Å³

Data collection

Enraf–Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
6041 measured reflections
2664 independent reflections
1657 reflections with $I > 2\sigma(I)$

Z = 2 F(000) = 344 $D_x = 1.390 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 4-14^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.17 \times 0.15 \text{ mm}$

 $R_{int} = 0.024$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -14 \rightarrow 13$ 3 standard reflections every 100 reflections intensity decay: none Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent
$wR(F^2) = 0.149$	and constrained refinement
S = 1.11	$w = 1/[\sigma^2(F_o^2) + (0.0825P)^2 + 0.020P]$
2664 reflections	where $P = (F_o^2 + 2F_c^2)/3$
226 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
1 restraint	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.32 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.018 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
N1	0.2659 (2)	0.5349 (2)	0.58023 (17)	0.0435 (5)	
H1A	0.2940	0.6038	0.6206	0.052*	
N2	0.2164 (2)	0.4197 (2)	0.42719 (17)	0.0432 (5)	
N3	0.4250 (3)	0.9193 (2)	0.24990 (19)	0.0526 (6)	
C1	0.1814 (3)	0.3243 (2)	0.5230 (2)	0.0403 (6)	
C2	0.1261 (3)	0.1787 (3)	0.5328 (2)	0.0478 (6)	
H2B	0.1037	0.1309	0.4693	0.057*	
C3	0.1057 (3)	0.1083 (3)	0.6392 (2)	0.0515 (7)	
H3B	0.0690	0.0112	0.6477	0.062*	
C4	0.1387 (3)	0.1791 (3)	0.7345 (2)	0.0540 (7)	
H4A	0.1251	0.1275	0.8051	0.065*	
C5	0.1912 (3)	0.3235 (3)	0.7273 (2)	0.0508 (7)	
H5A	0.2117	0.3707	0.7915	0.061*	
C6	0.2117 (3)	0.3952 (3)	0.6200 (2)	0.0408 (6)	
C7	0.2664 (3)	0.5429 (2)	0.4655 (2)	0.0405 (6)	
C8	0.3189 (3)	0.6750 (3)	0.3922 (2)	0.0416 (6)	
C9	0.3303 (3)	0.6703 (3)	0.2746 (2)	0.0502 (7)	
H9A	0.3025	0.5851	0.2416	0.060*	
C10	0.3835 (3)	0.7942 (3)	0.2073 (2)	0.0563 (7)	
H10A	0.3908	0.7903	0.1286	0.068*	
C11	0.4129 (3)	0.9229 (3)	0.3626 (2)	0.0520 (7)	
H11A	0.4408	1.0097	0.3934	0.062*	
C12	0.3614 (3)	0.8050 (3)	0.4361 (2)	0.0488 (6)	

supporting information

H12A	0.3553	0.8125	0.5144	0.059*
01	-0.3978 (3)	0.1206 (2)	0.12019 (17)	0.0654 (6)
O2	-0.3751 (2)	0.2383 (2)	0.27704 (16)	0.0599 (5)
03	0.2390 (4)	0.3965 (3)	0.1101 (2)	0.1041 (9)
O4	0.1264 (3)	0.2629 (2)	0.26029 (18)	0.0776 (7)
C13	-0.3421 (3)	0.2273 (3)	0.1748 (2)	0.0490 (6)
C14	-0.2312 (4)	0.3340 (3)	0.0967 (2)	0.0618 (8)
H14A	-0.1852	0.4040	0.1429	0.074*
H14B	-0.3110	0.3908	0.0497	0.074*
C15	-0.0728 (4)	0.2637 (3)	0.0197 (2)	0.0597 (7)
H15A	-0.0195	0.3404	-0.0327	0.072*
H15B	-0.1176	0.1914	-0.0252	0.072*
C16	0.0758 (4)	0.1854 (3)	0.0833 (2)	0.0619 (8)
H16A	0.0244	0.1063	0.1340	0.074*
H16B	0.1714	0.1405	0.0288	0.074*
C17	0.1557 (4)	0.2930 (3)	0.1513 (3)	0.0601 (8)
H1	0.173 (5)	0.338 (4)	0.308 (3)	0.123 (13)*
H2	-0.456 (4)	0.058 (4)	0.167 (3)	0.133 (15)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
N1	0.0502 (11)	0.0392 (11)	0.0437 (13)	-0.0103 (8)	-0.0095 (9)	-0.0083 (9)
N2	0.0464 (11)	0.0400 (12)	0.0465 (13)	-0.0084 (9)	-0.0127 (9)	-0.0063 (10)
N3	0.0573 (12)	0.0472 (13)	0.0568 (15)	-0.0157 (10)	-0.0133 (10)	-0.0024 (11)
C1	0.0380 (12)	0.0384 (13)	0.0466 (15)	-0.0042 (9)	-0.0102 (10)	-0.0064 (11)
C2	0.0524 (14)	0.0402 (14)	0.0547 (17)	-0.0087 (11)	-0.0144 (11)	-0.0120 (12)
C3	0.0589 (15)	0.0391 (14)	0.0592 (18)	-0.0121 (11)	-0.0122 (12)	-0.0039 (13)
C4	0.0646 (16)	0.0458 (15)	0.0515 (17)	-0.0079 (12)	-0.0054 (13)	-0.0029 (13)
C5	0.0653 (16)	0.0461 (15)	0.0427 (16)	-0.0088 (12)	-0.0079 (12)	-0.0089 (12)
C6	0.0403 (12)	0.0364 (13)	0.0472 (15)	-0.0047 (9)	-0.0075 (10)	-0.0084 (11)
C7	0.0375 (12)	0.0408 (13)	0.0454 (15)	-0.0066 (10)	-0.0098 (10)	-0.0061 (11)
C8	0.0387 (12)	0.0406 (13)	0.0475 (15)	-0.0064 (9)	-0.0089 (10)	-0.0071 (11)
C9	0.0582 (15)	0.0474 (15)	0.0499 (16)	-0.0168 (11)	-0.0160 (12)	-0.0054 (12)
C10	0.0678 (17)	0.0572 (17)	0.0500 (17)	-0.0221 (13)	-0.0207 (13)	0.0012 (13)
C11	0.0566 (15)	0.0448 (15)	0.0569 (18)	-0.0151 (11)	-0.0064 (12)	-0.0102 (13)
C12	0.0523 (14)	0.0485 (15)	0.0470 (16)	-0.0128 (11)	-0.0049 (11)	-0.0082 (12)
01	0.0996 (15)	0.0540 (12)	0.0469 (12)	-0.0322 (11)	-0.0076 (10)	-0.0088 (10)
O2	0.0784 (12)	0.0601 (12)	0.0441 (12)	-0.0230 (9)	-0.0063 (9)	-0.0081 (9)
O3	0.170 (2)	0.0867 (17)	0.0689 (16)	-0.0736 (17)	-0.0346 (15)	0.0149 (13)
O4	0.1193 (18)	0.0732 (15)	0.0487 (14)	-0.0464 (13)	-0.0185 (12)	-0.0038 (11)
C13	0.0623 (15)	0.0415 (14)	0.0453 (17)	-0.0102 (11)	-0.0097 (12)	-0.0044 (12)
C14	0.090 (2)	0.0469 (16)	0.0497 (17)	-0.0231 (14)	-0.0054 (15)	-0.0005 (13)
C15	0.0806 (18)	0.0623 (18)	0.0390 (16)	-0.0253 (14)	-0.0061 (13)	-0.0068 (13)
C16	0.088 (2)	0.0522 (17)	0.0492 (18)	-0.0181 (14)	-0.0124 (14)	-0.0107 (14)
C17	0.0833 (19)	0.0498 (17)	0.0520 (19)	-0.0205 (14)	-0.0195 (14)	0.0043 (14)

Geometric parameters (Å, °)

N1—C7	1.359 (3)	С9—Н9А	0.9300
N1—C6	1.385 (3)	C10—H10A	0.9300
N1—H1A	0.8600	C11—C12	1.375 (3)
N2—C7	1.320 (3)	C11—H11A	0.9300
N2—C1	1.390 (3)	C12—H12A	0.9300
N3—C11	1.330 (3)	O1—C13	1.313 (3)
N3—C10	1.334 (3)	O1—H2	0.866 (10)
C1—C2	1.396 (3)	O2—C13	1.211 (3)
C1—C6	1.402 (3)	O3—C17	1.199 (3)
C2—C3	1.373 (3)	O4—C17	1.296 (3)
C2—H2B	0.9300	O4—H1	1.02 (4)
C3—C4	1.390 (4)	C13—C14	1.503 (3)
С3—Н3В	0.9300	C14—C15	1.504 (4)
C4—C5	1.379 (4)	C14—H14A	0.9700
C4—H4A	0.9300	C14—H14B	0.9700
C5—C6	1.387 (4)	C15—C16	1.532 (4)
C5—H5A	0.9300	С15—Н15А	0.9700
С7—С8	1.475 (3)	C15—H15B	0.9700
C8—C12	1.383 (3)	C16—C17	1.503 (4)
C8—C9	1.389 (4)	C16—H16A	0.9700
C9—C10	1.381 (3)	C16—H16B	0.9700
C7 N1 C6	107 18 (10)	C9 C10 H10A	118 5
C7 N1 H1A	107.18 (19)	$N_3 = C_{11} = C_{12}$	110.5 123.4(2)
$C_{1} = M_{1} = M_{1}$	126.4	N3 C11 H11A	118.3
C7 N2 C1	105 23 (10)	C_{12} C_{11} H_{11A}	118.3
$C_{11} N_{3} C_{10}$	105.25(19) 117.5(2)	C12-C12-C8	110.5
$N_2 C_1 C_2$	117.3(2) 130.2(2)	$C_{11} = C_{12} = C_{03}$	119.2 (2)
$N_2 - C_1 - C_2$	100.2(2)	C8 - C12 - H12A	120.4
$C_{2} = C_{1} = C_{0}$	109.02(19) 120.2(2)	$C_{12} = C_{12} = C$	111 (3)
$C_{2} = C_{1} = C_{0}$	120.2(2) 117.8(2)	C13 - 01 - 112	111(3) 114(2)
$C_3 = C_2 = C_1$	117.8 (2)	$C_{17} = 0_{4} = 111$	114(2) 123.0(2)
$C_1 = C_2 = H_2 B$	121.1	02 - C13 - C14	123.9(2) 123.5(2)
$C_1 = C_2 = C_1$	121.1 121.4(2)	02 - C13 - C14	123.5(2) 112.6(2)
$C_2 = C_3 = C_4$	121.4(2)	$C_{12}^{12} = C_{14}^{14} = C_{15}^{12}$	112.0(2) 115.5(2)
$C_2 = C_3 = H_3 B$	119.5	$C_{13} = C_{14} = C_{13}$	113.3 (2)
$C_4 = C_3 = H_3 B$	119.5	C15 - C14 - H14A	108.4
C_{5}	121.9 (2)	C12 - C14 - H14A	108.4
$C_3 = C_4 = H_4 A$	119.0	С15—С14—П14В	108.4
$C_3 - C_4 - H_4 A$	119.0	C15—C14—H14B	108.4
$C_{4} = C_{5} = U_{5}$	110.9 (2)	$\Pi_{4A} = 014 = \Pi_{14D}$	107.3 112.9(2)
C4 - C5 - D5A	121.0	$C_{14} = C_{15} = U_{15}$	113.8 (2)
U - U - H A	121.0 122.1(2)	C_{14} C_{15} H_{15A}	108.8
N1 - C - C	155.1(2)	C10 - C15 - H15A	108.8
	105.2(2) 121.7(2)	C1(H15B	108.8
	121.7(2)	C10-C15-H15B	107.7
N2	112.81 (19)	нтэд—Стэ—Нтэв	107.7

N2—C7—C8	124.0 (2)	C17—C16—C15	111.4 (2)
N1—C7—C8	123.2 (2)	C17—C16—H16A	109.3
C12—C8—C9	117.8 (2)	C15—C16—H16A	109.3
C12—C8—C7	122.3 (2)	C17—C16—H16B	109.3
C9—C8—C7	119.9 (2)	C15—C16—H16B	109.3
С10—С9—С8	118.9 (2)	H16A—C16—H16B	108.0
С10—С9—Н9А	120.5	O3—C17—O4	122.6 (3)
С8—С9—Н9А	120.5	O3—C17—C16	124.1 (3)
N3—C10—C9	123.1 (3)	O4—C17—C16	113.3 (2)
N3—C10—H10A	118.5		
C7—N2—C1—C2	-179.2 (2)	N2-C7-C8-C12	176.6 (2)
C7—N2—C1—C6	0.2 (2)	N1—C7—C8—C12	-4.0 (3)
N2—C1—C2—C3	178.4 (2)	N2—C7—C8—C9	-4.7 (3)
C6—C1—C2—C3	-1.0 (3)	N1—C7—C8—C9	174.8 (2)
C1—C2—C3—C4	0.0 (4)	C12—C8—C9—C10	0.2 (4)
C2—C3—C4—C5	0.8 (4)	C7—C8—C9—C10	-178.6 (2)
C3—C4—C5—C6	-0.7 (4)	C11—N3—C10—C9	-0.3 (4)
C7—N1—C6—C5	178.0 (2)	C8—C9—C10—N3	0.0 (4)
C7—N1—C6—C1	0.0 (2)	C10—N3—C11—C12	0.4 (4)
C4—C5—C6—N1	-178.0 (2)	N3—C11—C12—C8	-0.2 (4)
C4—C5—C6—C1	-0.2 (3)	C9—C8—C12—C11	-0.1 (3)
N2-C1-C6-N1	-0.1 (2)	C7—C8—C12—C11	178.7 (2)
C2-C1-C6-N1	179.4 (2)	O2—C13—C14—C15	126.6 (3)
N2-C1-C6-C5	-178.4 (2)	O1—C13—C14—C15	-52.9 (3)
C2-C1-C6-C5	1.1 (3)	C13—C14—C15—C16	-64.9 (3)
C1—N2—C7—N1	-0.2 (2)	C14—C15—C16—C17	-60.6 (3)
C1—N2—C7—C8	179.28 (19)	C15—C16—C17—O3	-64.2 (4)
C6—N1—C7—N2	0.2 (2)	C15—C16—C17—O4	116.1 (3)
C6—N1—C7—C8	-179.33 (19)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H···A
N1—H1A····O2 ⁱ	0.86	2.10	2.957 (3)	176
O1—H2···N3 ⁱⁱ	0.87(1)	1.75 (1)	2.615 (3)	173 (4)
O4—H1…N2	1.02 (4)	1.71 (4)	2.686 (3)	158 (3)

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z.