Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1-Diethyl-3-(4-methoxybenzoyl)thiourea

Aisha A. Al-abbasi,^a Mohamed Ibrahim Mohamed Tahir^b and Mohammad B. Kassim^{a,c}*

^aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and ^cFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia

Correspondence e-mail: mbkassim@ukm.mv

Received 17 November 2011: accepted 18 November 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.132; data-to-parameter ratio = 15.6.

In the title compound, $C_{13}H_{18}N_2O_2S$, the 4-methoxybenzoyl fragment is approximately planar [maximum deviation = 0.057 (2) Å] and twisted relative to the thioamide fragment, forming a dihedral angle of 86.62 (6)°. The two $Csp^2 - Nsp^2$ bonds in the thiourea unit differ significantly in length [1.327(2)] and [1.431(2)]Å]. In the crystal, N-H···O hydrogen bonds link the molecules into chains parallel to [010].

Related literature

For structural parameters and chemical properties of 1,1 disubstituted 3-benzoylthioureas, see: Al-abbasi et al. (2010, 2011); Al-abbasi & Kassim (2011); Mohamadou et al. (1994).

Experimental

Crystal data C13H18N2O2S $M_r = 266.35$

b = 10.0095 (4) Å c = 20.8585 (11) Å V = 2693.8 (2) Å³ Z = 8

Data collection

Oxford Diffraction Gemini diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) $T_{\min} = 0.810, \ T_{\max} = 0.900$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	163 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
2548 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Cu $K\alpha$ radiation

 $0.24 \times 0.10 \times 0.05 \text{ mm}$

12046 measured reflections

2548 independent reflections

2214 reflections with $I > 2\sigma(I)$

 $\mu = 2.11 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.030$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdotsO1^{i}$	0.86	2.05	2.847 (2)	154
Symmetry code: (i) -	$r + \frac{3}{2} v - \frac{1}{2} z$			

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-ST-06-FRGS0111-2009 and UKM-PTS-016-2010) and the Libyan Government for providing a scholarship for AA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2435).

References

- Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.
- Al-abbasi, A. A., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1891. Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, 02896.
- Mohamadou, A., Dechamps-Olivier, I. & Barbier, J. (1994). Polyhedron, 13, 1363-1370.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3414 [https://doi.org/10.1107/S1600536811049208]

1,1-Diethyl-3-(4-methoxybenzoyl)thiourea

Aisha A. Al-abbasi, Mohamed Ibrahim Mohamed Tahir and Mohammad B. Kassim

S1. Comment

The title compound (I) has been used as a ligand to form stable complexes with Ni and Co (Mohamadou *et al.*, 1994). Compund I and other similar derivatives act as a bidentate (O,S) chelate forming square planar and tetrahedral complexes with Ni^{II} and Co^{III}, respectively.

In the structure of I, the 4-methoxybenzamide moiety [O2/N1/C1/C2/C3/C4/C5/C6/C7/C8/C13] (A) and the thiourea fragment [S1/N1/N2/C8] (B) are essentially planar with maximum deviations from the mean planes 0.057 (2) Å for C13 and -0.031 (2) Å N1. The dihedral angle between the A and B planes is 86.62 (6)°, which is slightly smaller than the analogous dihedral angle $[87.99 (11)^\circ]$ in 1-benzoyl-3-ethyl-3-phenylthiourea (II) (Al-abbasi & Kassim, 2011).

The C=O [1.237 (2) Å] and C=S [1.658 (3) Å] bond lengths are slightly longer than those in II [1.207 (3) and 1.666 (2) Å], respectively].

In the crystal, the molecules are stabilized by intermolecular N1—H1A \cdots O1 hydrogen bonds forming a one-dimensional polymeric network along the *b* axis (Figure 2).

S2. Experimental

A solution of benzoyl chloride (10 mmol) in acetone was added slowly to an equimolar solution of ammonium thiocyanate in acetone. The reaction mixture was stirred at room temperature before adding diethylamine (10 mmol) slowly and the mixture was left stirring at room temperature for 2–3 h. The mixture was poured onto a water-ice, filtered and the residue was recrystallized from ethaaol/acetone solution to give colourless crystals, suitable for X-ray crystallography (yield 85%).

S3. Refinement

The hydrogen atom positions were calculated geometrically and refined in a riding model approximation with C–H bond lengths in the range 0.93–0.97 Å and N-H= 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C, N)$ for N-H, aromatic C-H and CH₂ groups, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group.

Figure 1

The molecular structure of 1,1-diethyl-3-(4-methoxybenzoyl)thiourea with displacement ellipsods drawn at the 50% probability level.

Figure 2

The crystal packing of 1,1-diethyl-3-(4-methoxybenzoyl)thiourea with intermolecular hydrogen bonds shown as dashed lines.

1,1-Diethyl-3-(4-methoxybenzoyl)thiourea

Crystal data

 $C_{13}H_{18}N_2O_2S$ $M_r = 266.35$ Orthorhombic, *Pbca*Hall symbol: -P 2ac 2ab a = 12.9024 (5) Å b = 10.0095 (4) Å c = 20.8585 (11) Å $V = 2693.8 (2) \text{ Å}^3$ Z = 8 F(000) = 1136

Data collection

Oxford Diffraction Gemini	12046 measured reflections
diffractometer	2548 independent reflections
Radiation source: fine-focus sealed tube	2214 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
$\omega/2\theta$ scans	$\theta_{\rm max} = 71.1^{\circ}, \ \theta_{\rm min} = 4.2^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 15$
(CrysAlis RED; Oxford Diffraction, 2006)	$k = -12 \rightarrow 12$
$T_{\min} = 0.810, \ T_{\max} = 0.900$	$l = -23 \rightarrow 25$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0835P)^2 + 0.6035P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.43 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

 $D_{\rm x} = 1.314 {\rm Mg m^{-3}}$

 $\theta = 4.2 - 71.1^{\circ}$

 $\mu = 2.11 \text{ mm}^{-1}$ T = 150 K

Plate, colourless $0.24 \times 0.10 \times 0.05$ mm

Melting point = 407.15–408.15 K Cu $K\alpha$ radiation, λ = 1.54178 Å

Cell parameters from 5648 reflections

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.96773 (4)	0.08865 (5)	0.60731 (2)	0.0302 (2)
01	0.72174 (10)	0.27396 (13)	0.63046 (7)	0.0282 (3)

O2	0.29590 (10)	0.00839 (15)	0.54492 (7)	0.0327 (4)
N1	0.76759 (11)	0.05775 (15)	0.63691 (7)	0.0210 (3)
H1A	0.7495	-0.0246	0.6332	0.025*
N2	0.87609 (11)	0.11414 (15)	0.72156 (7)	0.0215 (3)
C1	0.52575 (14)	0.21406 (19)	0.58056 (9)	0.0242 (4)
H1B	0.5472	0.3028	0.5811	0.029*
C2	0.42448 (15)	0.1834 (2)	0.56253 (9)	0.0271 (4)
H2A	0.3785	0.2510	0.5513	0.033*
C3	0.39293 (14)	0.0509 (2)	0.56149 (8)	0.0246 (4)
C4	0.46228 (14)	-0.05050 (19)	0.57806 (9)	0.0236 (4)
H4A	0.4410	-0.1393	0.5771	0.028*
C5	0.56228 (14)	-0.01898 (19)	0.59584 (8)	0.0220 (4)
H5A	0.6082	-0.0870	0.6067	0.026*
C6	0.59545 (14)	0.11370 (18)	0.59775 (8)	0.0201 (4)
C7	0.69945 (13)	0.15522 (17)	0.62164 (8)	0.0202 (4)
C8	0.86948 (13)	0.08980 (16)	0.65915 (9)	0.0213 (4)
С9	0.78567 (13)	0.11498 (19)	0.76513 (9)	0.0236 (4)
H9A	0.7265	0.1524	0.7427	0.028*
H9B	0.8007	0.1721	0.8015	0.028*
C10	0.75793 (15)	-0.0231 (2)	0.78918 (10)	0.0298 (4)
H10A	0.6989	-0.0174	0.8171	0.045*
H10B	0.8156	-0.0599	0.8123	0.045*
H10C	0.7417	-0.0798	0.7534	0.045*
C11	0.97664 (13)	0.14064 (18)	0.75210 (9)	0.0246 (4)
H11A	1.0310	0.0973	0.7277	0.029*
H11B	0.9768	0.1028	0.7949	0.029*
C12	0.99913 (15)	0.28917 (19)	0.75623 (10)	0.0296 (5)
H12A	1.0650	0.3028	0.7766	0.044*
H12B	0.9459	0.3322	0.7808	0.044*
H12C	1.0008	0.3265	0.7138	0.044*
C13	0.22137 (16)	0.1077 (3)	0.52797 (11)	0.0401 (5)
H13A	0.1567	0.0654	0.5177	0.060*
H13B	0.2457	0.1569	0.4914	0.060*
H13C	0.2116	0.1676	0.5634	0.060*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0251 (3)	0.0307 (3)	0.0347 (3)	-0.00535 (18)	0.00843 (18)	-0.00309 (18)
01	0.0258 (7)	0.0211 (7)	0.0378 (8)	-0.0015 (5)	-0.0037 (6)	0.0012 (5)
02	0.0193 (7)	0.0438 (9)	0.0351 (8)	-0.0006 (6)	-0.0042 (5)	0.0002 (6)
N1	0.0196 (7)	0.0170 (8)	0.0265 (8)	-0.0021 (5)	-0.0025 (6)	-0.0007 (6)
N2	0.0188 (7)	0.0181 (7)	0.0275 (8)	-0.0002(5)	-0.0016 (6)	0.0003 (6)
C1	0.0273 (10)	0.0215 (10)	0.0238 (10)	0.0017 (7)	0.0004 (7)	0.0011 (7)
C2	0.0255 (9)	0.0315 (11)	0.0244 (9)	0.0085 (8)	-0.0015 (7)	0.0035 (7)
С3	0.0207 (9)	0.0348 (11)	0.0184 (9)	0.0003 (7)	0.0004 (6)	-0.0014 (7)
C4	0.0242 (9)	0.0227 (9)	0.0239 (10)	-0.0025 (7)	0.0016 (7)	-0.0026 (7)
C5	0.0209 (9)	0.0240 (9)	0.0212 (9)	0.0018 (7)	0.0021 (6)	0.0005 (7)

supporting information

C6	0.0210 (9)	0.0206 (9)	0.0187 (8)	0.0009 (7)	0.0016 (6)	-0.0006 (6)
C7	0.0226 (9)	0.0184 (9)	0.0197 (8)	-0.0012 (7)	0.0022 (6)	0.0008 (6)
C8	0.0194 (9)	0.0149 (9)	0.0295 (10)	0.0000 (6)	-0.0012 (7)	0.0010 (6)
C9	0.0220 (9)	0.0222 (9)	0.0265 (10)	0.0007 (7)	0.0001 (7)	-0.0027 (7)
C10	0.0261 (10)	0.0314 (11)	0.0318 (10)	-0.0026 (8)	0.0028 (8)	0.0030 (8)
C11	0.0204 (9)	0.0211 (10)	0.0323 (10)	0.0008 (7)	-0.0066 (7)	0.0002 (7)
C12	0.0252 (9)	0.0268 (11)	0.0367 (11)	-0.0050 (7)	-0.0082 (8)	0.0024 (8)
C13	0.0229 (10)	0.0591 (15)	0.0384 (12)	0.0080 (9)	-0.0058 (8)	0.0033 (10)

Geometric parameters (Å, °)

S1—C8	1.6663 (18)	C5—C6	1.396 (3)
O1—C7	1.237 (2)	С5—Н5А	0.9300
O2—C3	1.367 (2)	C6—C7	1.490 (2)
O2—C13	1.428 (3)	C9—C10	1.514 (3)
N1—C7	1.351 (2)	С9—Н9А	0.9700
N1—C8	1.431 (2)	С9—Н9В	0.9700
N1—H1A	0.8600	C10—H10A	0.9600
N2—C8	1.327 (2)	C10—H10B	0.9600
N2-C11	1.470 (2)	C10—H10C	0.9600
N2—C9	1.479 (2)	C11—C12	1.517 (3)
C1—C2	1.394 (3)	C11—H11A	0.9700
C1—C6	1.395 (3)	C11—H11B	0.9700
C1—H1B	0.9300	C12—H12A	0.9600
C2—C3	1.387 (3)	C12—H12B	0.9600
C2—H2A	0.9300	C12—H12C	0.9600
C3—C4	1.397 (3)	C13—H13A	0.9600
C4—C5	1.379 (3)	C13—H13B	0.9600
C4—H4A	0.9300	C13—H13C	0.9600
C3—O2—C13	117.56 (17)	N2—C9—C10	112.64 (15)
C7—N1—C8	120.83 (15)	N2—C9—H9A	109.1
C7—N1—H1A	119.6	С10—С9—Н9А	109.1
C8—N1—H1A	119.6	N2—C9—H9B	109.1
C8—N2—C11	121.01 (15)	C10—C9—H9B	109.1
C8—N2—C9	123.58 (14)	H9A—C9—H9B	107.8
C11—N2—C9	115.40 (14)	C9—C10—H10A	109.5
C2—C1—C6	121.00 (17)	C9—C10—H10B	109.5
C2—C1—H1B	119.5	H10A—C10—H10B	109.5
C6—C1—H1B	119.5	C9—C10—H10C	109.5
C3—C2—C1	119.34 (17)	H10A—C10—H10C	109.5
C3—C2—H2A	120.3	H10B—C10—H10C	109.5
C1—C2—H2A	120.3	N2—C11—C12	111.73 (14)
O2—C3—C2	124.80 (17)	N2—C11—H11A	109.3
O2—C3—C4	115.01 (17)	C12—C11—H11A	109.3
C2—C3—C4	120.19 (17)	N2—C11—H11B	109.3
C5—C4—C3	119.97 (18)	C12—C11—H11B	109.3
C5—C4—H4A	120.0	H11A—C11—H11B	107.9

C3—C4—H4A	120.0	C11—C12—H12A	109.5
C4—C5—C6	120.81 (17)	C11—C12—H12B	109.5
С4—С5—Н5А	119.6	H12A—C12—H12B	109.5
С6—С5—Н5А	119.6	C11—C12—H12C	109.5
C1—C6—C5	118.69 (17)	H12A—C12—H12C	109.5
C1—C6—C7	117.74 (16)	H12B—C12—H12C	109.5
C5—C6—C7	123.43 (16)	O2—C13—H13A	109.5
O1—C7—N1	120.50 (16)	O2—C13—H13B	109.5
O1—C7—C6	121.81 (16)	H13A—C13—H13B	109.5
N1—C7—C6	117.60 (15)	O2—C13—H13C	109.5
N2—C8—N1	114.73 (15)	H13A—C13—H13C	109.5
N2—C8—S1	126.08 (14)	H13B—C13—H13C	109.5
N1—C8—S1	119.16 (13)		
C6—C1—C2—C3	-0.2 (3)	C1—C6—C7—O1	5.0 (3)
C_{13} O_{2} C_{3} C_{2}	-0.6(3)	C5 C6 C7 O1	-17057(16)
C13 - 02 - C3 - C2	0.0(3)	01-01-01	-1/0.37(10)
C13—O2—C3—C2 C13—O2—C3—C4	179.54 (17)	C1—C6—C7—N1	-170.37(10) -178.57(16)
C13—O2—C3—C4 C1—C2—C3—O2	179.54 (17) 179.78 (17)	C1-C6-C7-N1 C5-C6-C7-N1	-178.57(16) -178.57(16) 5.9(2)
C13—O2—C3—C4 C13—O2—C3—C4 C1—C2—C3—O2 C1—C2—C3—C4	179.54 (17) 179.78 (17) -0.3 (3)	C1—C6—C7—N1 C5—C6—C7—N1 C11—N2—C8—N1	-178.57(16) -178.57(16) 5.9(2) 176.34(14)
C13—O2—C3—C4 C1—C2—C3—C4 C1—C2—C3—C4 O2—C3—C4—C5	179.54 (17) 179.78 (17) -0.3 (3) -179.75 (16)	C1C6C7N1 C5C6C7N1 C11N2C8N1 C9N2C8N1	-178.57(16) -178.57(16) 5.9(2) 176.34(14) -2.8(2)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \end{array}$	179.54 (17) 179.78 (17) -0.3 (3) -179.75 (16) 0.3 (3)	C1-C6-C7-N1 C5-C6-C7-N1 C11-N2-C8-N1 C9-N2-C8-N1 C11-N2-C8-S1	-176.37(16) -178.57(16) 5.9(2) 176.34(14) -2.8(2) -1.5(2)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - O2 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ 0.2 \ (3) \end{array}$	C3-C0-C7-N1 C1C6C7N1 C5C6C7N1 C11N2C8N1 C11N2C8S1 C9N2C8S1	-178.57 (16) -178.57 (16) 5.9 (2) 176.34 (14) -2.8 (2) -1.5 (2) 179.41 (13)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \end{array}$	179.54 (17) 179.78 (17) -0.3 (3) -179.75 (16) 0.3 (3) 0.2 (3) 0.8 (3)	C3-C0-C7-N1 C1C6C7N1 C5C6C7N1 C11N2C8N1 C11N2C8S1 C9N2C8S1 C9N2C8S1 C7N1C8N2	-178.57 (16) -178.57 (16) 5.9 (2) 176.34 (14) -2.8 (2) -1.5 (2) 179.41 (13) 84.6 (2)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - O2 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C6 - C7 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ -179.75 \ (16) \\ 0.3 \ (3) \\ 0.2 \ (3) \\ 0.8 \ (3) \\ -175.01 \ (16) \end{array}$	C3-C0-C7-N1 C1C6C7N1 C5C6C7N1 C11N2C8N1 C11N2C8S1 C9N2C8S1 C9N2C8S1 C7N1C8N2 C7N1C8S1	-170.37(16) -178.57(16) 5.9(2) 176.34(14) -2.8(2) -1.5(2) 179.41(13) 84.6(2) -97.46(17)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C6 - C7 \\ C4 - C5 - C6 - C1 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ -179.75 \ (16) \\ 0.3 \ (3) \\ 0.2 \ (3) \\ 0.8 \ (3) \\ -175.01 \ (16) \\ -0.8 \ (3) \end{array}$	C3-C0-C7-N1 C1C6C7N1 C5C6C7N1 C11N2C8N1 C11N2C8S1 C9N2C8S1 C9N2C8S1 C7N1C8S1 C8N2C9C10	-170.37(16) -178.57(16) 5.9(2) 176.34(14) -2.8(2) -1.5(2) 179.41(13) 84.6(2) -97.46(17) 84.7(2)
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - O2 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C6 - C7 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C7 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ -179.75 \ (16) \\ 0.3 \ (3) \\ 0.2 \ (3) \\ 0.8 \ (3) \\ -175.01 \ (16) \\ -0.8 \ (3) \\ 174.78 \ (16) \end{array}$	$C_{1} - C_{6} - C_{7} - N_{1}$ $C_{5} - C_{6} - C_{7} - N_{1}$ $C_{1} - N_{2} - C_{8} - N_{1}$ $C_{9} - N_{2} - C_{8} - S_{1}$ $C_{9} - N_{2} - C_{8} - S_{1}$ $C_{7} - N_{1} - C_{8} - N_{2}$ $C_{7} - N_{1} - C_{8} - S_{1}$ $C_{8} - N_{2} - C_{9} - C_{10}$ $C_{11} - N_{2} - C_{9} - C_{10}$	$\begin{array}{c} -170.37(16) \\ -178.57(16) \\ 5.9(2) \\ 176.34(14) \\ -2.8(2) \\ -1.5(2) \\ 179.41(13) \\ 84.6(2) \\ -97.46(17) \\ 84.7(2) \\ -94.45(18) \end{array}$
$\begin{array}{c} C13 - 02 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - O2 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C6 - C7 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C7 \\ C8 - N1 - C7 - O1 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ -179.75 \ (16) \\ 0.3 \ (3) \\ 0.2 \ (3) \\ 0.8 \ (3) \\ -175.01 \ (16) \\ -0.8 \ (3) \\ 174.78 \ (16) \\ -4.6 \ (3) \end{array}$	$C_{1} - C_{6} - C_{7} - N_{1}$ $C_{5} - C_{6} - C_{7} - N_{1}$ $C_{11} - N_{2} - C_{8} - N_{1}$ $C_{9} - N_{2} - C_{8} - N_{1}$ $C_{11} - N_{2} - C_{8} - S_{1}$ $C_{9} - N_{2} - C_{8} - S_{1}$ $C_{7} - N_{1} - C_{8} - N_{2}$ $C_{7} - N_{1} - C_{8} - S_{1}$ $C_{8} - N_{2} - C_{9} - C_{10}$ $C_{11} - N_{2} - C_{9} - C_{10}$ $C_{8} - N_{2} - C_{11} - C_{12}$	$\begin{array}{c} -170.37(18) \\ -178.57(16) \\ 5.9(2) \\ 176.34(14) \\ -2.8(2) \\ -1.5(2) \\ 179.41(13) \\ 84.6(2) \\ -97.46(17) \\ 84.7(2) \\ -94.45(18) \\ 94.1(2) \end{array}$
$\begin{array}{c} C13 - O2 - C3 - C4 \\ C1 - C2 - C3 - C4 \\ C1 - C2 - C3 - O2 \\ C1 - C2 - C3 - C4 \\ O2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C5 \\ C3 - C4 - C5 - C6 \\ C2 - C1 - C6 - C5 \\ C2 - C1 - C6 - C7 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C7 \\ C8 - N1 - C7 - O1 \\ C8 - N1 - C7 - C6 \end{array}$	$\begin{array}{c} 0.0 \ (3) \\ 179.54 \ (17) \\ 179.78 \ (17) \\ -0.3 \ (3) \\ -179.75 \ (16) \\ 0.3 \ (3) \\ 0.2 \ (3) \\ 0.8 \ (3) \\ -175.01 \ (16) \\ -0.8 \ (3) \\ 174.78 \ (16) \\ -4.6 \ (3) \\ 178.96 \ (15) \end{array}$	$C_{1} - C_{6} - C_{7} - N_{1}$ $C_{5} - C_{6} - C_{7} - N_{1}$ $C_{11} - N_{2} - C_{8} - N_{1}$ $C_{11} - N_{2} - C_{8} - N_{1}$ $C_{11} - N_{2} - C_{8} - S_{1}$ $C_{9} - N_{2} - C_{8} - S_{1}$ $C_{7} - N_{1} - C_{8} - N_{2}$ $C_{7} - N_{1} - C_{8} - S_{1}$ $C_{8} - N_{2} - C_{9} - C_{10}$ $C_{11} - N_{2} - C_{9} - C_{10}$ $C_{8} - N_{2} - C_{11} - C_{12}$ $C_{9} - N_{2} - C_{11} - C_{12}$	$\begin{array}{c} -170.37(16) \\ -178.57(16) \\ 5.9(2) \\ 176.34(14) \\ -2.8(2) \\ -1.5(2) \\ 179.41(13) \\ 84.6(2) \\ -97.46(17) \\ 84.7(2) \\ -94.45(18) \\ 94.1(2) \\ -86.69(19) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O1 ⁱ	0.86	2.05	2.847 (2)	154

Symmetry code: (i) -x+3/2, y-1/2, z.