

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-hydroxy-1,1-dioxo-2-(2-phenylethyl)-2*H*-1 λ^6 ,2-benzothiazine-3carboxylate

Muhammad Nadeem Arshad,^a* Islam Ullah Khan,^b Muhammad Zia-ur-Rehman,^c Muhammad Danish^a and K. Travis Holman^d

^aDepartment of Chemistry, University of Gujrat (H. H. Campus), Gujrat 50700, Pakistan, ^bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, ^cApplied Chemistry Research Centre PCSIR Laboratories Complex, Lahore 54600, Pakistan, and ^dDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA Correspondence e-mail: mnachemist@hotmail.com

Received 17 November 2011; accepted 21 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.116; data-to-parameter ratio = 17.7.

In the title compound, $C_{18}H_{17}NO_5S$, the thiazine ring adopts a half-chair conformation and the dihedral angle between the aromatic rings is 79.41 (6)°. An intramolecular $O-H\cdots O$ hydrogen bond generates an S(6) ring. In the crystal, molecules are linked by weak $C-H\cdots O$ interactions resulting in infinite sheets along the *b* and *c* axes.

Related literature

For related structures, see: Arshad *et al.* (2011*a*); Ahmad *et al.* (2010); Khalid *et al.* (2010). For further synthetic details, see: Arshad *et al.* (2011*b*). For graph-set notation, see: Bernstein, *et al.* (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{18}H_{17}NO_5S$ $M_r = 359.39$ Monoclinic, $P2_1/c$ a = 9.018 (2) Å b = 19.026 (4) Å c = 10.193 (2) Å $\beta = 106.441 (3)^{\circ}$ $V = 1677.3 (7) \text{ Å}^{3}$ Z = 4Mo K α radiation organic compounds

 $0.37 \times 0.23 \times 0.08 \text{ mm}$

19773 measured reflections 4066 independent reflections 2735 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $R_{\rm int} = 0.094$

refinement $\Delta \rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART 1K diffractometer
with a Bruker APEXII CCD
detector
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\rm min} = 0.922, T_{\rm max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.116$ S = 1.014066 reflections 230 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O3^{i}$	0.95	2.55	3.391 (3)	147
C17-H17···O2 ⁱⁱ	0.95	2.53	3.205 (3)	128
C18−H18···O4 ⁱⁱⁱ	0.95	2.49	3.308 (3)	145
O1−H1···O4	0.92 (3)	1.74 (3)	2.583 (2)	152 (3)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z - 1; (iii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *X-SEED* (Barbour, 2001), *WinGX* (Farrugia, 1999) and *PLATON*.

MNA acknowledges the HEC for providing a fellowship under the International Research Support Initiative Program (IRSIP).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6520).

References

- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Elsegood, M. R. J. & Weaver, G. W. (2010). Acta Cryst. E66, 0333.
- Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011b). Asian J. Chem. 23, 2801–2805.
- Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M., Shafiq, M. & Asiri, A. M. (2011a). Acta Cryst. E67, o1588-o1589.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khalid, Z., Siddiqui, H. L., Ahmad, M., Aslam, S. & Parvez, M. (2010). Acta Cryst. E66, 0885.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o3445 [https://doi.org/10.1107/S160053681104966X]

Methyl 4-hydroxy-1,1-dioxo-2-(2-phenylethyl)-2H-1 λ^6 ,2-benzothiazine-3-carboxylate

Muhammad Nadeem Arshad, Islam Ullah Khan, Muhammad Zia-ur-Rehman, Muhammad Danish and K. Travis Holman

S1. Comment

Benzothiazines molecules are well explored for their crystallographic studies (Arshad *et al.* 2011*a*), (Ahmad *et al.* 2010), (Khalid *et al.* 2010).

In the title compound, the nitrogen atom of methyl-4-hydroxy-2*H*-1, 2-benzothiazine-3-carboxylate 1,1-dioxide was alkylated with phenylethyl group. The thiazine ring (with root mean square deviation = 0.210Å) is oriented at dihedral angle of 13.12 (11)° with respect to the aromatic ring (C1—C6) and the S1 & N1 atoms showed deviations from the least square plane by 0.3121 (10)Å and -0.3310 (12)Å, respectively. The thiazine ring adopts a half chair conformation with puckering amplitude Q = 0.5160 (16)Å θ = 63.6 (2)°, φ = 26.3 (2)° (Cremer & Pople, 1975). The phenyl ring (C13—C17) is oriented at dihedral angle of 79.41 (6)° and 66.53 (5)° with respect to the aromatic (C1—C6) and thiazine rings respectively. The intramolecular O–H…O interaction observed and generates an almost planer S(6) ring (Bernstein, *et al.*, 1995) with the r.m.s deviaton of 0.0131Å and produces dihedral angles of 16.02 (33)° & 15.87 (32)° with respect to the thiazine and aromatic (C1—C6) rings respectively.

Weak hydrogen bonding interactions of C—H···O type connect the molecules. The interaction C2—H2···O3 resulted in the formation of dimers which are further linked along b and c axes (Fig.2. Tab.1).

S2. Experimental

The title compound was synthesised according to literature procedure (Arshad *et al.* 2011*b*) and crystalized in methanol under slow evaporation to yield colourless blocks.

S3. Refinement

All the C—H H-atoms were positioned with idealized geometry with C—H_{aromatic} = 0.95 Å, C—H_{methylene} = 0.99 Å and C —H_{methyl} = 0.98 Å and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}$ for aromatic C atoms. The O—H H-atom was located via fourier map with O—H = 0.92 (3) Å with $U_{iso}(H) = 1.5 U_{eq}$ for O atom.

Figure 1

The labeled ortep diagram of (I) for which thermal ellipsoids were drawn at 50% probability level.

Figure 2

Unit cell packing for (I) showing the hydrogen bondings using dashed lines.

Methyl 4-hydroxy-1,1-dioxo-2-(2-phenylethyl)-2H- 1²⁶,2-benzothiazine-3-carboxylate

Crystal data

C₁₈H₁₇NO₅S $M_r = 359.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.018 (2) Å b = 19.026 (4) Å c = 10.193 (2) Å $\beta = 106.441$ (3)° V = 1677.3 (7) Å³ Z = 4

Data collection

Bruker SMART 1K diffractometer with a Bruker APEXII CCD detector Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 752 $D_x = 1.423 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2258 reflections $\theta = 2.3-22.9^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.37 \times 0.23 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.922$, $T_{max} = 0.982$ 19773 measured reflections 4066 independent reflections 2735 reflections with $I > 2\sigma(I)$ $R_{int} = 0.094$

$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ $h = -11 \rightarrow 11$	$k = -25 \rightarrow 25$ $l = -13 \rightarrow 13$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
<i>S</i> = 1.01	H atoms treated by a mixture of independent
4066 reflections	and constrained refinement
230 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 0.2677P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.29319 (6)	0.07784 (3)	0.51969 (5)	0.01673 (14)	
O3	0.30860 (16)	0.00885 (8)	0.46983 (15)	0.0214 (4)	
05	-0.10038 (17)	0.12689 (8)	0.61803 (15)	0.0231 (4)	
01	0.13070 (18)	0.28877 (8)	0.48807 (17)	0.0251 (4)	
04	-0.07394 (18)	0.24350 (9)	0.60086 (17)	0.0276 (4)	
N1	0.10892 (18)	0.09548 (9)	0.48635 (17)	0.0154 (4)	
O2	0.36535 (16)	0.09408 (8)	0.65995 (14)	0.0227 (4)	
C1	0.3551 (2)	0.14133 (12)	0.4212 (2)	0.0170 (5)	
C7	0.1578 (2)	0.22064 (12)	0.4703 (2)	0.0182 (5)	
C8	0.0779 (2)	0.16750 (11)	0.5085 (2)	0.0177 (5)	
C5	0.3377 (2)	0.26007 (12)	0.3379 (2)	0.0220 (5)	
H5	0.2933	0.3057	0.3300	0.026*	
С9	-0.0383 (2)	0.18329 (12)	0.5789 (2)	0.0207 (5)	
C6	0.2849 (2)	0.20757 (11)	0.4087 (2)	0.0180 (5)	
C2	0.4731 (2)	0.12640 (12)	0.3629 (2)	0.0214 (5)	
H2	0.5193	0.0811	0.3720	0.026*	
C17	-0.3703 (2)	0.07609 (13)	-0.0561 (2)	0.0235 (5)	
H17	-0.4494	0.1074	-0.1035	0.028*	
C18	-0.2463 (2)	0.10137 (12)	0.0471 (2)	0.0209 (5)	
H18	-0.2404	0.1500	0.0694	0.025*	
C11	-0.0022 (2)	0.05922 (11)	0.3704 (2)	0.0170 (5)	
H11A	-0.1082	0.0670	0.3773	0.020*	

H11B	0.0185	0.0081	0.3786	0.020*
C3	0.5220 (3)	0.17932 (13)	0.2911 (2)	0.0270 (6)
H3	0.6021	0.1701	0.2496	0.032*
C15	-0.2653 (3)	-0.03981 (13)	-0.0196 (2)	0.0247 (5)
H15	-0.2717	-0.0884	-0.0421	0.030*
C4	0.4549 (3)	0.24549 (13)	0.2793 (2)	0.0257 (5)
H4	0.4901	0.2813	0.2303	0.031*
C12	0.0052 (2)	0.08358 (12)	0.2302 (2)	0.0225 (5)
H12A	0.0047	0.1356	0.2273	0.027*
H12B	0.1029	0.0671	0.2146	0.027*
C14	-0.1420 (3)	-0.01493 (13)	0.0835 (2)	0.0249 (5)
H14	-0.0642	-0.0467	0.1314	0.030*
C13	-0.1300 (2)	0.05577 (12)	0.1181 (2)	0.0196 (5)
C16	-0.3799 (3)	0.00572 (13)	-0.0903 (2)	0.0239 (5)
H16	-0.4643	-0.0113	-0.1619	0.029*
C10	-0.2150 (3)	0.13972 (14)	0.6903 (3)	0.0314 (6)
H10A	-0.2992	0.1682	0.6329	0.047*
H10B	-0.1669	0.1649	0.7756	0.047*
H10C	-0.2564	0.0948	0.7111	0.047*
H1	0.057 (3)	0.2878 (14)	0.534 (3)	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.0166 (2)	0.0155 (3)	0.0161 (3)	0.0009 (2)	0.0015 (2)	0.0007 (2)
O3	0.0204 (7)	0.0153 (8)	0.0269 (8)	0.0031 (6)	0.0042 (7)	-0.0005 (7)
05	0.0245 (8)	0.0217 (9)	0.0271 (9)	-0.0026 (7)	0.0138 (7)	-0.0042 (7)
01	0.0285 (9)	0.0147 (9)	0.0347 (10)	0.0009 (7)	0.0130 (8)	-0.0018 (7)
O4	0.0287 (9)	0.0193 (9)	0.0370 (10)	0.0027 (7)	0.0127 (8)	-0.0047 (7)
N1	0.0155 (8)	0.0138 (10)	0.0158 (9)	0.0005 (7)	0.0025 (7)	0.0009 (7)
O2	0.0237 (8)	0.0235 (9)	0.0171 (8)	-0.0012 (7)	-0.0005 (7)	0.0002 (7)
C1	0.0154 (9)	0.0186 (12)	0.0136 (10)	-0.0025 (9)	-0.0016 (8)	-0.0005 (9)
C7	0.0188 (10)	0.0161 (12)	0.0172 (11)	0.0004 (9)	0.0009 (9)	-0.0006 (9)
C8	0.0190 (10)	0.0174 (12)	0.0152 (10)	0.0025 (9)	0.0026 (9)	-0.0016 (9)
C5	0.0237 (11)	0.0182 (12)	0.0211 (12)	-0.0006 (9)	0.0018 (10)	0.0023 (9)
C9	0.0182 (10)	0.0210 (13)	0.0204 (11)	-0.0007 (9)	0.0015 (9)	-0.0017 (10)
C6	0.0175 (10)	0.0179 (12)	0.0158 (11)	-0.0035 (9)	0.0002 (9)	-0.0018 (9)
C2	0.0190 (10)	0.0219 (13)	0.0209 (11)	-0.0003 (9)	0.0020 (9)	-0.0029(9)
C17	0.0217 (11)	0.0287 (14)	0.0186 (11)	0.0019 (10)	0.0035 (9)	0.0039 (10)
C18	0.0259 (11)	0.0193 (12)	0.0177 (11)	-0.0029 (10)	0.0067 (10)	-0.0004 (9)
C11	0.0162 (10)	0.0177 (12)	0.0160 (10)	-0.0016 (8)	0.0030 (9)	-0.0007(8)
C3	0.0223 (11)	0.0353 (16)	0.0248 (12)	-0.0029 (10)	0.0089 (10)	-0.0019 (11)
C15	0.0301 (12)	0.0205 (13)	0.0243 (12)	0.0002 (10)	0.0089 (10)	-0.0030 (10)
C4	0.0256 (12)	0.0267 (14)	0.0245 (13)	-0.0067 (10)	0.0066 (10)	0.0046 (10)
C12	0.0227 (10)	0.0248 (13)	0.0182 (11)	-0.0036 (10)	0.0030 (9)	0.0031 (10)
C14	0.0243 (11)	0.0253 (14)	0.0234 (12)	0.0041 (10)	0.0040 (10)	0.0020 (10)
C13	0.0208 (11)	0.0247 (13)	0.0136 (10)	-0.0026 (9)	0.0053 (9)	0.0001 (9)
C16	0.0237 (11)	0.0287 (14)	0.0170 (11)	-0.0045 (10)	0.0017 (9)	-0.0036 (10)

supporting information

<u>C10</u>	0.0303 (12)	0.0354 (16)	0.0360 (14)	-0.0049 (11)	0.0215 (12)	-0.0120 (12)
Geome	tric parameters (À	ĺ, °)				
S1-0	2	1.4270	(15)	C17—C18		1.386 (3)
S1—O	3	1.4285	(16)	C17—H17		0.9500
S1—N	1	1.6339	(17)	C18—C13		1.395 (3)
S1—C	1	1.760 (2)	C18—H18		0.9500
05—C	9	1.323 (3)	C11—C12		1.521 (3)
05—C	210	1.449 (3)	C11—H11A		0.9900
01—C	7	1.341 (3)	C11—H11B		0.9900
01—H	[1	0.92 (3)	C3—C4		1.387 (3)
04—C	9	1.227 (3)	С3—Н3		0.9500
N1—C	8	1.429 (3)	C15—C14		1.379 (3)
N1—C	11	1.485 (3)	C15—C16		1.384 (3)
C1—C	2	1.387 (3)	С15—Н15		0.9500
C1—C	6	1.400 (3)	C4—H4		0.9500
С7—С	8	1.361 (3)	C12—C13		1.511 (3)
С7—С	6	1.475 (3)	C12—H12A		0.9900
C8—C	9	1.459 (3)	C12—H12B		0.9900
С5—С	4	1.382 (3)	C14—C13		1.387 (3)
С5—С	6	1.392 (3)	C14—H14		0.9500
С5—Н	5	0.9500		С16—Н16		0.9500
С2—С	3	1.389 (3)	C10—H10A		0.9800
С2—Н	2	0.9500		C10—H10B		0.9800
C17—0	C16	1.380 (3)	С10—Н10С		0.9800
02 5	1 02	110.52	(0)	С12 С19 Ц19		110.0
02-5	I	119.32	(9)	$\begin{array}{c} C13 \\ \hline \\ C13 \\ \hline \\ C11 \\ \hline \\ C12 \\ \hline \\$		119.9
02-5	1—N1	108.21	(9)	NI = CII = UII A		114.02 (17)
03-3	I = NI	108.08	(9)	$NI \rightarrow CII \rightarrow HIIA$		108.7
02-3		107.15	(9)	C12— $C11$ — $H11A$		108.7
03-5		110.45	(10)	NI-CII-HIIB		108.7
NI - S	I—CI	102.04	(9)			108.7
C9—0		110.10	(18)	HIIA—CII—HIIE	•	107.0
C = 0		103.7 ((16)	C4 - C3 - C2		120.5 (2)
Co-N		110.93	(10) (12)	C4 - C3 - H3		119.7
C11	1—51 N1 S1	115.41	(13) (14)	$C_2 - C_3 - \Pi_3$		119.7
	1 - 51	119.10	(14)	C14 - C15 - C16		120.5 (2)
$C_2 - C_2$		121.0 (2) (17)	C14 - C15 - H15		119.9
$C_2 - C$	1 51	120.03	(17)	C_{10} $-C_{13}$ $-H_{13}$		119.9
	1-31	117.30	(10)	C_{5} C_{4} U_{4}		120.9 (2)
01 - C	-C8	123.2 ((10)	C_{3} — C_{4} — H_{4}		119.0
	7 - C0	114.46	(17)	$C_{12} = C_{12} = C_{11}$		119.0
C_{7}	/	122.3 (<i>2)</i>	C13 - C12 - C11		111.30 (18)
C_{7}	0—INI	121.54	(19)	C13 - C12 - H12A		109.4
U = C	8—С9 19—С9	120.0 ((10)	C12 - C12 - H12A		109.4
NI-C	δC9	118.38	(19)	CI3-CI2-HI2B		109.4
C4—C	3-06	119.7 (Z)	CII—CI2—HI2B		109.4

С4—С5—Н5	120.1	H12A—C12—H12B	108.0
С6—С5—Н5	120.1	C15—C14—C13	121.0 (2)
O4—C9—O5	123.2 (2)	C15—C14—H14	119.5
O4—C9—C8	122.9 (2)	C13—C14—H14	119.5
O5—C9—C8	113.92 (19)	C14—C13—C18	118.5 (2)
C5—C6—C1	118.8 (2)	C14—C13—C12	121.3 (2)
C5—C6—C7	121.3 (2)	C18—C13—C12	120.1 (2)
C1—C6—C7	119.92 (19)	C17—C16—C15	119.4 (2)
C1—C2—C3	118.3 (2)	C17—C16—H16	120.3
C1—C2—H2	120.8	C15—C16—H16	120.3
С3—С2—Н2	120.8	O5—C10—H10A	109.5
C16—C17—C18	120.5 (2)	O5—C10—H10B	109.5
C16—C17—H17	119.8	H10A—C10—H10B	109.5
C18—C17—H17	119.8	O5—C10—H10C	109.5
C17—C18—C13	120.3 (2)	H10A—C10—H10C	109.5
C17—C18—H18	119.9	H10B—C10—H10C	109.5
O2—S1—N1—C8	59.99 (16)	C4—C5—C6—C7	-178.7 (2)
O3—S1—N1—C8	-169.24 (14)	C2-C1-C6-C5	-1.3 (3)
C1—S1—N1—C8	-52.79 (16)	S1—C1—C6—C5	176.40 (16)
O2—S1—N1—C11	-156.23 (15)	C2—C1—C6—C7	178.87 (19)
O3—S1—N1—C11	-25.46 (18)	S1—C1—C6—C7	-3.5 (3)
C1—S1—N1—C11	90.99 (17)	O1—C7—C6—C5	-18.7 (3)
O2—S1—C1—C2	99.50 (18)	C8—C7—C6—C5	162.8 (2)
O3—S1—C1—C2	-32.19 (19)	O1—C7—C6—C1	161.14 (18)
N1—S1—C1—C2	-146.92 (17)	C8—C7—C6—C1	-17.4 (3)
O2—S1—C1—C6	-78.19 (17)	C6—C1—C2—C3	0.3 (3)
O3—S1—C1—C6	150.11 (15)	S1—C1—C2—C3	-177.31 (16)
N1—S1—C1—C6	35.39 (18)	C16—C17—C18—C13	-0.4 (3)
O1-C7-C8-N1	179.24 (18)	C8—N1—C11—C12	71.0 (2)
C6—C7—C8—N1	-2.4 (3)	S1—N1—C11—C12	-71.6 (2)
O1—C7—C8—C9	-3.3 (3)	C1—C2—C3—C4	0.5 (3)
C6—C7—C8—C9	175.06 (18)	C6—C5—C4—C3	-0.6 (3)
C11—N1—C8—C7	-103.1 (2)	C2—C3—C4—C5	-0.4 (3)
S1—N1—C8—C7	41.5 (2)	N1-C11-C12-C13	-168.72 (18)
C11—N1—C8—C9	79.4 (2)	C16—C15—C14—C13	-0.1 (3)
S1—N1—C8—C9	-136.00 (16)	C15—C14—C13—C18	0.5 (3)
C10—O5—C9—O4	-0.2 (3)	C15—C14—C13—C12	-179.6 (2)
C10—O5—C9—C8	179.15 (18)	C17—C18—C13—C14	-0.2 (3)
C7—C8—C9—O4	3.4 (3)	C17—C18—C13—C12	179.85 (19)
N1C8C9O4	-179.04 (19)	C11—C12—C13—C14	-70.4 (3)
C7—C8—C9—O5	-175.93 (18)	C11—C12—C13—C18	109.5 (2)
N1—C8—C9—O5	1.6 (3)	C18—C17—C16—C15	0.8 (3)
C4—C5—C6—C1	1.4 (3)	C14—C15—C16—C17	-0.6 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2···O3 ⁱ	0.95	2.55	3.391 (3)	147
C17—H17···O2 ⁱⁱ	0.95	2.53	3.205 (3)	128
C18—H18…O4 ⁱⁱⁱ	0.95	2.49	3.308 (3)	145
01—H1…O4	0.92 (3)	1.74 (3)	2.583 (2)	152 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*-1; (iii) *x*, -*y*+1/2, *z*-1/2.