

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Octakis(3-methylanilinium) hexachloridocadmate tetrachloride

Ming-Liang Liu

College of Chemistryand Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: jgsdxlml@163.com

Received 17 November 2011; accepted 19 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.053; wR factor = 0.144; data-to-parameter ratio = 16.6.

The asymmetric unit of the title compound, $(C_7H_{10}N)_8$ -[CdCl₆]Cl₄, contains four 3-methylanilinium cations, two chloride anions and half an octahedral hexachloridocadmate(II) anion, which lies on an inversion centre. In the crystal, numerous N-H···Cl and bifurcated N-H···(Cl,Cl) hydrogen bonds link the components.

Related literature

For background to ferroelectric metal-organic complexes, see: Ye *et al.* (2009); Zhang *et al.* (2009, 2010). For a related structure, see: Liu (2011).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_7H_{10}N})_8 [{\rm CdCl_6}]{\rm Cl_4} \\ M_r = 1332.18 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 8.8863 \ (18) \ {\rm \mathring{A}} \\ b = 14.116 \ (3) \ {\rm \mathring{A}} \\ c = 14.251 \ (3) \ {\rm \mathring{A}} \\ \alpha = 87.92 \ (3)^\circ \\ \beta = 71.88 \ (3)^\circ \end{array}$

Data collection

Rigaku SCXmini CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.860, T_{\rm max} = 0.860$ $\begin{array}{l} \gamma = 75.20 \ (3)^{\circ} \\ V = 1640.8 \ (6) \ \text{\AA}^3 \\ Z = 1 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu = 0.78 \ \text{mm}^{-1} \\ T = 293 \ \text{K} \\ 0.20 \ \times \ 0.20 \ \times \ 0.20 \ \text{mm} \end{array}$

14045 measured reflections 5776 independent reflections 4134 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.064$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.144$ S = 0.915776 reflections 348 parameters

 $\begin{array}{l} 18 \mbox{ restraints} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.54 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.39 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1 Selected bond lengths (Å).

Cd1-Cl1	2.5425 (12)	Cd1-Cl3	2.6760 (15)
Cd1-Cl2	2.6743 (13)		. ,

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···Cl5 ⁱ	0.89	2.38	3.264 (5)	176
$N1 - H1B \cdot \cdot \cdot Cl4^{ii}$	0.89	2.47	3.309 (5)	157
$N1 - H1C \cdot \cdot \cdot Cl2^{iii}$	0.89	2.54	3.329 (5)	148
$N1 - H1C \cdot \cdot \cdot Cl3^{iv}$	0.89	2.88	3.427 (5)	121
$N2-H2A\cdots Cl4^{v}$	0.89	2.38	3.265 (5)	176
$N2 - H2B \cdot \cdot \cdot Cl3^{v}$	0.89	2.51	3.300 (5)	149
$N2-H2B\cdots Cl2^{vi}$	0.89	2.93	3.495 (5)	123
$N2-H2C\cdots Cl5^{vii}$	0.89	2.33	3.186 (5)	162
$N3-H3A\cdots Cl4$	0.89	2.37	3.254 (5)	172
N3−H3B····Cl3 ^{vii}	0.89	2.61	3.344 (5)	140
$N3-H3B\cdots Cl2^{vii}$	0.89	2.75	3.367 (5)	127
$N3-H3C\cdots Cl5^{vi}$	0.89	2.44	3.289 (5)	159
$N4-H4A\cdots Cl4$	0.89	2.40	3.270 (5)	167
$N4-H4B\cdots Cl5^{vi}$	0.89	2.38	3.267 (5)	177
$N4-H4C\cdots Cl2$	0.89	2.55	3.305 (5)	143
$N4 - H4C \cdot \cdot \cdot Cl3$	0.89	2.91	3.526 (5)	128

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y, z + 1; (iv) -x + 1, -y, -z + 1; (v) x, y + 1, z; (vi) -x + 1, -y + 1, -z; (vii) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author thanks an anonymous adivisor from the Ordered Matter Science Research Centre, Southeast University, for great help with the revision of this paper.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6519).

References

Liu, M.-L. (2011). Acta Cryst. E67, m1622.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.
- Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.

Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300–7302.

Acta Cryst. (2011). E67, m1827 [https://doi.org/10.1107/S1600536811049464] Octakis(3-methylanilinium) hexachloridocadmate tetrachloride

Ming-Liang Liu

S1. Comment

Recently much attention has been devoted to simple molecular-ionic compounds containing inorganic and organic ions due to the tunability of their special structural features and their potential ferroelectrics property. Ferroelectric materials that exhibit reversible electric polarization in response to an external electric field have found many applications such as nonvolatile memory storage, electronics and optics. The freezing of a certain functional group at low temperature forces significant orientational motions of the guest molecules and thus induces the formation of the ferroelectric phase. (Zhang *et al.* 2009; Ye *et al.* 2009; Zhang *et al.* 2010.). In our laboratory, the title compound, (I), has been synthesized and its crystal structure is herein reported.

The title compound, $[(C_7H_{10}N)_8CdCl_6]Cl_4$, has an asymmetric unit that consists of four 3-methylanilinium cations, two chloride anions and one hexachloridocadmiumate anion (Fig 1), which lies in a symmetrical center. The non-hydrogen atoms of $C_7H_{10}N$ cations are nearly coplanar, the cadmium atom is coordinated by six chloride ions, forming a distorted octahedron, the average Cd—Cl bond distances range from 2.5425 (12) Å to 2.6760 (15) Å, the Cl—Cd—Cl angles range from 88.87 (5)°to 180°. The existence of N—H…Cl hydrogen-bonding interactions makes great contribution to the stability of the crystal structure (Fig 2).

S2. Experimental

3.21 g (0.03 mol) of 3-methylbenzenamine was firstly dissolved in 30 ml ethanol, to which 1.1 g (0.03 mol) of hydrochloric acid was then added to afford the solution, then the 0.83 g (0.01 mol) cadmium chloride was dissolved in 20 ml e thanol which was added hydrochloric acid, at last, mixed the above solution without any precipitation under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 4 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent ($\varepsilon = C/(T-T_0)$), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

S3. Refinement

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp^2 atoms and C—H = 0.96Å and 0.97Å for Csp^3 atoms), assigned fixed U_{iso} values [$U_{iso} = 1.2Ueq(Csp^2)$ and 1.5 $Ueq(Csp^3, N)$] and allowed to ride.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Figure 2

Crystal structure of the title compound with view along the a axis. Intermolecular interactions are shown as dashed lines.

Octakis(3-methylanilinium) hexachloridocadmate tetrachloride

Crystal data

 $(C_7H_{10}N)_8[CdCl_6]Cl_4$ $M_r = 1332.18$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.8863 (18) Å b = 14.116 (3) Å c = 14.251 (3) Å $a = 87.92 (3)^{\circ}$ $\beta = 71.88 (3)^{\circ}$ $\gamma = 75.20 (3)^{\circ}$

Data collection

Rigaku SCXmini CCD	14045 measured reflections
diffractometer	5776 independent reflections
Radiation source: fine-focus sealed tube	4134 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.064$
CCD_Profile_fitting scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 3.0^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(CrystalClear; Rigaku, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.860, \ T_{\max} = 0.860$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.144$	neighbouring sites
S = 0.91	H-atom parameters constrained
5776 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0846P)^2 + 0.9416P]$
348 parameters	where $P = (F_o^2 + 2F_c^2)/3$
18 restraints	$(\Delta/\sigma)_{\rm max} = 0.074$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

V = 1640.8 (6) Å³

 $D_{\rm x} = 1.348 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

F(000) = 690

 $\theta = 3.4 - 25^{\circ}$

T = 293 K

 $\mu = 0.78 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.20 \times 0.20$ mm

Z = 1

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.8397 (6)	0.1086 (3)	0.7966 (3)	0.0507 (11)	
H1A	0.8672	0.1473	0.8329	0.076*	
H1B	0.9020	0.0477	0.7935	0.076*	
H1C	0.7349	0.1089	0.8241	0.076*	

C1	0.8646 (6)	0.1450 (4)	0.6958 (4)	0.0443 (13)
C2	0.9124 (6)	0.2302 (4)	0.6733 (4)	0.0483 (13)
H2	0.9252	0.2660	0.7225	0.058*
C3	0.9416 (7)	0.2637 (4)	0.5790 (4)	0.0578 (16)
C4	0.8444 (7)	0.0901 (4)	0.6257 (4)	0.0592 (15)
H4	0.8137	0.0318	0.6416	0.071*
C5	0.8702 (8)	0.1226 (5)	0.5312 (5)	0.0686 (18)
Н5	0.8537	0.0874	0.4830	0.082*
C6	0.9207 (8)	0.2074 (5)	0.5084 (4)	0.0665 (18)
H6	0.9414	0.2276	0.4439	0.080*
C7	0.9997 (10)	0.3560 (5)	0.5545 (5)	0.087 (2)
H7A	1.0879	0.3451	0.4933	0.130*
H7B	1.0374	0.3729	0.6063	0.130*
H7C	0.9109	0.4086	0.5483	0.130*
C8	0.6267 (8)	0.8805 (5)	0.5669 (4)	0.0725 (19)
H8A	0.5254	0.8858	0.6189	0.109*
H8B	0.6492	0.9438	0.5575	0.109*
H8C	0.7139	0.8355	0.5842	0.109*
N2	0.7149 (5)	0.9027 (3)	0.2064 (3)	0.0496 (11)
H2A	0.7556	0.9510	0.2179	0.074*
H2B	0.6314	0.9273	0.1834	0.074*
H2C	0.7925	0.8593	0.1620	0.074*
C9	0.6575 (6)	0.8539 (4)	0.2994 (4)	0.0389 (12)
C10	0.6136 (7)	0.8436 (4)	0.4724 (4)	0.0495 (14)
C11	0.6709 (6)	0.8869 (4)	0.3835 (4)	0.0421 (12)
H11	0.7186	0.9387	0.3820	0.050*
C12	0.5901 (7)	0.7776 (4)	0.2968 (4)	0.0546 (15)
H12	0.5832	0.7556	0.2380	0.065*
C13	0.5448 (7)	0.7675 (5)	0.4711 (4)	0.0608 (16)
H13	0.5058	0.7375	0.5297	0.073*
C14	0.5323 (8)	0.7343 (5)	0.3850 (5)	0.0681 (18)
H14	0.4848	0.6826	0.3859	0.082*
C16	0.7077 (9)	0.4512 (5)	0.3820 (5)	0.094 (2)
H16A	0.7335	0.4948	0.4213	0.140*
H16B	0.6992	0.3919	0.4159	0.140*
H16C	0.6054	0.4822	0.3711	0.140*
C15	1.0231 (6)	0.3114 (4)	0.1562 (4)	0.0459 (13)
N3	1.0857 (5)	0.2101 (3)	0.1154 (3)	0.0500 (11)
H3A	1.0286	0.1724	0.1545	0.075*
H3B	1.1908	0.1885	0.1115	0.075*
H3C	1.0758	0.2079	0.0553	0.075*
C17	1.0827 (8)	0.3832 (5)	0.1010 (5)	0.0707 (18)
H17	1.1632	0.3677	0.0399	0.085*
C18	0.9049 (7)	0.3321 (4)	0.2458 (4)	0.0504 (14)
H18	0.8673	0.2816	0.2812	0.061*
C19	0.8402 (7)	0.4276 (4)	0.2847 (5)	0.0587 (16)
C20	1.0205 (10)	0.4790 (5)	0.1385 (6)	0.086 (2)
H20	1.0587	0.5290	0.1026	0.103*

C21	0.9007 (9)	0.5002 (5)	0.2298 (6)	0.075 (2)
H21	0.8601	0.5649	0.2548	0.090*
N4	0.6578 (6)	0.2081 (3)	0.1049 (4)	0.0551 (12)
H4A	0.6956	0.1702	0.1481	0.083*
H4B	0.7416	0.2172	0.0548	0.083*
H4C	0.5971	0.1793	0.0821	0.083*
C22	0.5575 (7)	0.3031 (4)	0.1537 (4)	0.0458 (13)
C23	0.5977 (7)	0.3871 (4)	0.1165 (4)	0.0511 (14)
H23	0.6900	0.3836	0.0620	0.061*
C24	0.5009 (8)	0.4776 (4)	0.1602 (5)	0.0579 (15)
C25	0.4232 (10)	0.3057 (5)	0.2339 (5)	0.088 (2)
H25	0.3969	0.2481	0.2584	0.105*
C26	0.3282 (11)	0.3950 (6)	0.2776 (6)	0.112 (2)
H26	0.2360	0.3982	0.3321	0.134*
C27	0.3685 (10)	0.4804 (5)	0.2410 (5)	0.088 (2)
H27	0.3042	0.5406	0.2720	0.105*
C28	0.5396 (11)	0.5721 (5)	0.1201 (6)	0.098 (3)
H28A	0.4503	0.6266	0.1526	0.147*
H28B	0.5553	0.5720	0.0503	0.147*
H28C	0.6377	0.5777	0.1319	0.147*
Cd1	0.5000	0.0000	0.0000	0.03328 (17)
C11	0.78766 (14)	-0.00243 (8)	-0.00119 (8)	0.0353 (3)
C12	0.45880 (15)	0.18683 (8)	-0.05106 (9)	0.0418 (3)
C13	0.38016 (15)	0.06130 (9)	0.19060 (9)	0.0436 (3)
Cl4	0.84395 (16)	0.08670 (9)	0.25439 (10)	0.0476 (3)
C15	0.04194 (17)	0.75072 (10)	0.07936 (10)	0.0501 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.053 (3)	0.055 (3)	0.044 (3)	-0.020 (2)	-0.012 (2)	0.013 (2)
C1	0.036 (3)	0.055 (3)	0.035 (3)	-0.005 (2)	-0.006 (2)	0.008 (2)
C2	0.053 (3)	0.048 (3)	0.041 (3)	-0.011 (3)	-0.012 (3)	0.006 (3)
C3	0.048 (3)	0.058 (4)	0.050 (4)	-0.003 (3)	-0.002(3)	0.017 (3)
C4	0.070 (4)	0.050 (4)	0.057 (4)	-0.013 (3)	-0.020 (3)	0.003 (3)
C5	0.078 (5)	0.077 (5)	0.046 (4)	-0.007 (4)	-0.023 (3)	-0.007 (3)
C6	0.069 (4)	0.073 (5)	0.039 (3)	0.005 (3)	-0.010 (3)	0.007 (3)
C7	0.093 (5)	0.079 (5)	0.078 (5)	-0.032 (4)	-0.007(4)	0.034 (4)
C8	0.081 (5)	0.086 (5)	0.043 (4)	-0.011 (4)	-0.017 (3)	0.000 (3)
N2	0.051 (3)	0.062 (3)	0.035 (2)	-0.015 (2)	-0.014 (2)	0.012 (2)
С9	0.037 (3)	0.040 (3)	0.034 (3)	-0.005 (2)	-0.008 (2)	0.008 (2)
C10	0.049 (3)	0.059 (4)	0.035 (3)	-0.006(3)	-0.013 (3)	0.005 (3)
C11	0.046 (3)	0.044 (3)	0.035 (3)	-0.011 (2)	-0.012 (2)	0.004 (2)
C12	0.069 (4)	0.044 (3)	0.056 (4)	-0.011 (3)	-0.031 (3)	0.005 (3)
C13	0.063 (4)	0.070 (4)	0.048 (4)	-0.024 (3)	-0.013 (3)	0.023 (3)
C14	0.082 (5)	0.050 (4)	0.082 (5)	-0.029 (3)	-0.031 (4)	0.015 (3)
C16	0.101 (6)	0.077 (5)	0.075 (5)	0.010 (4)	-0.010 (4)	-0.032 (4)
C15	0.050 (3)	0.033 (3)	0.051 (3)	-0.007(2)	-0.014 (3)	-0.003 (2)

N3	0.049 (3)	0.038 (3)	0.057 (3)	-0.006 (2)	-0.012 (2)	-0.010 (2)
C17	0.079 (5)	0.052 (4)	0.072 (4)	-0.023 (3)	-0.006 (4)	0.003 (3)
C18	0.056 (3)	0.040 (3)	0.053 (3)	-0.007 (3)	-0.018 (3)	-0.002 (3)
C19	0.063 (4)	0.046 (4)	0.060 (4)	0.004 (3)	-0.022 (3)	-0.013 (3)
C20	0.113 (6)	0.045 (4)	0.101 (6)	-0.035 (4)	-0.026 (5)	0.021 (4)
C21	0.092 (5)	0.035 (4)	0.092 (5)	-0.004 (3)	-0.027 (4)	-0.015 (3)
N4	0.065 (3)	0.034 (3)	0.069 (3)	-0.009 (2)	-0.027 (3)	-0.005 (2)
C22	0.055 (3)	0.035 (3)	0.051 (3)	-0.006 (2)	-0.026 (3)	0.003 (2)
C23	0.052 (3)	0.041 (3)	0.052 (3)	-0.011 (3)	-0.005 (3)	0.002 (3)
C24	0.067 (4)	0.040 (3)	0.065 (4)	-0.012 (3)	-0.019 (3)	0.009 (3)
C25	0.115 (5)	0.048 (4)	0.069 (4)	-0.027 (4)	0.021 (4)	0.000 (3)
C26	0.117 (5)	0.075 (4)	0.095 (4)	-0.020 (4)	0.030 (4)	-0.006 (4)
C27	0.097 (5)	0.046 (4)	0.087 (5)	-0.006 (4)	0.010 (4)	-0.019 (3)
C28	0.119 (7)	0.051 (4)	0.121 (7)	-0.036 (4)	-0.023 (6)	0.019 (4)
Cd1	0.0356 (3)	0.0329 (3)	0.0336 (3)	-0.0111 (2)	-0.0123 (2)	0.0032 (2)
C11	0.0363 (6)	0.0349 (6)	0.0361 (6)	-0.0119 (5)	-0.0111 (5)	0.0029 (5)
C12	0.0473 (7)	0.0325 (7)	0.0476 (7)	-0.0118 (5)	-0.0174 (6)	0.0086 (5)
C13	0.0475 (7)	0.0479 (8)	0.0341 (7)	-0.0119 (6)	-0.0109 (6)	-0.0017 (5)
Cl4	0.0552 (8)	0.0414 (7)	0.0449 (7)	-0.0151 (6)	-0.0123 (6)	0.0069 (6)
C15	0.0612 (9)	0.0426 (8)	0.0430 (7)	-0.0103 (6)	-0.0136 (6)	-0.0006 (6)

Geometric parameters (Å, °)

N1—C1	1.478 (6)	C16—H16C	0.9600
N1—H1A	0.8900	C15—C18	1.362 (7)
N1—H1B	0.8900	C15—C17	1.372 (8)
N1—H1C	0.8900	C15—N3	1.464 (6)
C1—C4	1.367 (8)	N3—H3A	0.8900
C1—C2	1.371 (7)	N3—H3B	0.8900
C2—C3	1.377 (7)	N3—H3C	0.8900
C2—H2	0.9300	C17—C20	1.380 (9)
C3—C6	1.387 (9)	C17—H17	0.9300
С3—С7	1.512 (9)	C18—C19	1.383 (7)
C4—C5	1.375 (8)	C18—H18	0.9300
C4—H4	0.9300	C19—C21	1.384 (9)
C5—C6	1.377 (9)	C20—C21	1.385 (10)
С5—Н5	0.9300	C20—H20	0.9300
С6—Н6	0.9300	C21—H21	0.9300
С7—Н7А	0.9600	N4—C22	1.465 (7)
С7—Н7В	0.9600	N4—H4A	0.8900
С7—Н7С	0.9600	N4—H4B	0.8900
C8—C10	1.509 (8)	N4—H4C	0.8900
C8—H8A	0.9600	C22—C25	1.365 (8)
C8—H8B	0.9600	C22—C23	1.366 (7)
C8—H8C	0.9600	C23—C24	1.386 (8)
N2—C9	1.478 (6)	C23—H23	0.9300
N2—H2A	0.8900	C24—C27	1.359 (9)
N2—H2B	0.8900	C24—C28	1.510 (8)

N2—H2C	0.8900	C25—C26	1.369 (10)
C9—C11	1.351 (7)	C25—H25	0.9300
C9—C12	1.366 (7)	C26—C27	1.383 (10)
C10-C13	1 368 (8)	C26—H26	0.9300
C10-C11	1 393 (7)	C27_H27	0.9300
	0.0300	C_{28} H_{28A}	0.9500
C_{12} C_{14}	1 385 (8)	C28 H28B	0.9000
C12—C14	1.365 (6)		0.9000
C12—H12	0.9500		0.9000
C13—C14	1.370 (9)		2.5425 (12)
С13—Н13	0.9300		2.5425 (12)
C14—H14	0.9300	Cd1—Cl2	2.6743 (13)
C16—C19	1.496 (9)	$Cd1$ — $Cl2^i$	2.6743 (13)
C16—H16A	0.9600	Cd1—Cl3	2.6760 (15)
C16—H16B	0.9600	Cd1—Cl3 ⁱ	2.6760 (15)
C1—N1—H1A	109.5	C17—C15—N3	118.5 (5)
C1—N1—H1B	109.5	C15—N3—H3A	109.5
H1A—N1—H1B	109.5	C15—N3—H3B	109.5
C1—N1—H1C	109.5	H3A—N3—H3B	109.5
HIA_NI_HIC	109.5	C15 - N3 - H3C	109.5
HIB_N1_HIC	109.5	$H_3A = N_3 = H_3C$	109.5
CA = C1 = C2	109.5 121.4(5)	H3R N3 H3C	109.5
$C_4 = C_1 = C_2$	121.4(5) 1185(5)	113D - 113C	109.5
$C_4 = C_1 = N_1$	110.3(3)	C15 - C17 - C20	110.4 (0)
$C_2 = C_1 = N_1$	120.1 (5)	C15—C17—H17	120.8
C1 - C2 - C3	121.0 (5)	C20—C17—H17	120.8
С1—С2—Н2	119.5	C15—C18—C19	120.6 (6)
C3—C2—H2	119.5	C15—C18—H18	119.7
C2—C3—C6	117.1 (6)	C19—C18—H18	119.7
C2—C3—C7	120.4 (6)	C18—C19—C21	117.7 (6)
C6—C3—C7	122.5 (6)	C18—C19—C16	121.0 (6)
C1—C4—C5	118.8 (6)	C21—C19—C16	121.3 (6)
C1—C4—H4	120.6	C17—C20—C21	119.7 (6)
C5—C4—H4	120.6	С17—С20—Н20	120.1
C4—C5—C6	119.7 (6)	С21—С20—Н20	120.1
С4—С5—Н5	120.2	C19—C21—C20	121.6 (6)
С6—С5—Н5	120.2	C19—C21—H21	119.2
C5-C6-C3	122.0 (6)	C_{20} C_{21} H_{21}	119.2
C5-C6-H6	119.0	$C_{20} = 0.21$ H_{21}	109.5
C3-C6-H6	119.0	C_{22} NA H4B	109.5
$C_3 = C_7 = H_7 \Lambda$	100.5		109.5
C_{3} C_{7} U_{7} U_{7}	109.5	$\frac{114A}{114D}$	109.5
$C_3 - C_7 - H/B$	109.5		109.5
H/A - C / - H/B	109.5	H4A—N4—H4C	109.5
U3-U/-H/C	109.5	H4B - N4 - H4C	109.5
н/А—С/—Н7С	109.5	C25—C22—C23	121.5 (5)
H7B—C7—H7C	109.5	C25—C22—N4	119.1 (5)
C10—C8—H8A	109.5	C23—C22—N4	119.4 (5)
C10—C8—H8B	109.5	C22—C23—C24	120.0 (5)
H8A—C8—H8B	109.5	С22—С23—Н23	120.0

C10—C8—H8C	109.5	C24—C23—H23	120.0
H8A—C8—H8C	109.5	C27—C24—C23	118.8 (5)
H8B—C8—H8C	109.5	C27—C24—C28	119.7 (6)
C9—N2—H2A	109.5	C23—C24—C28	121.5 (6)
C9—N2—H2B	109.5	C22—C25—C26	118.6 (6)
H2A—N2—H2B	109.5	C22—C25—H25	120.7
C9—N2—H2C	109.5	C26—C25—H25	120.7
H2A—N2—H2C	109.5	C25—C26—C27	120.3 (7)
H2B—N2—H2C	109.5	C25—C26—H26	119.8
C11—C9—C12	122.6 (5)	C27—C26—H26	119.8
$C_{11} - C_{9} - N_{2}$	119.2 (4)	C_{24} C_{27} C_{26}	120.8 (6)
C12—C9—N2	118.2 (5)	C24—C27—H27	119.6
C13 - C10 - C11	118.0(5)	С26—С27—Н27	119.6
C13 - C10 - C8	121 5 (5)	C24—C28—H28A	109.5
$C_{11} - C_{10} - C_{8}$	1205(5)	C24—C28—H28B	109.5
C9-C11-C10	120.0(5) 120.1(5)	H28A-C28-H28B	109.5
C9-C11-H11	119.9	C_{24} C_{28} H_{28} H_{28} C_{28} H_{28} H_{28} C_{28} H_{28} H	109.5
C10—C11—H11	119.9	$H_{28} - C_{28} - H_{28} C$	109.5
C9-C12-C14	117.6 (5)	$H_{28B} - C_{28} - H_{28C}$	109.5
C9-C12-H12	121.2	$Cl1^{i}$ $Cd1$ $Cl1$	180.0
C14-C12-H12	121.2	$Cl1^{i}$ — $Cd1$ — $Cl2$	91 13 (5)
C10-C13-C14	121.2	Cl1-Cd1-Cl2	88 87 (5)
C10-C13-H13	119 3	$Cl1^{i}$ $Cd1$ $Cl2^{i}$	88 87 (5)
C14—C13—H13	119.3	$Cl1-Cd1-Cl2^i$	91 13 (5)
C13 - C14 - C12	120 3 (6)	$Cl2-Cd1-Cl2^i$	180.0
C13—C14—H14	119.8	$Cl1^{i}$ — $Cd1$ — $Cl3$	89.47 (5)
C12—C14—H14	119.8	Cl1-Cd1-Cl3	90.53 (5)
C19—C16—H16A	109.5	Cl2-Cd1-Cl3	89.47 (5)
C19—C16—H16B	109.5	$Cl2^{i}$ — $Cd1$ — $Cl3$	90.53 (5)
H16A—C16—H16B	109.5	$Cl1^{i}$ — $Cd1$ — $Cl3^{i}$	90.53 (5)
C19—C16—H16C	109.5	$Cl1-Cd1-Cl3^{i}$	89 47 (5)
H16A—C16—H16C	109.5	$Cl2-Cd1-Cl3^{i}$	90.53 (5)
H_{16B} C_{16} H_{16C}	109.5	$C12^{i}$ $Cd1$ $C13^{i}$	89 47 (5)
C18 - C15 - C17	122.0 (5)	C_{12} C_{41} C_{13}	180.0
C18 - C15 - N3	119 5 (5)		100.0
	119.5 (5)		
C4 - C1 - C2 - C3	0.0(8)	C18—C15—C17—C20	0.2 (10)
N1-C1-C2-C3	177 8 (5)	N_{3} C_{15} C_{17} C_{20}	178 3 (6)
C1 - C2 - C3 - C6	0.0(8)	C17 - C15 - C18 - C19	0.0(9)
C1 - C2 - C3 - C7	-177.9(6)	N_{3} C15 C18 C19	-1781(5)
$C_{2}^{-}C_{1}^{-}C_{4}^{-}C_{5}^{-}$	-11(9)	C_{15} C_{18} C_{19} C_{21}	-0.5(9)
$N_1 - C_1 - C_4 - C_5$	-1788(5)	C_{15} C_{18} C_{19} C_{16}	178.6(6)
C1 - C4 - C5 - C6	2 1 (9)	C_{15} C_{17} C_{20} C_{21}	0.0(11)
C4 - C5 - C6 - C3	-21(10)	C18 - C19 - C21 - C20	0.7(10)
C_{2} C_{3} C_{6} C_{5}	11(9)	$C_{16} = C_{19} = C_{21} = C_{20}$	-1783(7)
$C_2 = C_3 = C_6 = C_5$	178 9 (6)	C17 - C20 - C21 - C20	-0.5(12)
$C_{12} - C_{9} - C_{11} - C_{10}$	-0.6(8)	C_{25} C_{23} C_{24} C_{23} C_{24}	-0.3(9)
$N_{2} = C_{9} = C_{11} = C_{10}$	178 3 (5)	$N4 - C^{22} - C^{23} - C^{24}$	1780(5)
	1,0.5 (5)	117 - 0.22 - 0.23 - 0.24	1/0.0 (3)

C13—C10—C11—C9	0.2 (8)	C22—C23—C24—C27	1.2 (9)
C8—C10—C11—C9	-179.4 (5)	C22—C23—C24—C28	-178.8 (6)
C11—C9—C12—C14	0.8 (8)	C23—C22—C25—C26	-0.2 (12)
N2-C9-C12-C14	-178.2 (5)	N4—C22—C25—C26	-178.5 (7)
C11-C10-C13-C14	0.0 (9)	C22—C25—C26—C27	-0.3 (14)
C8—C10—C13—C14	179.7 (6)	C23—C24—C27—C26	-1.7 (12)
C10-C13-C14-C12	0.2 (10)	C28—C24—C27—C26	178.4 (8)
C9—C12—C14—C13	-0.6 (9)	C25—C26—C27—C24	1.2 (15)

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····Cl5 ⁱⁱ	0.89	2.38	3.264 (5)	176
N1—H1B····Cl4 ⁱⁱⁱ	0.89	2.47	3.309 (5)	157
N1—H1C····Cl2 ^{iv}	0.89	2.54	3.329 (5)	148
N1—H1C···Cl3 ^v	0.89	2.88	3.427 (5)	121
N2—H2A····Cl4 ^{vi}	0.89	2.38	3.265 (5)	176
N2—H2B····Cl3 ^{vi}	0.89	2.51	3.300 (5)	149
N2—H2B····Cl2 ^{vii}	0.89	2.93	3.495 (5)	123
N2—H2C···Cl5 ^{viii}	0.89	2.33	3.186 (5)	162
N3—H3A…C14	0.89	2.37	3.254 (5)	172
N3—H3 <i>B</i> ···Cl3 ^{viii}	0.89	2.61	3.344 (5)	140
N3—H3 <i>B</i> ···Cl2 ^{viii}	0.89	2.75	3.367 (5)	127
N3—H3 <i>C</i> ···Cl5 ^{vii}	0.89	2.44	3.289 (5)	159
N4—H4A···Cl4	0.89	2.40	3.270 (5)	167
N4—H4 <i>B</i> ···Cl5 ^{vii}	0.89	2.38	3.267 (5)	177
N4—H4 <i>C</i> ···Cl2	0.89	2.55	3.305 (5)	143
N4—H4 <i>C</i> ···Cl3	0.89	2.91	3.526 (5)	128

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y, z+1; (v) -x+1, -y, -z+1; (vi) x, y+1, z; (vii) -x+1, -y+1, -z; (viii) x+1, y, z.