organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4*R**,4aS*,4bS*,5*R**,10a*R**)-4-Hydroxy-4a,5-dimethyl-2-(propan-2-yl)-1,4,4a,-4b,5,6,7,8,10,10a-decahydrophenanthren-1-one

Ignez Caracelli,^a* Julio Zukerman-Schpector,^b André T. Lousada Machado,^b Timothy J. Brocksom,^c M. Lúcia Ferreira^c and Edward R. T. Tiekink^d

^aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil, ^bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil, ^cDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: ignez@ufscar.br

Received 26 October 2011; accepted 11 November 2011

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.122; data-to-parameter ratio = 10.2.

In the title compound, $C_{19}H_{28}O_2$, the A ring adopts a chair conformation. Both the B and C rings adopt envelope conformations with the C atoms common to both rings and adjacent to the carbonyl and hydroxyl groups, respectively, lying 0.604 (3) and 0.634 (3) Å out of the mean planes defined by the remaining five C atoms of rings B and C, respectively (r.m.s. deviations = 0.0100 and 0.0157 Å, respectively). The formation of linear supramolecular C(7) chains along the *a* axis mediated by hydroxy-O-H···O(carbonyl) hydrogen bonds is the most prominent feature of the crystal packing.

Related literature

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011); Slusarczyk et al. (2011). For the synthesis, see: Ferreira (2002). For conformational analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{19}H_{28}O_2$	
$M_r = 288.41$	
Orthorhombic, $P2_12_12_1$	
a = 6.5507 (9) Å	
p = 11.733 (1) Å	
r = 22.338 (3) Å	

Data collection

Enraf-Nonius CAD-4 Mach 3 diffractometer 2272 measured reflections 1945 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ wR(F²) = 0.122 191 parameters H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.11$ e Å⁻³ 1945 reflections

V = 1716.9 (4) Å³

Mo Ka radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.15 \times 0.12 \times 0.09 \text{ mm}$

1077 reflections with $I > 2\sigma(I)$

intensity decay: 2.0%

3 standard reflections every 30 min

Z = 4

T = 290 K

 $R_{\rm int} = 0.038$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2o\cdots O1^{i}$	0.82	2.02	2.804 (3)	160
Symmetry code: (i) r –	1 v z			

Symmetry code: (i) x - 1, y, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank FAPESP, CNPq (306532/2009-3 to JZ-S; 308116/ 2010-0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6477).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chemaxon (2009). MarvinSketch. www.chemaxon.com.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferreira, M. L. (2002). PhD Thesis, Universidade Federal de São Carlos, Brazil.
- Guo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123-1127.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594-1596.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3338 [https://doi.org/10.1107/S1600536811048008]

(4*R**,4a*S**,4b*S**,5*R**,10a*R**)-4-Hydroxy-4a,5-dimethyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-decahydrophenanthren-1-one

Ignez Caracelli, Julio Zukerman-Schpector, André T. Lousada Machado, Timothy J. Brocksom, M. Lúcia Ferreira and Edward R. T. Tiekink

S1. Comment

Natural diterpenes exhibit a wide range of biological activities such as neuroprotectives (Guo *et al.*, 2011) and as antiplasmodials and anti-trypanocidals (Slusarczyk *et al.*, 2011). While aiming at the synthesis of some hydrophenanthrene diterpenes, a series of new intermediates were obtained and among them was the title compound (Ferreira, 2002), (I), which has been characterized crystallographically.

The A ring in (I), Fig. 1, has a chair conformation. Each of the B and C rings presents a half-chair conformation with atom C7 lying 0.604 (3) Å and C2 lying 0.634 (3) Å out of the approximate plane defined by the remaining five C atoms of rings B and C, respectively (r.m.s. deviation 0.0100 and 0.0157 Å for rings B and C, respectively). The ring puckering parameters are: $q_2 = 0.040$ (4), 0.348 (3), 0.367 (3) Å; $q_3 = 0.530$ (4), 0.265 (3), 0.269 (3) Å; QT = 0.531 (4), 0.438 (3), 0.455 (3) Å; and $\theta = 3.9$ (4), 52.7 (4), 53.7 (4)°, for rings A, B and C, respectively (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through O–H…O hydrogen bonds to form linear supramolecular chains along the *a* axis, Fig. 2 and Table 1. Chains pack in the crystal structure with no specific intermolecular interactions operating between them, Fig. 3.

S2. Experimental

The detailed synthesis of the title compound is described in a Ph.D. thesis (Ferreira, 2002). Crystals were grown by slow evaporation from its hexane solution held at 293 K. ¹H-NMR (CDCl₃, 400 MHz): δ (p.p.m.): 6.47 (d, 1H, J = 5.4 Hz); 5.50 (d, 1H, J = 4.5 Hz); 4.4 (d, 1H, J = 5.4 Hz); 2.87 (heptet, 1H, J = 6.8 Hz); 2.39 (d, 1H, J = 3.7 Hz); 2.29–2.33 (m, 1H); 2.08–2.13 (m, 2H); 1.98–2.03 (m, 2H); 1.68–1.78 (m, 1H); 1.68–1.78 (m, 2H); 1.35 (dt, 2H, J₁ = 12.8 and J₂ = 3.6 Hz); 1.21 (d, 3H, J = 6.5 Hz); 1.16 (s, 3H); 1.06 (d, 3H, J = 6.9 Hz); 1.02 (d, 3H, J = 6.9 Hz); δ (OH) not obs. ¹³C (CDCl₃, 100 MHz) δ (p.p.m.): 202.5; 142.2; 141.8; 136.0; 118.3; 71.0; 53.9; 53.1; 37.6; 36.7; 36.7; 33.6; 29.0; 27.5; 26.1; 26.0; 25.2; 21.4; 21.4 Analysis found: C 78.98, H 9.79%. C₁₉H₂₈O₂ requires: C 79.12, H 9.79%.

S3. Refinement

The H atoms were geometrically placed (C—H = 0.93–0.98 Å; O—H = 0.82 Å) and refined as riding with U_{iso} (H) = $1.2U_{eq}$ (C) and U_{iso} (H) = $1.5U_{eq}$ (methyl-C,O). The absolute structure was based on that of a starting material used in the synthesis (Ferreira, 2002). In the absence of significant anamolous dispersion effects, 287 Friedel pairs were merged in the final refinement cycles.

Figure 1

The molecular structure of compound (I) showing displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).

Figure 2

A view of the linear supramolecular chain along the *a* axis in (I). The hydroxy-O—H···O(carbonyl) hydrogen bonds are represented by orange dashed lines.

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I). The hydroxy-O—H···O(carbonyl) hydrogen bonds are represented by orange dashed lines.

(4R*,4aS*,4bS*,5R*,10aR*)-4-Hydroxy-4a,5-dimethyl-2-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-

decahydrophenanthren-1-one

Crystal data	
$C_{19}H_{28}O_2$	V = 1716.9 (4) Å ³
$M_r = 288.41$	Z = 4
Orthorhombic, $P2_12_12_1$	F(000) = 632
Hall symbol: P 2ac 2ab	$D_{\rm x} = 1.116 {\rm ~Mg} {\rm ~m}^{-3}$
a = 6.5507 (9) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 11.733 (1) Å	Cell parameters from 23 reflections
c = 22.338 (3) Å	$\theta = 9.1 - 16.5^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 290 K

Data collection

Enraf-Nonius CAD-4 Mach 3	$R_{\rm int} = 0.038$
diffractometer	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Radiation source: fine-focus sealed tube	$h = -1 \rightarrow 8$
Graphite monochromator	$k = -14 \rightarrow 0$
$\omega/-2\theta$ scans	$l = -27 \rightarrow 0$
2272 measured reflections	3 standard reflections every 30 min
1945 independent reflections	intensity decay: 2.0%
1077 reflections with $I > 2\sigma(I)$	
Refinement	

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site location: inferred from $wR(F^2) = 0.122$ neighbouring sites S = 1.02H-atom parameters constrained 1945 reflections $w = 1/[\sigma^2(F_o^2) + (0.0557P)^2 + 0.0441P]$ where $P = (F_0^2 + 2F_c^2)/3$ 191 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.11 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Irregular, colourless

 $0.15 \times 0.12 \times 0.09 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5700 (5)	0.1474 (3)	0.87731 (12)	0.0536 (8)	
H1	0.6626	0.1974	0.8996	0.064*	
C2	0.6209 (4)	0.1683 (2)	0.80946 (13)	0.0488 (8)	
C3	0.4355 (4)	0.1501 (3)	0.76804 (12)	0.0478 (7)	
H3	0.3371	0.2113	0.7758	0.057*	
C4	0.4904 (5)	0.1535 (3)	0.70352 (13)	0.0527 (8)	
H4	0.3867	0.1723	0.6769	0.063*	
C5	0.6731 (5)	0.1322 (3)	0.68010 (13)	0.0508 (7)	
C6	0.8399 (5)	0.1005 (3)	0.72195 (15)	0.0559 (8)	
C7	0.7936 (4)	0.0895 (2)	0.78799 (14)	0.0526 (8)	
H7	0.9173	0.1121	0.8096	0.063*	
C8	0.7588 (5)	-0.0363 (3)	0.80105 (14)	0.0616 (9)	
H8A	0.6508	-0.0653	0.7755	0.074*	
H8B	0.8823	-0.0789	0.7925	0.074*	

С9	0.7016 (6)	-0.0514(3)	0.86456 (15)	0.0656 (9)
Н9	0.7258	-0.1223	0.8818	0.079*
C10	0.6191 (5)	0.0279 (3)	0.89854 (14)	0.0592 (8)
C11	0.5787 (7)	0.0058 (4)	0.96343 (16)	0.0875 (13)
H11A	0.6721	0.0509	0.9874	0.105*
H11B	0.6046	-0.0739	0.9720	0.105*
C12	0.3627 (8)	0.0344 (4)	0.98085 (18)	0.1012 (15)
H12A	0.2688	-0.0165	0.9606	0.121*
H12B	0.3454	0.0245	1.0237	0.121*
C13	0.3167 (8)	0.1551 (3)	0.96402 (16)	0.0900 (12)
H13A	0.4014	0.2053	0.9880	0.108*
H13B	0.1753	0.1712	0.9738	0.108*
C14	0.3521 (6)	0.1821 (3)	0.89755 (16)	0.0699 (10)
H14	0.2546	0.1368	0.8743	0.084*
C15	0.6977 (6)	0.2914 (3)	0.80117 (15)	0.0750 (11)
H15A	0.5933	0.3438	0.8135	0.113*
H15B	0.7300	0.3041	0.7598	0.113*
H15C	0.8177	0.3030	0.8251	0.113*
C16	0.7253 (5)	0.1371 (3)	0.61470 (13)	0.0627 (9)
H16	0.8109	0.0708	0.6056	0.075*
C17	0.8497 (8)	0.2431 (4)	0.60174 (17)	0.1106 (16)
H17A	0.8863	0.2445	0.5601	0.166*
H17B	0.9713	0.2425	0.6257	0.166*
H17C	0.7704	0.3095	0.6111	0.166*
C18	0.5396 (6)	0.1315 (4)	0.57472 (15)	0.0879 (13)
H18A	0.5818	0.1327	0.5336	0.132*
H18B	0.4530	0.1958	0.5826	0.132*
H18C	0.4659	0.0624	0.5826	0.132*
C19	0.2980 (9)	0.3082 (3)	0.88848 (17)	0.1022 (16)
H19A	0.1605	0.3215	0.9015	0.153*
H19B	0.3100	0.3272	0.8468	0.153*
H19C	0.3898	0.3547	0.9114	0.153*
01	1.0090 (3)	0.0749 (2)	0.70292 (10)	0.0824 (8)
O2	0.3390 (3)	0.04403 (17)	0.78121 (9)	0.0563 (6)
H2o	0.2390	0.0359	0.7595	0.085*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0577 (17)	0.0556 (18)	0.0474 (17)	-0.0035 (17)	-0.0097 (15)	-0.0039 (15)
C2	0.0480 (18)	0.0450 (17)	0.0533 (17)	-0.0047 (15)	-0.0104 (15)	0.0007 (13)
C3	0.0434 (16)	0.0470 (17)	0.0529 (17)	0.0061 (15)	-0.0055 (13)	0.0023 (14)
C4	0.0456 (16)	0.0577 (19)	0.0546 (18)	0.0020 (16)	-0.0140 (15)	0.0068 (15)
C5	0.0432 (16)	0.0584 (19)	0.0509 (16)	-0.0044 (16)	-0.0060 (15)	0.0036 (15)
C6	0.0357 (15)	0.068 (2)	0.064 (2)	-0.0068 (16)	-0.0025 (16)	0.0015 (16)
C7	0.0381 (16)	0.0631 (19)	0.0566 (19)	-0.0061 (15)	-0.0127 (15)	0.0056 (16)
C8	0.0565 (18)	0.060(2)	0.068 (2)	0.0132 (17)	-0.0010 (17)	0.0056 (17)
C9	0.069 (2)	0.057 (2)	0.071 (2)	0.0115 (19)	-0.0020 (18)	0.0172 (17)

supporting information

C10	0.0614 (19)	0.062 (2)	0.0543 (19)	0.0002 (18)	-0.0080 (17)	0.0110 (17)
C11	0.112 (3)	0.089 (3)	0.062 (2)	-0.001 (3)	0.001 (2)	0.012 (2)
C12	0.127 (4)	0.109 (3)	0.068 (2)	-0.018 (3)	0.028 (3)	0.005 (2)
C13	0.094 (3)	0.108 (3)	0.068 (2)	0.009 (3)	0.014 (2)	-0.017 (2)
C14	0.072 (2)	0.074 (2)	0.064 (2)	0.007 (2)	0.002 (2)	-0.0152 (17)
C15	0.092 (3)	0.054 (2)	0.079 (2)	-0.018 (2)	-0.014 (2)	0.0031 (17)
C16	0.0524 (18)	0.082 (2)	0.0536 (19)	-0.0020 (19)	-0.0015 (16)	0.0041 (17)
C17	0.129 (4)	0.126 (4)	0.077 (3)	-0.042 (4)	0.018 (3)	0.021 (3)
C18	0.077 (2)	0.130 (3)	0.057 (2)	0.019 (3)	-0.017 (2)	-0.009 (2)
C19	0.129 (4)	0.091 (3)	0.087 (3)	0.044 (3)	0.007 (3)	-0.018 (2)
01	0.0360 (11)	0.143 (2)	0.0685 (15)	0.0035 (15)	0.0004 (12)	0.0002 (15)
O2	0.0438 (11)	0.0629 (13)	0.0623 (13)	-0.0109 (12)	-0.0077 (11)	-0.0014 (11)

Geometric parameters (Å, °)

C1C10	1.514 (4)	C11—H11B	0.9700	
C1-C14	1.552 (5)	C12—C13	1.495 (6)	
C1—C2	1.571 (4)	C12—H12A	0.9700	
C1—H1	0.9800	C12—H12B	0.9700	
C2—C7	1.538 (4)	C13—C14	1.536 (5)	
C2-C15	1.541 (4)	C13—H13A	0.9700	
C2—C3	1.542 (4)	C13—H13B	0.9700	
C3—O2	1.427 (3)	C14—C19	1.535 (5)	
C3—C4	1.486 (4)	C14—H14	0.9800	
С3—Н3	0.9800	C15—H15A	0.9600	
C4—C5	1.330 (4)	C15—H15B	0.9600	
C4—H4	0.9300	C15—H15C	0.9600	
C5—C6	1.485 (4)	C16—C18	1.511 (5)	
C5—C16	1.501 (4)	C16—C17	1.515 (5)	
C6—01	1.224 (4)	C16—H16	0.9800	
С6—С7	1.512 (5)	C17—H17A	0.9600	
С7—С8	1.522 (4)	C17—H17B	0.9600	
С7—Н7	0.9800	C17—H17C	0.9600	
С8—С9	1.478 (4)	C18—H18A	0.9600	
C8—H8A	0.9700	C18—H18B	0.9600	
C8—H8B	0.9700	C18—H18C	0.9600	
C9—C10	1.317 (4)	C19—H19A	0.9600	
С9—Н9	0.9300	C19—H19B	0.9600	
C10-C11	1.496 (5)	C19—H19C	0.9600	
C11—C12	1.505 (6)	O2—H2o	0.8200	
C11—H11A	0.9700			
C10—C1—C14	110.3 (3)	H11A—C11—H11B	107.9	
C10—C1—C2	113.7 (2)	C13—C12—C11	109.6 (4)	
C14—C1—C2	115.8 (3)	C13—C12—H12A	109.7	
C10—C1—H1	105.3	C11—C12—H12A	109.7	
C14—C1—H1	105.3	C13—C12—H12B	109.7	
C2—C1—H1	105.3	C11—C12—H12B	109.7	

C7—C2—C15	106.6 (3)	H12A—C12—H12B	108.2
C7—C2—C3	108.0 (2)	C12—C13—C14	114.1 (3)
C15—C2—C3	108.3 (2)	C12—C13—H13A	108.7
C7—C2—C1	111.3 (2)	C14—C13—H13A	108.7
C15—C2—C1	109.4 (2)	C12—C13—H13B	108.7
C3—C2—C1	113.0 (2)	C14—C13—H13B	108.7
O2—C3—C4	109.3 (2)	H13A—C13—H13B	107.6
O2—C3—C2	110.2 (2)	C19—C14—C13	106.9 (3)
C4—C3—C2	112.8 (2)	C19—C14—C1	115.2 (4)
02—C3—H3	108.1	C_{13} C_{14} C_{1}	111.5(3)
C4—C3—H3	108.1	C19—C14—H14	107.6
C2-C3-H3	108.1	C13—C14—H14	107.6
$C_{5} - C_{4} - C_{3}$	126 5 (3)	C1 - C14 - H14	107.6
C5-C4-H4	116.8	C_2 — C_{15} — H_{15A}	109.5
$C_3 - C_4 - H_4$	116.8	C_2 C_{15} H_{15R}	109.5
C4-C5-C6	117.5 (3)	H_{15A} C_{15} H_{15B}	109.5
C4 - C5 - C16	125 5 (3)	C_2 C_15 H_15C	109.5
$C_{1} = C_{1} = C_{10}$	123.5(3) 1170(3)	$H_{15A} = C_{15} = H_{15C}$	109.5
$C_0 = C_0 = C_{10}$	117.0(3) 120.6(3)	H15B C15 H15C	109.5
01 - C6 - C7	120.0(3)	$C_{5} C_{16} C_{18}$	109.5 113 0 (3)
$C_{5} = C_{6} = C_{7}$	120.0(3) 110.2(3)	$C_{5} = C_{16} = C_{17}$	113.0(3) 100.8(3)
$C_{5} = C_{6} = C_{7}$	119.2(3) 107.5(3)	$C_{18} = C_{16} = C_{17}$	109.0(3)
$C_{0} - C_{7} - C_{8}$	107.5(3) 113.6(2)	$C_{10} = C_{10} = C_{17}$	107.6
$C_{0} - C_{7} - C_{2}$	113.0(2) 114.4(3)	$C_{18} = C_{16} = H_{16}$	107.6
C6 C7 H7	107.0	C17 C16 H16	107.6
C_{0} C_{7} H_{7}	107.0	$C_{17} = C_{10} = 1110$	107.0
C_{3} C_{7} H_{7}	107.0	C16 C17 H17R	109.5
$C_2 = C_1 = \Pi_1$	107.0	H17A C17 H17B	109.5
$C_{2} = C_{3} = C_{1}$	109.8 (3)	$\frac{111}{A} = \frac{11}{B}$	109.5
C_{2} C_{2} C_{3} C_{2} C_{3} C_{3	109.7	$H_{17} = C_{17} = H_{17} C_{17}$	109.5
$C = C = H \delta A$	109.7	H1/A - C1/-H1/C	109.5
$C_{2} = C_{0} = H_{0}B$	109.7	$\Pi / B - C I / - \Pi / C$	109.5
$C = C = H \delta B$	109.7	C16 - C18 - H18A	109.5
$H_0A = C_0 = H_0B$	108.2		109.5
C10 - C9 - C8	124.9 (5)	H18A - C18 - H18B	109.5
$C_{10} - C_{9} - H_{9}$	117.0	C10-C18-H18C	109.5
$C_8 = C_9 = H_9$	11/.0	H18A - C18 - H18C	109.5
	120.5 (3)	H18B - C18 - H18C	109.5
	124.1 (3)	C14—C19—H19A	109.5
	115.2 (3)	С14—С19—Н19В	109.5
C10-C11-C12	112.2 (4)	H19A—C19—H19B	109.5
Clo—Cll—HllA	109.2	С14—С19—Н19С	109.5
C12—C11—HIIA	109.2	H19A—C19—H19C	109.5
C10—C11—H11B	109.2	H19B—C19—H19C	109.5
C12—C11—H11B	109.2	C3—O2—H2o	109.5
C10—C1—C2—C7	-26.9 (3)	C15—C2—C7—C8	171.6 (3)
C14—C1—C2—C7	-156.1 (3)	C3—C2—C7—C8	-72.2 (3)
C10-C1-C2-C15	-144.5 (3)	C1—C2—C7—C8	52.4 (3)

C14—C1—C2—C15 C10—C1—C2—C3	86.3 (4) 94 8 (3)	C6—C7—C8—C9 C2—C7—C8—C9	-176.9(3) -498(4)
C14—C1—C2—C3	-34.5 (4)	C7—C8—C9—C10	23.6 (5)
C7—C2—C3—O2	74.3 (3)	C8—C9—C10—C11	-176.3 (3)
C15—C2—C3—O2	-170.6 (3)	C8—C9—C10—C1	0.0 (6)
C1—C2—C3—O2	-49.2 (3)	C14—C1—C10—C9	133.7 (4)
C7—C2—C3—C4	-48.2 (3)	C2-C1-C10-C9	1.7 (5)
C15—C2—C3—C4	67.0 (3)	C14—C1—C10—C11	-49.8 (4)
C1—C2—C3—C4	-171.7 (3)	C2-C1-C10-C11	178.2 (3)
O2—C3—C4—C5	-99.1 (4)	C9—C10—C11—C12	-128.9 (4)
C2—C3—C4—C5	23.9 (4)	C1-C10-C11-C12	54.5 (5)
C3—C4—C5—C6	0.8 (5)	C10-C11-C12-C13	-55.1 (5)
C3—C4—C5—C16	-179.5 (3)	C11—C12—C13—C14	55.9 (5)
C4—C5—C6—O1	176.7 (3)	C12-C13-C14-C19	-179.9 (4)
C16—C5—C6—O1	-3.1 (5)	C12-C13-C14-C1	-53.1 (5)
C4—C5—C6—C7	2.3 (4)	C10-C1-C14-C19	169.7 (3)
C16—C5—C6—C7	-177.4 (3)	C2-C1-C14-C19	-59.4 (4)
O1—C6—C7—C8	-77.0 (4)	C10-C1-C14-C13	47.6 (4)
C5—C6—C7—C8	97.4 (3)	C2-C1-C14-C13	178.5 (3)
O1—C6—C7—C2	155.4 (3)	C4—C5—C16—C18	-18.6 (5)
C5—C6—C7—C2	-30.2 (4)	C6—C5—C16—C18	161.2 (3)
C15—C2—C7—C6	-64.5 (3)	C4—C5—C16—C17	105.8 (4)
C3—C2—C7—C6	51.7 (3)	C6-C5-C16-C17	-74.5 (4)
C1—C2—C7—C6	176.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O2—H2o····O1 ⁱ	0.82	2.02	2.804 (3)	160

Symmetry code: (i) x-1, y, z.