Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Trifluoromethyl-1H-benzimidazol-3ium hydrogen sulfate

Ming-Liang Liu

College of Chemistryand Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: jgsdxlml@163.com

Received 4 November 2011; accepted 16 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.052; wR factor = 0.134; data-to-parameter ratio = 11.8.

In the crystal of the title molecular salt, $C_8H_6F_3N_2^+$ ·HSO₄⁻, cation-to-anion N-H···O hydrogen bonds generate [100] chains. Anion-to-anion O-H···O hydrogen bonds generate [001] helices and cross-link the chains into a three-dimensional network.

Related literature

For a related structure and background to molecular salts, see: Liu (2011).

Experimental

Crystal data

 $C_8H_6F_3N_2^+ \cdot HSO_4^ M_r = 284.22$ Hexagonal, P6, a = 9.4119 (13) Åc = 21.960 (4) Å $V = 1684.7(5) \text{ Å}^3$

Z = 6Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.20 \times 0.20$ mm

Data collection

Rigaku Mercury2 CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\rm min} = 0.935, T_{\rm max} = 0.935$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.134$ S = 1.111977 reflections 167 parameters 8 restraints

14287 measured reflections 1977 independent reflections 1941 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
957 Friedel pairs
Flack parameter: 0.03 (16)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2A \cdots O3^{i} \\ N1 - H1A \cdots O4 \\ O1 - H1 \cdots O2^{ii} \end{array}$	0.86	1.85	2.707 (5)	173
	0.86	1.88	2.740 (7)	174
	0.86 (2)	1.86 (6)	2.608 (7)	145 (9)

Symmetry codes: (i) x + 1, y, z; (ii) $y - 1, -x + y, z + \frac{1}{6}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author thanks an anonymous reader from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6491).

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881. Liu, M.-L. (2011). Acta Cryst. E67, o2821. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3473 [https://doi.org/10.1107/S1600536811048811]

2-Trifluoromethyl-1H-benzimidazol-3-ium hydrogen sulfate

Ming-Liang Liu

S1. Experimental

0.144 g(1 mmol) of 2-Trifluoromethl-1*H*-benzimidazole was firstly dissolved in 30 ml me thanol, to which 0.1 g(1 mmol) of sulfuric acid was then added to afford the solution without any precipitation under stirring at the ambient temperature. Colourless blocks of the title compound were obtained by the slow evaporation of the above solution after 2 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent ($\varepsilon = C/(T-T_0)$), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

S2. Refinement

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp^2 atoms and C—H = 0.96Å and 0.97Å for Csp^3 atoms), assigned fixed U_{iso} values [$U_{iso} = 1.2Ueq(Csp^2)$ and $1.5Ueq(Csp^3,N)$] and allowed to ride. The H atom bonding with N was found with O—H bond distance of 0.8600Å in the difference electron density map.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

A view of the packing of the title compound, stacking along the *a* axis. Dashed lines indicate hydrogen bonds.

2-Trifluoromethyl-1H-benzimidazol-3-ium hydrogen sulfate

Crystal data

 $C_8H_6F_3N_2^{+}$ ·HSO₄⁻ $M_r = 284.22$ Hexagonal, $P6_5$ Hall symbol: P 65 a = 9.4119 (13) Å c = 21.960 (4) Å V = 1684.7 (5) Å³ Z = 6

Data collection

Rigaku Mercury2 CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.935$, $T_{max} = 0.935$ F(000) = 864 $D_x = 1.681 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ $\theta = 3.1-27.6^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.20 \times 0.20 \text{ mm}$

14287 measured reflections 1977 independent reflections 1941 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 25.0^\circ, \theta_{min} = 3.1^\circ$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -26 \rightarrow 26$ Refinement

Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 1.9666P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.53 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack (1983), 957 Friedel
pairs
Absolute structure parameter: 0.03 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.09970 (14)	0.72553 (17)	0.16867 (6)	0.0442 (3)	
N1	0.4873 (5)	0.7391 (5)	0.1735 (2)	0.0418 (9)	
H1A	0.3843	0.7058	0.1770	0.050*	
N2	0.7169 (4)	0.7349 (5)	0.16388 (17)	0.0348 (8)	
H2A	0.7835	0.6981	0.1596	0.042*	
C3	0.6124 (6)	0.9017 (6)	0.1722 (2)	0.0418 (11)	
C8	0.7613 (5)	0.9011 (6)	0.1675 (2)	0.0371 (10)	
C4	0.6126 (7)	1.0512 (7)	0.1762 (3)	0.0508 (13)	
H4	0.5152	1.0535	0.1792	0.061*	
03	-0.0637 (4)	0.6347 (5)	0.14218 (18)	0.0558 (11)	
F3	0.5450 (5)	0.4034 (5)	0.1391 (3)	0.0928 (15)	
C6	0.9082 (7)	1.1891 (7)	0.1712 (3)	0.0527 (13)	
H6	1.0066	1.2883	0.1710	0.063*	
01	0.0866 (5)	0.8248 (5)	0.2230 (2)	0.0627 (11)	
C5	0.7592 (8)	1.1907 (7)	0.1755 (3)	0.0589 (15)	
H5	0.7623	1.2909	0.1780	0.071*	
F1	0.3262 (5)	0.4077 (6)	0.1346 (3)	0.116 (2)	
F2	0.4211 (10)	0.3991 (6)	0.2195 (2)	0.157 (3)	
O4	0.1589 (5)	0.6207 (5)	0.19150 (19)	0.0571 (11)	
C7	0.9120 (6)	1.0455 (7)	0.1670 (3)	0.0456 (11)	
H7	1.0103	1.0448	0.1641	0.055*	
C1	0.4609 (6)	0.4596 (7)	0.1670 (3)	0.0520 (13)	
O2	0.2184 (6)	0.8507 (9)	0.1300 (3)	0.110 (2)	

supporting information

C	0 5521 (5)	0(424(6))	0.1692(2)	0.0272(0)	
02	0.5551 (5)	0.0434 (0)	0.1083 (2)	0.0373 (9)	
H1	0.041 (10)	0.754 (9)	0.251 (3)	0.10 (3)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0252 (5)	0.0626 (9)	0.0458 (6)	0.0227 (5)	0.0080 (5)	0.0144 (6)
N1	0.0295 (19)	0.051 (2)	0.051 (2)	0.0252 (19)	-0.0012 (18)	-0.0049 (19)
N2	0.0243 (17)	0.044 (2)	0.040 (2)	0.0205 (16)	0.0009 (16)	-0.0062 (18)
C3	0.037 (2)	0.050 (3)	0.043 (3)	0.025 (2)	0.001 (2)	-0.002 (2)
C8	0.037 (2)	0.043 (3)	0.037 (2)	0.024 (2)	-0.006 (2)	-0.005 (2)
C4	0.057 (3)	0.058 (3)	0.059 (3)	0.044 (3)	-0.002 (3)	0.003 (3)
03	0.0362 (19)	0.087 (3)	0.059 (2)	0.042 (2)	-0.0057 (16)	-0.015 (2)
F3	0.070 (2)	0.058 (2)	0.158 (4)	0.038 (2)	0.018 (3)	-0.012 (3)
C6	0.044 (3)	0.045 (3)	0.062 (3)	0.017 (2)	0.006 (3)	0.009 (3)
01	0.056 (3)	0.048 (2)	0.079 (3)	0.022 (2)	-0.009(2)	-0.012 (2)
C5	0.073 (4)	0.052 (3)	0.070 (4)	0.045 (3)	-0.005 (3)	0.005 (3)
F1	0.047 (2)	0.070 (3)	0.213 (6)	0.0161 (19)	-0.039 (3)	-0.044 (3)
F2	0.246 (6)	0.055 (3)	0.072 (3)	0.002 (3)	0.038 (4)	0.009 (2)
O4	0.0403 (19)	0.074 (3)	0.072 (3)	0.039 (2)	0.0007 (17)	0.007 (2)
C7	0.030 (2)	0.055 (3)	0.050 (3)	0.020 (2)	-0.002 (2)	0.003 (2)
C1	0.036 (3)	0.043 (3)	0.067 (3)	0.012 (2)	0.014 (3)	-0.001 (3)
02	0.057 (3)	0.155 (5)	0.108 (4)	0.045 (3)	0.032 (3)	0.093 (4)
C2	0.030(2)	0.040 (2)	0.042 (2)	0.0176 (19)	0.0001 (19)	-0.010 (2)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.429 (5)	C4—C5	1.348 (9)
S1—O4	1.444 (4)	C4—H4	0.9300
S1—O3	1.456 (4)	F3—C1	1.304 (6)
S101	1.558 (5)	C6—C7	1.373 (8)
N1-C2	1.329 (6)	C6—C5	1.414 (8)
N1—C3	1.388 (6)	С6—Н6	0.9300
N1—H1A	0.8600	O1—H1	0.86 (2)
N2—C2	1.341 (6)	С5—Н5	0.9300
N2—C8	1.405 (6)	F1—C1	1.317 (8)
N2—H2A	0.8600	F2—C1	1.258 (8)
С3—С8	1.407 (6)	C7—H7	0.9300
C3—C4	1.409 (7)	C1—C2	1.499 (7)
C8—C7	1.390 (7)		
O2—S1—O4	111.1 (3)	C3—C4—H4	121.2
O2—S1—O3	114.0 (3)	C7—C6—C5	122.0 (5)
O4—S1—O3	113.1 (3)	С7—С6—Н6	119.0
O2—S1—O1	103.0 (4)	С5—С6—Н6	119.0
O4—S1—O1	108.5 (3)	S1—O1—H1	104 (7)
O3—S1—O1	106.3 (2)	C4—C5—C6	121.9 (5)
C2—N1—C3	108.6 (4)	C4—C5—H5	119.1

supporting information

C2—N1—H1A	125.7	С6—С5—Н5	119.1
C3—N1—H1A	125.7	C6—C7—C8	116.5 (4)
C2—N2—C8	108.5 (3)	С6—С7—Н7	121.8
C2—N2—H2A	125.8	С8—С7—Н7	121.8
C8—N2—H2A	125.8	F2—C1—F3	110.5 (7)
N1—C3—C8	107.2 (4)	F2—C1—F1	108.3 (6)
N1—C3—C4	132.5 (4)	F3—C1—F1	105.2 (5)
C8—C3—C4	120.3 (5)	F2—C1—C2	112.0 (5)
C7—C8—N2	132.7 (4)	F3—C1—C2	111.0 (4)
C7—C8—C3	121.9 (4)	F1—C1—C2	109.5 (5)
N2—C8—C3	105.4 (4)	N1—C2—N2	110.3 (4)
C5—C4—C3	117.5 (5)	N1—C2—C1	125.9 (4)
С5—С4—Н4	121.2	N2-C2-C1	123.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2A····O3 ⁱ	0.86	1.85	2.707 (5)	173
N1—H1A····O4	0.86	1.88	2.740 (7)	174
O1—H1…O2 ⁱⁱ	0.86 (2)	1.86 (6)	2.608 (7)	145 (9)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *y*-1, -*x*+*y*, *z*+1/6.