Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,8-Bis(3-hydroxy-3-methylbut-1-yn-1-yl)-2,11-dithia[3.3]paracyclophane

Di Wu* and Jie Huang

Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: wudi19871208@163.com

Received 24 October 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.149; data-to-parameter ratio = 16.8.

In the crystal structure of the title compound [systematic name: 2,2'-dimethyl-4,4'-(3,10-dithiatricyclo[10.2.2.2^{5,8}]octadeca-1(14),5,7,12,15,17-hexaen-6,17-diyl)dibut-3-yn-2-ol], $C_{26}H_{28}O_2S_2$, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming a tubular chain which runs parallel to the *b* axis. The tubular structure is reinforced by $\pi-\pi$ stacking interactions [centroid–centroid distance = 3.6332(16Å].

Related literature

For the preparation of the title compound, see: Jin & Lu (2010). For molecular building blocks associated with *para*-cyclophanes see: Xu *et al.* (2008).

Experimental

Crystal data $C_{26}H_{28}O_2S_2$ $M_r = 436.60$

Monoclinic, C2/ca = 17.1059 (5) Å b = 11.8596 (4) Å c = 24.5073 (10) Å $\beta = 108.113 (2)^{\circ}$ $V = 4725.4 (3) \text{ Å}^{3}$ Z = 8

Data collection

Bruker SMART CCD area-detector	14956 measured reflections
diffractometer	4646 independent reflections
Absorption correction: multi-scan	2596 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.080$
$T_{\min} = 0.943, \ T_{\max} = 0.976$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 277 parameters $wR(F^2) = 0.149$ H-atom parameters constrainedS = 0.92 $\Delta \rho_{max} = 0.27$ e Å $^{-3}$ 4646 reflections $\Delta \rho_{min} = -0.22$ e Å $^{-3}$

Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

 $0.20 \times 0.10 \times 0.10$ mm

T = 298 K

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^{i}$ $O2-H2\cdots O1^{ii}$	0.82 0.82	1.99 2.03	2.777 (4) 2.808 (3)	161 158
Summatry and as (i)	v 2 v 1	- 1 (ii) x y 1	1 -	

Symmetry codes: (i) -x + 2, y - 1, $-z + \frac{1}{2}$; (ii) x, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Professor Sheng-Hua Liu for technical assistance with the structure analysis and Dr Xiang-Gao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2035).

References

Bruker (2007). APEX2, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.

Acta Cryst. (2011). E67, o3374 [https://doi.org/10.1107/S1600536811048446]

5,8-Bis(3-hydroxy-3-methylbut-1-yn-1-yl)-2,11-dithia[3.3]paracyclophane

Di Wu and Jie Huang

S1. Comment

The molecular building block associated with *para*-cyclophanes are widely used in chiral catalysis, the design of new optoelectronic (NLO) materials, electron transfer processes, and molecular electronics, polymer chemistry and materials science, and even organic solar cells.(Xu *et al.*, 2008)

Up to now, the dithia[3.3]paracyclophane building blocks, which are synthetically more accessible, have received less attention. Here we report the crystal structure of the title compound (Fig. 1).

The molecules are linked into pairs by the O1-H1 \cdots .O2 hydrogen bond, Table 1. These pairs are then linked together by the O2-H2 \cdots O1, Table 1, and a symmetry related hydrogen bond to form a tube which runs parallel to the *b*-axis.

This tubular structure is re-inforced by π - π stacking between the phenyl ring containing C1 and its symmetry related ring in the molecule at (5/2+x,1/2-y,1/2+z), centroid to centroid distance, 3.6332(16Å, perpendicular 3.4658 (12)Å and a slippage of 1.0901Å.

Within the molecule the two phenyl rings have a centroid to centoid distance of 3.2621 (18)Å, an average perpendicular spacing of 3.2402Å with a slippage of 0.3773Å.

S2. Experimental

To a stirred solution of appropriate 5,8-dibromo-2,11-dithia[3,3]paracyclophane and 2-methylbut-3-yn-2-ol (in the molecular ratio 1: 4) in THF, Pr_2NH , $Pd(PPh_3)_2Cl_2(10 \text{ mol}\%)$ and CuI(10 mol%) was added under N_2 , the mixture was refluxed for 48 h. The cooled reaction mixture was filtered, diluted with CH_2Cl_2 and washed with water. The organic phase was dried with Na_2SO_4 , filtered, and the solvent was removed from the filtrate *in vacuo*. The crude products were purified by column chromatography on silica gel to yield diols (Jin and Lu 2010).

S3. Refinement

All the hydrogen atoms were located at their ideal positions with C—H=0.93Å (aromatic), C—H=0.96Å(methyl), C—H=0.97Å (methylene) and O—H=0.82Å. The thermal factors of these hydrogen atoms were set 1.2 (for aromatic and methylene) times or 1.5 (for methyl and hydroxyl) times of their carrier atoms.

Figure 1

Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Part of the crystal structure of (I), showing the chains generated by the O—H…O hydrogen bonds running parallel to the b-axis.

2,2'-dimethyl-4,4'-(3,10-dithiatricyclo[10.2.2.2^{5,8}]octadeca- 1(14),5,7,12,15,17-hexaen-6,17-diyl)dibut-3-yn-2-ol

<i>b</i> = 11.8596 (4) Å
c = 24.5073 (10) Å
$\beta = 108.113 \ (2)^{\circ}$
V = 4725.4 (3) Å ³
Z = 8

F(000) = 1856 $D_x = 1.227 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1923 reflections $\theta = 2.4-21.8^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.943, T_{\max} = 0.976$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
<i>S</i> = 0.92	H-atom parameters constrained
4646 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2]$
277 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.25 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.080$

 $h = -21 \rightarrow 20$

 $k = -12 \rightarrow 14$

 $l = -30 \rightarrow 29$

Block, colourless

 $0.20\times0.10\times0.10~mm$

 $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

14956 measured reflections

4646 independent reflections

2596 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates of	and isotropic o	or equivalent isotropic	displacement	parameters ((\AA^2)
	1	1 1	1	1 \	. /

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.00428 (17)	0.1057 (2)	0.17980 (12)	0.0432 (7)	
C2	0.91906 (18)	0.1194 (2)	0.15785 (12)	0.0439 (7)	
C3	0.88756 (18)	0.2274 (2)	0.15218 (12)	0.0467 (7)	
H3	0.8308	0.2376	0.1396	0.056*	
C4	0.93876 (18)	0.3215 (2)	0.16488 (12)	0.0427 (7)	
C5	1.02399 (17)	0.3086 (2)	0.18464 (12)	0.0432 (7)	
C6	1.05457 (18)	0.1999 (2)	0.19349 (12)	0.0479 (8)	
H6	1.1110	0.1896	0.2092	0.057*	
C7	0.86268 (19)	0.0188 (2)	0.13702 (14)	0.0607 (9)	
H7A	0.8323	0.0059	0.1639	0.073*	
H7B	0.8966	-0.0472	0.1380	0.073*	
C8	0.8537 (3)	0.0327 (3)	0.01972 (17)	0.0937 (13)	

110 4	0.000	0.02.41	0.0274	0.110*
HðA	0.8882	-0.0341	0.02/4	0.112*
H8B	0.8182	0.0278 0.1252(2)	-0.0197	0.112^{+}
C9	0.9086(2)	0.1355(3)	0.02529 (14)	0.0646 (9)
	0.8766 (2)	0.2425 (3)	0.01542 (15)	0.0699 (10)
HIU	0.8201	0.2520	-0.0005	0.084*
	0.9268 (2)	0.3362 (3)	0.02867 (14)	0.0615 (9)
HII	0.9034	0.4077	0.0221	0.074*
C12	1.0111 (2)	0.3257 (3)	0.05155 (13)	0.0555 (8)
C13	1.0431 (2)	0.2181 (3)	0.05674 (14)	0.0658 (9)
HI3	1.0999	0.2083	0.0691	0.079*
C14	0.9928 (2)	0.1248 (3)	0.04403 (14)	0.0644 (9)
H14	1.0162	0.0533	0.0482	0.077*
C15	1.0646 (2)	0.4279 (3)	0.07326 (15)	0.0728 (10)
H15A	1.0291	0.4911	0.0742	0.087*
H15B	1.0930	0.4460	0.0457	0.087*
C16	1.08110 (18)	0.4088 (2)	0.19252 (14)	0.0566 (9)
H16A	1.1188	0.4074	0.2314	0.068*
H16B	1.0486	0.4772	0.1885	0.068*
C17	1.04174 (18)	-0.0044 (2)	0.18399 (12)	0.0488 (8)
C18	1.07335 (18)	-0.0932 (3)	0.18470 (13)	0.0528 (8)
C19	1.1114 (2)	-0.2046 (3)	0.18242 (14)	0.0586 (9)
C20	1.0999 (3)	-0.2365 (3)	0.12062 (17)	0.1061 (15)
H20A	1.1261	-0.3076	0.1194	0.159*
H20B	1.1241	-0.1796	0.1030	0.159*
H20C	1.0423	-0.2424	0.1002	0.159*
C21	1.2026 (2)	-0.2005 (3)	0.21646 (18)	0.0865 (12)
H21A	1.2090	-0.1789	0.2554	0.130*
H21B	1.2297	-0.1465	0.1994	0.130*
H21C	1.2266	-0.2736	0.2161	0.130*
C22	0.90358 (18)	0.4331 (3)	0.15376 (13)	0.0492 (8)
C23	0.87791 (18)	0.5261 (3)	0.14457 (14)	0.0550 (8)
C24	0.8459 (2)	0.6417 (3)	0.13498 (17)	0.0758 (12)
C25	0.8404 (3)	0.6801 (3)	0.0756 (2)	0.140 (2)
H25A	0.8150	0.7531	0.0687	0.210*
H25B	0.8080	0.6273	0.0480	0.210*
H25C	0.8947	0.6843	0.0720	0.210*
C26	0.7637 (2)	0.6443 (4)	0.1460 (2)	0.135 (2)
H26A	0.7712	0.6261	0.1855	0.203*
H26B	0.7274	0.5902	0.1217	0.203*
H26C	0.7402	0.7183	0.1378	0.203*
01	1.07259 (14)	-0.28867(17)	0.20705 (10)	0.0672 (6)
H1	1.0921	-0.2870	0.2421	0.101*
02	0.90016 (13)	0.71742 (18)	0.17522 (11)	0.0744 (7)
H2	0.9478	0.7048	0.1765	0.112*
S1	0.79017 (5)	0.03053 (7)	0.06626 (4)	0.0678 (3)
S2	1.14046 (5)	0.41556 (7)	0.14312 (4)	0.0590 (3)
			- ()	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0508 (18)	0.0408 (18)	0.0387 (18)	0.0058 (14)	0.0149 (15)	0.0022 (13)
C2	0.0529 (19)	0.0422 (17)	0.0369 (17)	0.0019 (14)	0.0146 (15)	0.0054 (13)
C3	0.0460 (17)	0.0450 (19)	0.051 (2)	0.0045 (14)	0.0173 (16)	0.0028 (15)
C4	0.0547 (19)	0.0374 (17)	0.0399 (18)	0.0096 (14)	0.0202 (15)	-0.0001 (13)
C5	0.0491 (18)	0.0392 (17)	0.0419 (18)	0.0000 (14)	0.0148 (15)	-0.0077 (13)
C6	0.0467 (17)	0.0476 (19)	0.048 (2)	0.0069 (15)	0.0132 (15)	-0.0037 (14)
C7	0.057 (2)	0.0465 (19)	0.075 (2)	-0.0017 (16)	0.0148 (18)	0.0075 (17)
C8	0.109 (3)	0.088 (3)	0.088 (3)	-0.035 (2)	0.036 (3)	-0.036 (2)
С9	0.074 (3)	0.075 (3)	0.048 (2)	-0.011 (2)	0.0235 (19)	-0.0121 (18)
C10	0.059 (2)	0.089 (3)	0.065 (3)	-0.003 (2)	0.024 (2)	0.001 (2)
C11	0.067 (2)	0.068 (2)	0.052 (2)	0.0091 (19)	0.0225 (19)	0.0164 (18)
C12	0.063 (2)	0.058 (2)	0.045 (2)	0.0012 (17)	0.0159 (17)	0.0096 (16)
C13	0.062 (2)	0.071 (3)	0.058 (2)	0.004 (2)	0.0083 (19)	-0.0029 (19)
C14	0.084 (3)	0.058 (2)	0.046 (2)	0.003 (2)	0.013 (2)	-0.0098 (17)
C15	0.077 (2)	0.063 (2)	0.075 (3)	-0.0068 (19)	0.020 (2)	0.0167 (19)
C16	0.0585 (19)	0.0420 (18)	0.068 (2)	0.0066 (15)	0.0177 (18)	-0.0097 (16)
C17	0.0575 (19)	0.0392 (18)	0.0475 (19)	-0.0003 (15)	0.0131 (16)	0.0013 (15)
C18	0.0551 (19)	0.047 (2)	0.052 (2)	0.0068 (16)	0.0108 (16)	0.0014 (16)
C19	0.070 (2)	0.0448 (19)	0.059 (2)	0.0146 (16)	0.0179 (19)	0.0058 (16)
C20	0.170 (4)	0.077 (3)	0.074 (3)	0.028 (3)	0.042 (3)	-0.012 (2)
C21	0.061 (2)	0.083 (3)	0.115 (4)	0.020 (2)	0.028 (2)	0.027 (2)
C22	0.0521 (19)	0.0460 (19)	0.051 (2)	0.0065 (15)	0.0186 (16)	-0.0078 (15)
C23	0.0471 (18)	0.045 (2)	0.068 (2)	0.0087 (15)	0.0100 (17)	-0.0118 (16)
C24	0.069 (2)	0.044 (2)	0.083 (3)	0.0186 (17)	-0.022 (2)	-0.0229 (19)
C25	0.212 (6)	0.058 (3)	0.087 (4)	0.002 (3)	-0.046 (4)	-0.002 (2)
C26	0.056 (2)	0.111 (4)	0.201 (6)	0.028 (2)	-0.014 (3)	-0.088 (4)
01	0.0762 (16)	0.0430 (13)	0.0763 (17)	0.0061 (11)	0.0145 (14)	0.0070 (12)
O2	0.0620 (14)	0.0477 (13)	0.0908 (19)	0.0060 (11)	-0.0093 (15)	-0.0242 (12)
S 1	0.0540 (5)	0.0654 (6)	0.0772 (7)	-0.0130 (4)	0.0104 (5)	-0.0030 (5)
S2	0.0494 (5)	0.0500 (5)	0.0773 (7)	-0.0036 (4)	0.0194 (5)	-0.0010 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C6	1.386 (4)	C15—S2	1.804 (3)
C1—C2	1.397 (4)	C15—H15A	0.9700
C1—C17	1.445 (4)	C15—H15B	0.9700
C2—C3	1.381 (4)	C16—S2	1.808 (3)
С2—С7	1.519 (4)	C16—H16A	0.9700
C3—C4	1.393 (4)	C16—H16B	0.9700
С3—Н3	0.9300	C17—C18	1.181 (4)
C4—C5	1.395 (4)	C18—C19	1.481 (4)
C4—C22	1.444 (4)	C19—O1	1.431 (4)
С5—С6	1.383 (4)	C19—C20	1.514 (5)
C5—C16	1.512 (4)	C19—C21	1.525 (4)
С6—Н6	0.9300	C20—H20A	0.9600

C7—S1	1,797 (3)	C20—H20B	0.9600
C7—H7A	0.9700	C20—H20C	0.9600
C7—H7B	0.9700	C21—H21A	0.9600
C8—C9	1 517 (5)	C21—H21B	0 9600
C8—S1	1 804 (4)	C21—H21C	0.9600
C8—H8A	0.9700	C^{22} C^{23}	1.183(4)
C8—H8B	0.9700	C^{23} C^{24}	1.105(1) 1.467(4)
C9-C14	1,375(4)	$C_{24} = 0^{2}$	1.107(1) 1.440(4)
C9-C10	1 376 (5)	$C_{24} = C_{25}$	1.500 (6)
C_{10} C_{11}	1.370(3) 1 370(4)	$C_{24} = C_{25}$	1.500(0) 1.512(5)
	0.0300	$C_{24} = C_{20}$	1.512(5)
C_{10} C_{11} C_{12}	1.381(A)	C25—H25R	0.9000
C11_C12	0.0200	C25—H25C	0.9000
C12 C12	1.320(4)	C25—H25C	0.9000
C12 - C15	1.360(4)	C_{20} H_{20} H_{20}	0.9000
C12 - C13	1.312(4)	С20—П20В	0.9000
C13—C14	1.377 (4)	C20—H20C	0.9000
С13—Н13	0.9300		0.8200
C14—H14	0.9300	02—H2	0.8200
C6—C1—C2	1197(3)	82—C15—H15B	108.2
C6-C1-C17	118.9(3)	H15A—C15—H15B	107.3
C_{2} C_{1} C_{1} C_{1}	121 2 (3)	$C_{5}-C_{16}-S_{2}$	1151(2)
C_{3} $-C_{2}$ $-C_{1}$	1183(3)	C5-C16-H16A	108 5
C_{3} C_{2} C_{7}	120.5(3)	S2-C16-H16A	108.5
C1 - C2 - C7	120.0(3)	C5-C16-H16B	108.5
$C_{2} - C_{3} - C_{4}$	121.1(3) 121.5(3)	S2-C16-H16B	108.5
$C_2 = C_3 = H_3$	119.2	H_{16A} C 16 H 16B	107.5
C4-C3-H3	119.2	$C_{18} - C_{17} - C_{1}$	1764(3)
C_{3} C_{4} C_{5}	119.2 120.4(2)	C_{17} C_{18} C_{19}	170.1(3)
C_{3} C_{4} C_{22}	1197(3)	01 - C19 - C18	109.8(3)
C_{5} C_{4} C_{22}	119.7 (3)	01 - C19 - C20	109.0(3) 108.4(3)
C6-C5-C4	117.4(3)	C18 - C19 - C20	100.1(3) 109.8(3)
C6-C5-C16	1210(3)	01 - C19 - C21	109.0(3) 108.7(3)
C4-C5-C16	121.0(3) 121.5(2)	C18 - C19 - C21	100.7(3) 109.8(3)
C_{5} C_{6} C_{1}	121.5(2) 122.5(3)	$C_{10} = C_{19} = C_{21}$	109.0(3) 110.3(3)
C5—C6—H6	118.8	C19 - C20 - H20A	109.5
C1-C6-H6	118.8	C19 - C20 - H20B	109.5
$C_{2} - C_{7} - S_{1}$	116.0(2)	H_{20}^{-1}	109.5
$C_2 - C_7 - H_7 A$	108.3	C19 - C20 - H20C	109.5
S1—C7—H7A	108.3	$H_{20A} - C_{20} - H_{20C}$	109.5
$C_2 - C_7 - H_7B$	108.3	$H_{20R} = C_{20} = H_{20C}$	109.5
S1-C7-H7B	108.3	C19 - C21 - H21A	109.5
H7A - C7 - H7B	107.4	C19 - C21 - H21B	109.5
C9 - C8 - S1	115.6 (2)	$H_{21}A - C_{21} - H_{21}B$	109.5
C9—C8—H8A	108.4	C19-C21-H21C	109.5
S1—C8—H8A	108.4	$H_{21}A - C_{21} - H_{21}C$	109.5
C9—C8—H8B	108.4	H_{21B} C_{21} H_{21C}	109.5
S1—C8—H8B	108.4	C23—C22—C4	177.2 (3)

H8A—C8—H8B	107.4	C22—C23—C24	178.2 (4)
C14—C9—C10	117.4 (3)	O2—C24—C23	110.1 (3)
C14—C9—C8	120.8 (4)	O2—C24—C25	107.9 (3)
С10—С9—С8	121.7 (4)	C23—C24—C25	110.3 (3)
C9—C10—C11	121.3 (3)	O2—C24—C26	107.6 (3)
С9—С10—Н10	119.4	C23—C24—C26	108.2 (3)
C11—C10—H10	119.4	C25—C24—C26	112.7 (4)
C10—C11—C12	121.2 (3)	С24—С25—Н25А	109.5
C10—C11—H11	119.4	С24—С25—Н25В	109.5
C12—C11—H11	119.4	H25A—C25—H25B	109.5
C13—C12—C11	117.1 (3)	С24—С25—Н25С	109.5
C13—C12—C15	121.9 (3)	H25A—C25—H25C	109.5
C11—C12—C15	120.8 (3)	H25B—C25—H25C	109.5
C14—C13—C12	121.3 (3)	C24—C26—H26A	109.5
C14—C13—H13	119.3	С24—С26—Н26В	109.5
С12—С13—Н13	119.3	H26A—C26—H26B	109.5
C9—C14—C13	121.3 (3)	С24—С26—Н26С	109.5
C9—C14—H14	119.3	H26A—C26—H26C	109.5
C13—C14—H14	119.3	H26B—C26—H26C	109.5
C12—C15—S2	116.6 (2)	С19—О1—Н1	109.5
C12—C15—H15A	108.2	С24—О2—Н2	109.5
S2—C15—H15A	108.2	C7—S1—C8	103.91 (18)
С12—С15—Н15В	108.2	C15—S2—C16	104.56 (16)
C6-C1-C2-C3	-2.0 (4)	S1-C8-C9-C10	-59.7 (4)
C17—C1—C2—C3	-176.6 (3)	C14—C9—C10—C11	-5.7 (5)
C6—C1—C2—C7	174.1 (3)	C8—C9—C10—C11	170.3 (3)
C17—C1—C2—C7	-0.6 (4)	C9-C10-C11-C12	1.0 (5)
C1—C2—C3—C4	3.4 (4)	C10-C11-C12-C13	4.4 (5)
C7—C2—C3—C4	-172.6 (3)	C10-C11-C12-C15	-171.8 (3)
C2—C3—C4—C5	-0.9 (4)	C11—C12—C13—C14	-5.1 (5)
C2—C3—C4—C22	174.8 (3)	C15—C12—C13—C14	171.1 (3)
C3—C4—C5—C6	-3.0 (4)	C10-C9-C14-C13	5.0 (5)
C22—C4—C5—C6	-178.7 (3)	C8—C9—C14—C13	-171.0 (3)
C3—C4—C5—C16	173.2 (3)	C12—C13—C14—C9	0.4 (5)
C22—C4—C5—C16	-2.5 (4)	C13—C12—C15—S2	-43.9 (4)
C4—C5—C6—C1	4.5 (4)	C11—C12—C15—S2	132.2 (3)
C16—C5—C6—C1	-171.7 (3)	C6—C5—C16—S2	64.3 (3)
C2-C1-C6-C5	-2.1 (4)	C4—C5—C16—S2	-111.7 (3)
C17—C1—C6—C5	172.7 (3)	C2—C7—S1—C8	66.4 (3)
C3—C2—C7—S1	47.5 (4)	C9—C8—S1—C7	-66.4 (3)
C1—C2—C7—S1	-128.4 (3)	C12-C15-S2-C16	-68.5 (3)
S1—C8—C9—C14	116.1 (3)	C5-C16-S2-C15	62.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1…O2 ⁱ	0.82	1.99	2.777 (4)	161

Acta Cryst. (2011). E67, o3374

O2—H2…O1 ⁱⁱ	0.82	2.03	2.808 (3)	158

Symmetry codes: (i) –*x*+2, *y*–1, –*z*+1/2; (ii) *x*, *y*+1, *z*.