Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Oxo-5-(piperidin-1-yl)-2,3-dihydro-1H-pyrazole-4-carbonitrile

Wedad M. Al-Adiwish, ${ }^{\text {a }}$ W. A. Yaacob, ${ }^{\text {a }}$ D. Adan, ${ }^{\text {a }}$ Mohamed Ibrahim Mohamed Tahir ${ }^{\text {b }}$ and Mohammad B. Kassim ${ }^{\mathbf{a} *}$
${ }^{\text {a School of Chemical Sciences and Food Technology, Faculty of Science and }}$ Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Correspondence e-mail: mbkassim@ukm.my

Received 13 October 2011; accepted 10 November 2011

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.057 ; \omega R$ factor $=0.166 ;$ data-to-parameter ratio $=14.2$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$, the piperidine ring adopts a chair conformation and makes a dihedral angle of 42.49 (11) ${ }^{\circ}$ with the approximately planar pyrazole moiety [maximum deviation $=0.038(2) \AA]$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction link the molecules into sheets lying parallel to (110).

Related literature

For pharmacological background, see: Patel et al. (1990); Morimoto et al. (1990). For related structures see: Zaharan et al. (2001); Elgemeie et al. (2007); Gouda et al. (2010); Shelton et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O} & \gamma=71.906(6)^{\circ} \\
M_{r}=192.23 & V=470.01(6) \AA^{3} \\
\text { Triclinic, } P \overline{1} & Z=2 \\
a=7.2667(5) \AA & \mathrm{Cu} K \alpha \text { radiation } \\
b=7.9624(5) \AA & \mu=0.77 \mathrm{~mm}^{-1} \\
c=8.8306(8) \AA & T=150 \mathrm{~K} \\
\alpha=89.280(6)^{\circ} & 0.22 \times 0.19 \times 0.13 \\
\beta=75.934(7)^{\circ} &
\end{array}
$$

Data collection

Oxford Diffraction Gemini diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)
$T_{\text {min }}=0.849, T_{\text {max }}=0.906$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.166$
$S=1.11$
1803 reflections

5083 measured reflections 1803 independent reflections 1627 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{i}}$	0.86	2.32	$2.875(3)$	123
$\mathrm{~N} 3-\mathrm{H} 3 \cdots{ }^{\text {ii }}$	0.86	2.07	$2.772(2)$	138
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.54	$3.258(3)$	131

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y,-z+1$; (iii) $x-1, y+1, z$.

Data collection: Gemini User Manual (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank Universiti Kebangsaan Malaysia for providing facilities and the Ministry of Higher Education Malaysia for the research fund (UKM-GGPM-KPB-0982010). A scholarship from the Libyan Government to WMA is also greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6450).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Elgemeie, G. H., Elghandour, A. H. \& Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827-2834.
Gouda, M. A., Berghot, M. A., Abd El-Ghani, G. E. \& Khalil, A. M. (2010). Eur. J. Med. Chem. 45, 1338-1345.
Morimoto, K., Makino, K., Yamamoto, S. \& Sakata, G. (1990). J. Heterocycl. Chem. 27, 807-810.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Oxford Diffraction (2002). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, England.
Patel, H. V., Fernandes, P. S. \& Vyas, K. A. (1990). Indian J. Chem. Sect. B, 29, 135-141.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shelton, A. H., Stephenson, A., Ward, M. D. \& Kassim, M. B. (2011). Acta Cryst. E67, o2445.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zaharan, M. A., El-Sharief, A. M. S., El-Gaby, M. S. A., Ammar, Y. A. \& ElSaid, U. H. (2001). Farmaco, 56, 277-283.

supporting information

Acta Cryst. (2011). E67, o3318 [https://doi.org/10.1107/S1600536811047714]

3-Oxo-5-(piperidin-1-yl)-2,3-dihydro-1 H-pyrazole-4-carbonitrile

Wedad M. Al-Adiwish, W. A. Yaacob, D. Adan, Mohamed Ibrahim Mohamed Tahir and Mohammad B. Kassim

S1. Comment

In this paper, we report the synthesis and structure of the new derivative of 3-oxo-5-(piperidin-1-yl)-2,3-dihydro-1 H -pyrazole-4-carbonitrile. The compound was obtained by cyclization reaction between ethyl 2-cyano-3-(methyl-thio)-3-(piperidin-1-yl)acrylate and hydrazine.
In the title compound (I), the mean plane of the pyrazole $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9$ is essentially planar with maximum deviation of $-0.038(2)^{\circ}$ for C 8 and forms a dihedral angle of $42.49(11)^{\circ}$ with that of the piperidine mean plane $\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5$ (Fig. $1 \&$ Scheme 1). Consequently, a short non-bonding intra D—H..H—X contact forms between the $\mathrm{N} 2-\mathrm{H} 2$ of the pyrazole and the $\mathrm{H} 5 \mathrm{~B}-\mathrm{C} 5$ of the piperidine moeities.
The carbonyl C8=O1 [1.246(2)] and $\mathrm{C} 6=\mathrm{C} 7[1.407$ (3) \AA] are longer than the average $[\mathrm{C}=\mathrm{O}(1.200 \AA)]$ and $\mathrm{C}=\mathrm{C}$ $[(1.340 \AA)]$ bond lengths, respectively. Whereas the C6-N2 [1.363 (2) \AA] and C8—N3 [1.375 (2) \AA] bond lengths are shorter than the average $\mathrm{C}-\mathrm{N}[(1.47 \AA)]$ indicative of electron-donating effects of the amino groups. Other bond lengths and angle in the molecules are in the normal ranges (Allen et al.,1987).
In the crystal, intermolecular hydrogen bonds $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4$ and $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ and a weak $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$ interaction link the molecules forming a two-dimensional polymeric network parallel to (110) (Fig. 2).

S2. Experimental

A mixture of ethyl 2-cyano-3-(methylthio)-3-(piperidin-1-yl)acrylate (4 mmol) and hydrazine hydrate (4 mmol) was heated on a water-bath for 2 h . Then, ethanol (20 ml) was added and the mixture was refluxed for another 2 h . The solvent was evaporated and the product was collected, washed with ethanol, and dried. Colourless blocks of (I) were formed by slow evaporation of the compound from ethanol solution. Yield $=90 \%$.

S3. Refinement

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with $U_{\mathrm{iso}}=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2} 0.97 \AA$. Hydrogen atoms attached to N were also positioned geometrically and allowed to ride on their parent atoms and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for $\mathrm{N}-\mathrm{H} 0.86 \AA$.

Figure 1
The molecular structure of (I), with displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Crystal packing of (I) viewed down the a axis. Hydrogen bonds $[\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(x-1, y, z \&-x+2,-y,-z) \mathrm{N}-\mathrm{H} \cdots \mathrm{N}(x-1, y+$ $1, z)]$ are drawn as dashed lines.

3-Oxo-5-(piperidin-1-yl)-2,3-dihydro-1 H-pyrazole-4-carbonitrile

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=192.23$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.2667$ (5) \AA
$b=7.9624$ (5) \AA
$c=8.8306$ (8) \AA
$\alpha=89.280(6)^{\circ}$
$\beta=75.934(7)^{\circ}$
$\gamma=71.906(6)^{\circ}$
$V=470.01(6) \AA^{3}$

Data collection

Oxford Diffraction Gemini
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
$T_{\min }=0.849, T_{\max }=0.906$

$$
\begin{aligned}
& Z=2 \\
& F(000)=204 \\
& D_{\mathrm{x}}=1.358 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 527 \mathrm{~K} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54178 \AA \\
& \text { Cell parameters from } 3129 \text { reflections } \\
& \theta=5-71^{\circ} \\
& \mu=0.77 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.22 \times 0.19 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

5083 measured reflections
1803 independent reflections
1627 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=70.9^{\circ}, \theta_{\text {min }}=5.2^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.166$
$S=1.11$
1803 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0971 P)^{2}+0.2641 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.74$ e \AA^{-3}
$\Delta \rho_{\min }=-0.61$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier \& Glazer, 1986) with a nominal stability of 0.1 K .
Cosier, J. \& Glazer, A.M., 1986. J. Appl. Cryst. 105107.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$1.2334(2)$	$0.03312(18)$	$0.39572(17)$	$0.0334(4)$

N1	$0.8756(2)$	$0.6211(2)$	$0.2901(2)$	$0.0306(4)$
N2	$0.8011(2)$	$0.3667(2)$	$0.38329(19)$	$0.0273(4)$
H2	0.6730	0.4130	0.4070	0.033^{*}
N3	$0.9078(2)$	$0.1884(2)$	$0.39566(19)$	$0.0285(4)$
H3	0.8563	0.1043	0.4146	0.033^{*}
N4	$1.4774(3)$	$0.3703(3)$	$0.2487(2)$	$0.0397(5)$
C1	$1.0124(3)$	$0.7167(3)$	$0.2139(3)$	$0.0349(5)$
H1A	1.1496	0.6418	0.2014	0.042^{*}
H1B	0.9907	0.8218	0.2789	0.042^{*}
C2	$0.9771(4)$	$0.7692(3)$	$0.0547(3)$	$0.0394(5)$
H2A	1.0165	0.6635	-0.0144	0.047^{*}
H2B	1.0596	0.8413	0.0094	0.047^{*}
C3	$0.7585(4)$	$0.8722(3)$	$0.0673(3)$	$0.0424(6)$
H3A	0.7234	0.9851	0.1253	0.051^{*}
H3B	0.7386	0.8954	-0.0366	0.051^{*}
C4	$0.6237(3)$	$0.7685(3)$	$0.1497(3)$	$0.0380(5)$
H4A	0.4847	0.8390	0.1628	0.046^{*}
H4B	0.6491	0.6610	0.0865	0.046^{*}
C5	$0.6632(3)$	$0.7218(3)$	$0.3084(2)$	$0.0333(5)$
H5A	0.6282	0.8293	0.3742	0.040^{*}
H5B	0.5808	0.6517	0.3588	0.040^{*}
C6	$0.9374(3)$	$0.4540(2)$	$0.3267(2)$	$0.0249(4)$
C7	$1.1293(3)$	$0.3363(2)$	$0.3210(2)$	$0.0252(4)$
C8	$1.1054(3)$	$0.1702(2)$	$0.3729(2)$	$0.0262(4)$
C9	$1.3185(3)$	$0.3601(3)$	$0.2816(2)$	$0.0289(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0258(7)$	$0.0273(7)$	$0.0420(8)$	$-0.0030(6)$	$-0.0067(6)$	$0.0098(6)$
N1	$0.0276(9)$	$0.0285(9)$	$0.0356(9)$	$-0.0062(7)$	$-0.0116(7)$	$0.0092(7)$
N2	$0.0200(8)$	$0.0254(8)$	$0.0343(9)$	$-0.0032(6)$	$-0.0082(6)$	$0.0071(6)$
N3	$0.0254(8)$	$0.0232(8)$	$0.0371(9)$	$-0.0070(7)$	$-0.0092(7)$	$0.0072(6)$
N4	$0.0283(10)$	$0.0412(11)$	$0.0545(11)$	$-0.0131(8)$	$-0.0169(8)$	$0.0118(8)$
C1	$0.0353(11)$	$0.0276(10)$	$0.0462(12)$	$-0.0126(9)$	$-0.0152(9)$	$0.0095(9)$
C2	$0.0445(13)$	$0.0297(11)$	$0.0387(12)$	$-0.0095(9)$	$-0.0038(9)$	$0.0084(9)$
C3	$0.0532(14)$	$0.0321(11)$	$0.0331(11)$	$-0.0007(10)$	$-0.0116(10)$	$0.0076(9)$
C4	$0.0364(11)$	$0.0332(11)$	$0.0388(11)$	$0.0013(9)$	$-0.0154(9)$	$0.0018(9)$
C5	$0.0295(11)$	$0.0274(10)$	$0.0382(11)$	$-0.0016(8)$	$-0.0093(8)$	$0.0061(8)$
C6	$0.0271(10)$	$0.0274(10)$	$0.0215(8)$	$-0.0078(8)$	$-0.0095(7)$	$0.0035(7)$
C7	$0.0244(9)$	$0.0259(10)$	$0.0257(9)$	$-0.0066(7)$	$-0.0090(7)$	$0.0029(7)$
C8	$0.0255(9)$	$0.0261(9)$	$0.0252(9)$	$-0.0050(7)$	$-0.0071(7)$	$0.0016(7)$
C9	$0.0298(11)$	$0.0269(10)$	$0.0318(10)$	$-0.0070(8)$	$-0.0141(8)$	$0.0065(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 8$	$1.246(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 6$	$1.329(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700

N1-C1	1.467 (3)
N1-C5	1.471 (3)
N2-C6	1.376 (2)
N2-N3	1.408 (2)
N2-H2	0.8600
N3-C8	1.362 (3)
N3-H3	0.8600
N4-C9	1.148 (3)
C1-C2	1.520 (3)
C1-H1A	0.9700
C1-H1B	0.9700
C2-C3	1.521 (3)
C6-N1-C1	123.24 (17)
C6-N1-C5	122.91 (17)
C1-N1-C5	113.60 (16)
C6-N2-N3	108.06 (14)
C6-N2-H2	126.0
N3-N2-H2	126.0
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 2$	109.28 (15)
C8-N3-H3	125.4
N2-N3-H3	125.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	109.99 (17)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.7
N1-C1-H1B	109.7
C2-C1-H1B	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
C1-C2-C3	111.40 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	110.68 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5

$\mathrm{C} 3-\mathrm{C} 4$	$1.520(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.517(3)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{C} 6-\mathrm{C} 7$	$1.407(3)$
$\mathrm{C} 7-\mathrm{C} 9$	$1.406(3)$
C7-C8	$1.442(3)$

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$109.84(19)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.7
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.7
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.2
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$110.09(17)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.6
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.6
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.2
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{N} 2$	$120.17(17)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$132.01(18)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$107.82(16)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 6$	$131.41(17)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8$	$121.20(17)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$107.35(16)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 3$	$124.15(18)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$129.26(18)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 7$	$106.58(16)$
$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 7$	$176.5(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 4{ }^{\mathrm{i}}$	0.86	2.32	$2.875(3)$	123
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.07	$2.772(2)$	138
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.54	$3.258(3)$	131

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y,-z+1$; (iii) $x-1, y+1, z$.

