Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Benzyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidine-1-carboxylate

Marcus V. N. de Souza,^a Raoni S. B. Goncalves,^a James L. Wardell,^b‡ Solange M. S. V. Wardell^c and Edward R. T. Tiekink^d*

^aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, ^bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, ^cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 9 November 2011; accepted 10 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.107; data-to-parameter ratio = 15.4.

The title molecule, C₂₅H₂₂F₆N₂O₃, adopts an open conformation whereby the quinoline and carboxylate ester groups are orientated in opposite directions but to the same side of the piperidine ring so that the molecule has an approximate Ushape. The piperidine ring adopts a distorted boat conformation. In the crystal, inversion dimers linked by pairs of O-H···O hydrogen bonds generate $R_2^2(14)$ loops.

Related literature

For background to the anti-mycobacterial activity of mefloquine, see: Gonçalves et al. (2010); Mao et al. (2007); Maguire et al. (2006). For the synthesis, see: Grellepois et al. (2005). For related structures, see: Gonçalves et al. (2011a,b); Wardell et al. (2010, 2011a,b); Pitaluga et al. (2010). For ring conformations, see: Cremer & Pople (1975).

V = 2221.9 (2) Å³

Mo $K\alpha$ radiation

 $0.15 \times 0.11 \times 0.04 \text{ mm}$

10271 measured reflections

5060 independent reflections

4132 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.13 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int}=0.026$

refinement $\Delta \rho_{\rm max} = 0.34~{\rm e}~{\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Z = 4

Experimental

Crystal data
$C_{25}H_{22}F_6N_2O_3$
$M_r = 512.45$ Monoclinic, $P2_1/n$
$a = 12.7793 (5) \overset{1}{\text{A}}$
b = 13.9970 (7) A c = 13.2188 (9) Å
$\beta = 109.999 (8)^{\circ}$
Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011) $T_{\min} = 0.757, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ wR(F²) = 0.107 S = 1.005060 reflections 328 parameters 1 restraint

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdots A$ D - H $H \cdot \cdot \cdot A$ $O1-H1o\cdots O3^{i}$ 0.84(1)1.90(1) 2.7294 (14) 172 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6498)

Acta Cryst. (2011). E67, o3313-o3314

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gonçalves, R. S. B., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, 03315–03316.
- Gonçalves, R. S. B., Kaiser, C. R., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1656–o1657.
- Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). *Eur. J. Med. Chem.* 45, 6095–6100.
- Grellepois, F., Grellier, P., Bonnet-Delpon, D. & Bégué, J. P. (2005). ChemBioChem, 6, 648-652.

- Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). *Clin. Infect. Dis.* **42**, 1067–1072.
- Mao, J., Wang, Y., Wan, B., Kozikowski, A. P. S. G. & Franzblau, S. G. (2007). *ChemMedChem*, 2, 1624–1630.
- Pitaluga, A. Jr, Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50–60.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67–74.
- Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68–77.
- Wardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & de Lima, G. M. (2010). Acta Cryst. E66, m336–m337.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o3313–o3314 [https://doi.org/10.1107/S1600536811047738]

Benzyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidine-1carboxylate

Marcus V. N. de Souza, Raoni S. B. Gonçalves, James L. Wardell, Solange M. S. V. Wardell and Edward R. T. Tiekink

S1. Comment

For some decades, in combination with other drugs, mefloquine has been used in the prevention and treatment of malaria (Maguire *et al.*, 2006). The activity of mefloquine has been investigated against other diseases more recently, for example, as anti-viral and anti-tubercular agents (Mao *et al.*, 2007). In continuation of on-going structural and biological studies on mefloquine derivatives (Gonçalves *et al.*, 2010, 2011*a*, 2011*b*; Wardell, *et al.*, 2010; 2011*a*; 2011*b*; Pitaluga *et al.*, 2010), we now report the crystal and molecular structure of the title compound, (I).

In the molecule of (I), Fig. 1, the hydroxyl group lies to one side of the plane through the quinolinyl residue and the substituted piperidine ring to other with the carboxylate ester directed away from the rest of the molecule. The residues lie to the same side of the piperidine ring so that the molecule has a U-shape. The piperidine ring has a distorted boat conformation with ring puckering parameters: $q_2 = 0.7644$ (16) Å; $q_3 = -0.0283$ (16) Å; QT = 0.7649 (16) Å; and $\theta = 92.12$ (12) ° (Cremer & Pople, 1975). Mefloquine used as a reagent was a racemate. The sum of the angles at the trisubstituted N2 is 356° indicating a very near planar geometry, and hence an achiral centre. The configurations of the C12 and C13 in the illustrated molecule, Fig. 1, are *R*, *S* and *R*, respectively. The crystal structure contains an equal amount of the opposite enantiomer.

The most prominent intermolecular interactions in the crystal structure are O—H···O hydrogen bonds that lead to the formation of centrosymmetric dimeric aggregates *via* 14-membered {···HOC₂NCO}₂ synthons, Fig. 1 and Table 1.

S2. Experimental

Benzyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2*H*)-pyridine carboxylate was prepared similarly to *tert*-butyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2*H*)-pyridine carboxylate, following a published procedure (Grellepois *et al.*, 2005), from benzyl chloroformate and mefloquine in the presence of Et₃N. Colourless plates of (I) were grown from an EtOH solution; *M*.pt. 445–447 K. MS 535.3 [*M* + Na].

S3. Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The O—H H atom was located in a difference map and refined with O—H = 0.84±0.01 Å with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 2

Centrosymmetric aggregate mediated by O-H···O hydrogen bonds (orange dashed lines) in the crystal structure of (I).

Benzyl 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidine-1- carboxylate

Crystal data

C₂₅H₂₂F₆N₂O₃ $M_r = 512.45$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.7793 (5) Å b = 13.9970 (7) Å c = 13.2188 (9) Å $\beta = 109.999$ (8)° V = 2221.9 (2) Å³ Z = 4

Data collection

Rigaku Saturn724+ diffractometer Radiation source: Rotating Anode Confocal monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*CrystalClear-SM Expert*; Rigaku, 2011) $T_{\min} = 0.757, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.107$ S = 1.005060 reflections 328 parameters F(000) = 1056 $D_x = 1.532 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8584 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.15 \times 0.11 \times 0.04 \text{ mm}$

10271 measured reflections 5060 independent reflections 4132 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.1^\circ$ $h = -15 \rightarrow 16$ $k = -15 \rightarrow 18$ $l = -14 \rightarrow 17$

 restraint
 Primary atom site location: structure-invariant direct methods
 Secondary atom site location: difference Fourier map
 Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0549P)^2 + 0.9076P]$	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.06301 (8)	0.63866 (8)	0.42728 (8)	0.0347 (3)	
F2	0.08200 (10)	0.59309 (10)	0.27995 (8)	0.0472 (3)	
F3	0.00983 (8)	0.49890 (9)	0.36550 (11)	0.0490 (3)	
F4	0.24269 (7)	0.32103 (7)	0.22775 (7)	0.0244 (2)	
F5	0.40411 (8)	0.31616 (7)	0.21097 (7)	0.0268 (2)	
F6	0.32339 (7)	0.45128 (7)	0.20711 (7)	0.0223 (2)	
01	0.34838 (8)	0.58357 (7)	0.75929 (8)	0.0177 (2)	
Hlo	0.3897 (13)	0.6035 (13)	0.8197 (10)	0.026*	
O2	0.54803 (8)	0.32514 (8)	0.88013 (8)	0.0172 (2)	
03	0.53313 (8)	0.33958 (7)	1.04525 (8)	0.0167 (2)	
N1	0.24628 (9)	0.47056 (9)	0.38278 (9)	0.0148 (2)	
N2	0.40608 (9)	0.40943 (8)	0.89798 (9)	0.0132 (2)	
C1	0.20188 (11)	0.52274 (10)	0.44060 (11)	0.0157 (3)	
C2	0.24724 (11)	0.53657 (10)	0.55218 (11)	0.0153 (3)	
H2	0.2115	0.5773	0.5879	0.018*	
C3	0.34448 (11)	0.49011 (10)	0.60906 (11)	0.0135 (3)	
C4	0.39716 (11)	0.43306 (10)	0.55111 (11)	0.0131 (3)	
C5	0.49874 (11)	0.38293 (10)	0.60028 (11)	0.0156 (3)	
H5	0.5336	0.3848	0.6763	0.019*	
C6	0.54664 (12)	0.33218 (11)	0.53960 (12)	0.0184 (3)	
H6	0.6149	0.2997	0.5737	0.022*	
C7	0.49589 (12)	0.32732 (10)	0.42648 (12)	0.0178 (3)	
H7	0.5305	0.2920	0.3852	0.021*	
C8	0.39727 (11)	0.37307 (10)	0.37610 (11)	0.0148 (3)	
C9	0.34484 (11)	0.42711 (10)	0.43713 (11)	0.0132 (3)	
C10	0.08955 (13)	0.56455 (12)	0.37809 (12)	0.0234 (3)	
C11	0.34203 (12)	0.36577 (11)	0.25637 (12)	0.0188 (3)	
C12	0.38962 (11)	0.49779 (10)	0.73029 (11)	0.0136 (3)	
H12	0.4728	0.5004	0.7553	0.016*	
C13	0.35295 (11)	0.40908 (10)	0.77995 (11)	0.0130 (3)	
H13	0.3785	0.3507	0.7515	0.016*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.33521 (11)	0.43906 (11)	0.95997 (11)	0.0162 (3)
H14A	0.3039	0.5032	0.9361	0.019*
H14B	0.3805	0.4427	1.0374	0.019*
C15	0.24059 (12)	0.36724 (12)	0.94326 (12)	0.0207 (3)
H15A	0.1786	0.3981	0.9598	0.025*
H15B	0.2674	0.3127	0.9931	0.025*
C16	0.19855 (12)	0.33083 (11)	0.82632 (12)	0.0200 (3)
H16A	0.2337	0.2685	0.8226	0.024*
H16B	0.1169	0.3212	0.8024	0.024*
C17	0.22634 (11)	0.40230 (10)	0.75142 (12)	0.0159 (3)
H17A	0.1959	0.4659	0.7589	0.019*
H17B	0.1916	0.3814	0.6757	0.019*
C18	0.49755 (11)	0.35697 (10)	0.94887 (11)	0.0132 (3)
C19	0.63991 (11)	0.25860 (11)	0.92685 (12)	0.0184 (3)
H19A	0.6503	0.2196	0.8686	0.022*
H19B	0.6203	0.2148	0.9764	0.022*
C20	0.74791 (12)	0.30819 (10)	0.98754 (12)	0.0171 (3)
C21	0.80837 (13)	0.35436 (11)	0.93193 (13)	0.0226 (3)
H21	0.7803	0.3564	0.8555	0.027*
C22	0.90963 (13)	0.39735 (12)	0.98804 (15)	0.0272 (4)
H22	0.9506	0.4285	0.9498	0.033*
C23	0.95114 (13)	0.39495 (12)	1.09955 (15)	0.0285 (4)
H23	1.0207	0.4240	1.1376	0.034*
C24	0.89110 (13)	0.35018 (11)	1.15538 (14)	0.0250 (3)
H24	0.9191	0.3489	1.2318	0.030*
C25	0.78982 (12)	0.30711 (11)	1.09960 (12)	0.0198 (3)
H25	0.7487	0.2766	1.1383	0.024*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0323 (5)	0.0394 (6)	0.0246 (5)	0.0208 (5)	-0.0003 (4)	-0.0068 (5)
F2	0.0495 (7)	0.0708 (9)	0.0172 (5)	0.0375 (6)	0.0061 (5)	0.0128 (5)
F3	0.0158 (5)	0.0440 (7)	0.0709 (9)	0.0006 (4)	-0.0062(5)	-0.0050 (6)
F4	0.0241 (4)	0.0307 (5)	0.0174 (5)	-0.0109 (4)	0.0059 (4)	-0.0066 (4)
F5	0.0312 (5)	0.0347 (5)	0.0181 (5)	0.0039 (4)	0.0130 (4)	-0.0075 (4)
F6	0.0283 (5)	0.0250 (5)	0.0139 (4)	-0.0012 (4)	0.0079 (4)	0.0029 (4)
01	0.0231 (5)	0.0152 (5)	0.0116 (5)	0.0010 (4)	0.0020 (4)	-0.0035 (4)
O2	0.0150 (5)	0.0235 (5)	0.0129 (5)	0.0064 (4)	0.0045 (4)	-0.0003 (4)
O3	0.0198 (5)	0.0188 (5)	0.0097 (5)	0.0005 (4)	0.0025 (4)	0.0007 (4)
N1	0.0155 (5)	0.0164 (6)	0.0118 (6)	-0.0008(4)	0.0040 (4)	0.0003 (5)
N2	0.0146 (5)	0.0171 (6)	0.0077 (5)	0.0022 (4)	0.0038 (4)	-0.0003 (4)
C1	0.0152 (6)	0.0168 (7)	0.0136 (7)	-0.0004(5)	0.0031 (5)	0.0007 (5)
C2	0.0162 (6)	0.0167 (7)	0.0130 (7)	0.0004 (5)	0.0049 (5)	-0.0013 (5)
C3	0.0148 (6)	0.0139 (7)	0.0117 (7)	-0.0034(5)	0.0043 (5)	-0.0001(5)
C4	0.0145 (6)	0.0133 (6)	0.0119 (6)	-0.0017 (5)	0.0052 (5)	0.0007 (5)
C5	0.0155 (6)	0.0172 (7)	0.0126 (7)	-0.0006(5)	0.0030 (5)	0.0026 (5)
C6	0.0156 (6)	0.0181 (7)	0.0215 (8)	0.0023 (5)	0.0062 (6)	0.0019 (6)

C7	0.0204 (7)	0.0160 (7)	0.0204 (8)	0.0000 (6)	0.0111 (6)	-0.0014 (6)
C8	0.0172 (6)	0.0142 (6)	0.0139 (7)	-0.0040 (5)	0.0064 (5)	-0.0021 (5)
C9	0.0144 (6)	0.0127 (6)	0.0129 (7)	-0.0025 (5)	0.0052 (5)	-0.0002 (5)
C10	0.0222 (7)	0.0291 (8)	0.0149 (7)	0.0065 (6)	0.0012 (6)	-0.0028 (6)
C11	0.0207 (7)	0.0223 (8)	0.0156 (7)	-0.0029 (6)	0.0090 (6)	-0.0037 (6)
C12	0.0135 (6)	0.0155 (7)	0.0105 (7)	-0.0001 (5)	0.0027 (5)	-0.0003 (5)
C13	0.0140 (6)	0.0148 (6)	0.0093 (6)	0.0000 (5)	0.0028 (5)	-0.0010 (5)
C14	0.0183 (6)	0.0189 (7)	0.0135 (7)	0.0029 (5)	0.0082 (5)	-0.0010 (5)
C15	0.0205 (7)	0.0251 (8)	0.0199 (8)	0.0012 (6)	0.0112 (6)	0.0025 (6)
C16	0.0173 (7)	0.0222 (8)	0.0201 (8)	-0.0037 (6)	0.0059 (6)	0.0029 (6)
C17	0.0133 (6)	0.0187 (7)	0.0144 (7)	-0.0003 (5)	0.0032 (5)	0.0014 (5)
C18	0.0155 (6)	0.0131 (6)	0.0109 (7)	-0.0017 (5)	0.0044 (5)	-0.0012 (5)
C19	0.0181 (7)	0.0172 (7)	0.0179 (7)	0.0052 (6)	0.0037 (5)	-0.0020 (6)
C20	0.0164 (6)	0.0132 (7)	0.0200 (8)	0.0056 (5)	0.0040 (5)	-0.0013 (6)
C21	0.0261 (8)	0.0201 (8)	0.0214 (8)	0.0027 (6)	0.0080 (6)	-0.0016 (6)
C22	0.0260 (8)	0.0214 (8)	0.0367 (10)	-0.0043 (6)	0.0140 (7)	-0.0027 (7)
C23	0.0211 (7)	0.0214 (8)	0.0376 (10)	-0.0011 (6)	0.0031 (7)	-0.0067 (7)
C24	0.0252 (8)	0.0205 (8)	0.0217 (8)	0.0053 (6)	-0.0017 (6)	-0.0021 (6)
C25	0.0204 (7)	0.0179 (7)	0.0187 (8)	0.0051 (6)	0.0034 (6)	0.0019 (6)

Geometric parameters (Å, °)

F1-C10	1.3284 (19)	C8—C11	1.500 (2)
F2	1.3289 (19)	C12—C13	1.5500 (19)
F3—C10	1.339 (2)	C12—H12	1.0000
F4—C11	1.3485 (17)	C13—C17	1.5335 (18)
F5—C11	1.3407 (16)	C13—H13	1.0000
F6—C11	1.3443 (18)	C14—C15	1.529 (2)
O1-C12	1.4159 (17)	C14—H14A	0.9900
01—H10	0.840 (9)	C14—H14B	0.9900
O2—C18	1.3570 (16)	C15—C16	1.539 (2)
O2—C19	1.4600 (16)	C15—H15A	0.9900
O3—C18	1.2218 (17)	C15—H15B	0.9900
N1—C1	1.3176 (18)	C16—C17	1.532 (2)
N1—C9	1.3615 (17)	C16—H16A	0.9900
N2—C18	1.3492 (17)	C16—H16B	0.9900
N2—C13	1.4733 (17)	C17—H17A	0.9900
N2-C14	1.4736 (16)	C17—H17B	0.9900
C1—C2	1.402 (2)	C19—C20	1.508 (2)
C1-C10	1.508 (2)	C19—H19A	0.9900
C2—C3	1.3760 (19)	C19—H19B	0.9900
C2—H2	0.9500	C20—C21	1.394 (2)
C3—C4	1.4250 (19)	C20—C25	1.392 (2)
C3—C12	1.5100 (19)	C21—C22	1.389 (2)
C4—C5	1.4223 (19)	C21—H21	0.9500
C4—C9	1.4266 (19)	C22—C23	1.386 (3)
C5—C6	1.363 (2)	C22—H22	0.9500
С5—Н5	0.9500	C23—C24	1.383 (2)

C6—C7	1.413 (2)	С23—Н23	0.9500
С6—Н6	0.9500	C24—C25	1.389 (2)
C7—C8	1.367 (2)	C24—H24	0.9500
С7—Н7	0.9500	С25—Н25	0.9500
C8—C9	1.4288 (19)		
C12—O1—H1O	111.6 (13)	N2—C13—H13	108.1
C18—O2—C19	115.08 (11)	С17—С13—Н13	108.1
C1—N1—C9	116.48 (12)	С12—С13—Н13	108.1
C18—N2—C13	122.22 (11)	N2-C14-C15	109.92 (11)
C18—N2—C14	117.92 (11)	N2—C14—H14A	109.7
C13—N2—C14	116.21 (11)	C15—C14—H14A	109.7
N1—C1—C2	125.58 (13)	N2	109.7
N1-C1-C10	114.54 (12)	C15—C14—H14B	109.7
C2-C1-C10	119.77 (12)	H14A—C14—H14B	108.2
C3—C2—C1	118.75 (13)	C14—C15—C16	110.48 (11)
С3—С2—Н2	120.6	C14—C15—H15A	109.6
C1—C2—H2	120.6	C16—C15—H15A	109.6
C2—C3—C4	118.39 (12)	C14—C15—H15B	109.6
C2—C3—C12	119.48 (12)	C16—C15—H15B	109.6
C4—C3—C12	122.08 (12)	H15A—C15—H15B	108.1
C3—C4—C5	123.78 (13)	C17—C16—C15	110.75 (12)
C3—C4—C9	117.62 (12)	C17—C16—H16A	109.5
C5—C4—C9	118.60 (12)	C15—C16—H16A	109.5
C6—C5—C4	120.76 (13)	C17—C16—H16B	109.5
С6—С5—Н5	119.6	C15—C16—H16B	109.5
C4—C5—H5	119.6	H16A—C16—H16B	108.1
C5—C6—C7	120.77 (13)	C16—C17—C13	109.86 (11)
С5—С6—Н6	119.6	С16—С17—Н17А	109.7
С7—С6—Н6	119.6	C13—C17—H17A	109.7
C8—C7—C6	120.40 (13)	C16—C17—H17B	109.7
С8—С7—Н7	119.8	C13—C17—H17B	109.7
С6—С7—Н7	119.8	H17A—C17—H17B	108.2
C7—C8—C9	120.34 (13)	O3—C18—N2	125.34 (12)
C7—C8—C11	120.33 (13)	O3—C18—O2	122.70 (12)
C9—C8—C11	119.31 (12)	N2-C18-O2	111.96 (11)
N1—C9—C4	123.10 (12)	O2—C19—C20	112.88 (12)
N1—C9—C8	117.80 (12)	O2—C19—H19A	109.0
C4—C9—C8	119.10 (12)	С20—С19—Н19А	109.0
F2—C10—F1	107.32 (14)	O2—C19—H19B	109.0
F2—C10—F3	106.66 (14)	C20—C19—H19B	109.0
F1—C10—F3	106.61 (13)	H19A—C19—H19B	107.8
F2—C10—C1	112.90 (13)	C21—C20—C25	119.02 (14)
F1—C10—C1	112.91 (12)	C21—C20—C19	120.30 (14)
F3—C10—C1	110.05 (13)	C25—C20—C19	120.68 (13)
F5—C11—F6	106.16 (11)	C22—C21—C20	120.15 (15)
F5—C11—F4	106.16 (12)	C22—C21—H21	119.9
F6—C11—F4	106.48 (12)	C20—C21—H21	119.9
	(-=)		

F5	111 76 (12)	C^{23} C^{22} C^{21}	120 35 (15)
F_{6} $-C_{11}$ $-C_{8}$	111.08(12)	C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	119.8
F4-C11-C8	112.69 (11)	C_{21} C_{22} H_{22}	119.8
01-C12-C3	107 77 (11)	C_{24} C_{23} C_{22} C_{23} C_{22}	119.87 (15)
01 - C12 - C13	111 73 (11)	$C_{24} = C_{23} = C_{22}$	120.1
$C_1 = C_1 $	111.75(11) 100.35(11)	$C_{24} = C_{23} = H_{23}$	120.1
$C_{12} = C_{12} = C_{13}$	109.33 (11)	$C_{22} = C_{23} = H_{23}$	120.1 110 07 (15)
C_{12}^{-} C_{12}^{-} H_{12}^{-}	109.3	$C_{23} = C_{24} = C_{23}$	120.0
$C_{12} = C_{12} = H_{12}$	109.3	$C_{25} = C_{24} = H_{24}$	120.0
$N_2 C_{12} C_{12} C_{17}$	109.02(10)	$C_{23} = C_{24} = C_{124}$	120.0
$N_2 = C_{13} = C_{17}$	109.02(10) 110.44(11)	$C_{24} = C_{25} = C_{20}$	120.04 (14)
$N_2 = C_{13} = C_{12}$	110.44(11) 113.07(11)	$C_{24} = C_{23} = H_{23}$	119.7
01/013012	115.07 (11)	C20-C25-II25	117./
C9—N1—C1—C2	-0.3(2)	C9—C8—C11—F4	-63.18(18)
C9-N1-C1-C10	-17649(12)	$C_2 - C_3 - C_{12} - O_1$	-24.67(16)
N1-C1-C2-C3	-2.3(2)	C4-C3-C12-O1	157.75(12)
C10-C1-C2-C3	17371(13)	C_{2} C_{3} C_{12} C_{13}	96 96 (15)
C1 - C2 - C3 - C4	26(2)	C4-C3-C12-C13	-80.62(15)
C1 - C2 - C3 - C12	$-175\ 10\ (12)$	$C18 = N^2 = C13 = C17$	13612(13)
$C_2 - C_3 - C_4 - C_5$	178 88 (13)	C14 - N2 - C13 - C17	-21.86(16)
$C_{12} = C_{3} = C_{4} = C_{5}$	-35(2)	C18 = N2 = C13 = C12	-99.08(14)
$C_{2} - C_{3} - C_{4} - C_{9}$	-0.51(19)	C14 - N2 - C13 - C12	102 94 (13)
$C_{12} = C_{3} = C_{4} = C_{9}$	$177\ 10\ (12)$	01-C12-C13-N2	-67.05(13)
C_{3} C_{4} C_{5} C_{6}	-177.76(13)	C_{3} C_{12} C_{13} N_{2}	17373(10)
$C_{2}^{0} - C_{4}^{0} - C_{5}^{0} - C_{6}^{0}$	16(2)	01 - C12 - C13 - C17	55 41 (15)
$C_{4}^{-}C_{5}^{-}C_{6}^{-}C_{7}^{7}$	-0.7(2)	$C_{12} = C_{12} = C_{13} = C_{17}$	-63.81(14)
$C_{1}^{-} = C_{2}^{-} = C_{1}^{-} = C_{1}^{-} = C_{2}^{-} = C_{1}^{-} = C_{1$	-0.4(2)	C18 N2 C14 C15	-94.29(15)
$C_{0}^{-} = C_{0}^{-} = C_{0}^{-} = C_{0}^{-}$	0.4(2)	$C_{13} N_2 - C_{14} - C_{15}$	64 67 (15)
$C_{0} = C_{7} = C_{8} = C_{7}$	-178 42 (13)	$N_2 = C_1 4 = C_1 5 = C_1 6$	-37.26(16)
$C_1 = V_1 = C_2 = C_1$	178.42(13)	$C_{14} = C_{15} = C_{16} = C_{17}$	-23.02(16)
$C_1 = N_1 = C_2 = C_4$	2.3(2) -177.60(12)	$C_{14} = C_{15} = C_{10} = C_{17}$	23.02(10)
$C_1 = N_1 = C_2 = C_3$	-22(2)	$N_{2} C_{13} C_{17} C_{16}$	-41.20(15)
$C_{5} = C_{4} = C_{9} = N_{1}$	-2.2(2) 178/41(12)	$N_2 = C_{13} = C_{17} = C_{16}$	-41.29(13) -164.53(12)
$C_{3} = C_{4} = C_{9} = N_{1}$	177.07(12)	$C_{12} = C_{13} = C_{17} = C_{10}$	-165.20(12)
$C_{3} - C_{4} - C_{9} - C_{8}$	1/7.97(12) -1.45(10)	$C_{13} = N_2 = C_{16} = 0_3$	-103.29(13) -7.7(2)
C_{3} C_{4} C_{9} C_{8} C_{9} N_{1}	-17050(12)	$C_{14} = N_2 = C_{16} = 0.05$	7.7(2)
$C_1 = C_2 = C_2 = N_1$	-1/9.30(13) -0.48(10)	$C_{13} = N_2 = C_{16} = O_2$	13.20(10) 172.82(11)
$C_1 = C_0 = C_2 = N_1$	0.48(19)	$C_{14} = N_2 = C_{16} = 0_2$	7.28(10)
$C_{}C_{3}C_{3}C_{4}$	0.4(2) 170.20(12)	$C_{19} = 02 = C_{18} = 03$	(19)
C11 - C3 - C9 - C4	-28 11 (10)	C19 - 02 - C10 - N2	-1/3.10(11) -82.15(15)
NI = CI = CI0 = F2	-36.11(19)	C18 - 02 - C19 - C20	-82.13 (13)
$C_2 - C_1 - C_{10} - F_2$	143.43(13) 160.08(12)	02 - C19 - C20 - C21	-73.11(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100.08(13)	02 - 019 - 020 - 023	100.09(13)
$\begin{array}{c} C_2 \\ \hline \\ C_1 \\ \hline \\ C_1 \\ \hline \\ C_1 \\ \hline \\ C_1 \\ \hline \\ C_2 \\ \hline \\$	23.3(2)	$C_{23} - C_{20} - C_{21} - C_{22}$	0.9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.93(17)	$C_{19} = C_{20} = C_{21} = C_{22}$	-1/1.93(14)
$C_2 = C_1 = C_1 = C_1 = C_2$	-95.52(10)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.2(2)
$C_{1} = C_{2} = C_{11} = F_{2}$	-3.62(19)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.5(2)
	1/7.30 (12)	$U_{22} - U_{23} - U_{24} - U_{25}$	0.5 (2)
C/C8C11F6	-123.34(14)	C23—C24—C25—C20	0.2 (2)

C9—C8—C11—F6	57.64 (16)	C21—C20—C25—C24	-0.9 (2)
C7—C8—C11—F4	115.84 (14)	C19—C20—C25—C24	177.91 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1 <i>o</i> ···O3 ⁱ	0.84 (1)	1.90 (1)	2.7294 (14)	172 (2)

Symmetry code: (i) -x+1, -y+1, -z+2.