organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Benzylphenyl)propan-2-ol

Richard Betz,^a* Thomas Gerber,^a Eric Hosten,^a B. P. Siddaraju,^b Hemmige S. Yathirajan^b and A. R. Ramesha^c

^aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, ^bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and ^cR. L. Fine Chem., Bangalore 560 064, India

Correspondence e-mail: richard.betz@webmail.co.za

Received 28 October 2011; accepted 8 November 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.148; data-to-parameter ratio = 20.8.

There are two molecules in the asymmetric unit of the title compound, $C_{16}H_{18}O$, a tertiary alcohol featuring a 2-benzyl-phenyl substituent. Co-operative $O-H \cdot \cdot O$ hydrogen bonds connect the molecules into tetramers.

Related literature

For general background to the use of benzhydrols in pharmaceutical synthesis, see: Ohkuma *et al.* (2000). For related structures, see: Ferguson *et al.* (1995); Fun *et al.* (2010); Siddaraju *et al.* (2010, 2011); Zeng & Liu (2010); Gu *et al.* (2009). For graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{18}O\\ M_r = 226.30\\ Monoclinic, P2_1/c\\ a = 12.2252 \ (3) \ \text{\AA}\\ b = 17.2508 \ (4) \ \text{\AA}\\ c = 16.7784 \ (3) \ \text{\AA}\\ \beta = 132.549 \ (1)^\circ \end{array}$

 $V = 2606.79 (10) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 200 K $0.59 \times 0.51 \times 0.34 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.901, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	311 parameters
$wR(F^2) = 0.148$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
6480 reflections	$\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$

24429 measured reflections

 $R_{\rm int} = 0.015$

6480 independent reflections

5035 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^i$	0.84	1.98	2.7997 (14)	166
O2-H2···O1	0.84	1.94	2.7486 (14)	161

Symmetry code: (i) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

BPS thanks the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5130).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ferguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367–377.
- Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Siddegowda, M. S. (2010). Acta Cryst. E66, 0808–0809.
- Gu, L., Yang, B., Liu, F. & Bai, Y. (2009). Chin. J. Chem. 27, 1199-1201.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ohkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659–662.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siddaraju, B. P., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Raju, C. R. (2011). Acta Cryst. E67, 02397.
- Siddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 02136.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zeng, H. & Liu, X.-L. (2010). Acta Cryst. E66, o2956.

supporting information

Acta Cryst. (2011). E67, o3302 [https://doi.org/10.1107/S1600536811047143]

2-(2-Benzylphenyl)propan-2-ol

Richard Betz, Thomas Gerber, Eric Hosten, B. P. Siddaraju, Hemmige S. Yathirajan and A. R. Ramesha

S1. Comment

2-(2-Benzylphenyl)propan-2-ol is used in synthetic organic chemistry for the preparation of many organic compounds including anthrone. Benzhydrols are widely used as intermediates for the synthesis of pharmaceuticals (Ohkuma *et al.*, 2000). The crystal structures of 2-(5-bromo-2-methylphenyl)propan-2-ol (Zeng & Liu, 2010), 10,10-dimethylanthrone (Fun *et al.*, 2010), (2-methylphenyl)(phenyl)methanol (Siddaraju *et al.*, 2010), 9,9-dimethyl-9,10-dihydroanthracene (Siddaraju *et al.*, 2011) and a *N*,*N*-dimethylamino-substituted analogue of the title compound (Gu *et al.*, 2009) have been reported earlier. In view of the importance of the title compound, its crystal structure was determined.

The asymmetric unit contains two complete molecules. The least-squares planes defined by the carbon atoms of the different phenyl moieties in each molecule enclose angles of 82.58 (10)° and 88.66 (13)°, respectively (Fig. 1).

In the crystal, cooperative hydrogen bonds connect the molecules to discrete tetramers. The plane defined by the atoms of the participating hydroxyl groups is perpendicular to the crystallographic *b* axis. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for the hydrogen bonds is *DD* on the unitary level and $R_4^4(8)$ on the binary level. The shortest intercentroid distance between two aromatic systems was measured at 4.9147 (14) Å and is observed between the two different phenyl rings of one of the molecules present in the asymmetric unit and its symmetry-generated equivalent (Fig. 2).

The packing of the title compound in the crystal is shown in Figure 3.

S2. Experimental

The title compound was obtained as a gift sample from *R*. *L*. Fine Chem, Bangalore, India. X-ray quality crystals were obtained by slow evaporation from toluene solution at room temperature.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with U(H) set to $1.5U_{eq}(C)$. Both oxygen-bound H atoms were placed in calculated positions (O—H 0.94 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.5U_{eq}(O)$.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only one of the molecules present in the asymmetric unit is shown.

Figure 2

Intermolecular contacts, viewed along [0 1 0]. Symmetry operator: i -x + 1, -y, -z.

Figure 3

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

2-(2-Benzylphenyl)propan-2-ol

Crystal data

$C_{16}H_{18}O$
$M_r = 226.30$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 12.2252 (3) Å
<i>b</i> = 17.2508 (4) Å
c = 16.7784 (3) Å
$\beta = 132.549 \ (1)^{\circ}$
$V = 2606.79 (10) \text{ Å}^3$
Z = 8

Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube F(000) = 976 $D_x = 1.153 \text{ Mg m}^{-3}$ Melting point = 333–335 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9880 reflections $\theta = 2.6-28.3^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 200 KBlock, colourless $0.59 \times 0.51 \times 0.34 \text{ mm}$

Graphite monochromator φ and ω scans

Absorption correction: multi-scan $R_{int} = 0.015$ (SADABS; Bruker, 2008) $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.0^{\circ}$ $T_{min} = 0.901, T_{max} = 1.000$ $h = -16 \rightarrow 16$ 24429 measured reflections $k = -23 \rightarrow 21$ 6480 independent reflections $l = -22 \rightarrow 20$ 5035 reflections with $I > 2\sigma(I)$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.964P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.57510(11)	-0.02752 (6)	0.13404 (8)	0.0415 (2)
H1	0.4865	-0.0134	0.0848	0.062*
C1	0.61107 (17)	-0.03064 (8)	0.23555 (12)	0.0402 (3)
C2	0.77983 (18)	-0.02453 (11)	0.32472 (13)	0.0528 (4)
H2A	0.8256	-0.0677	0.3183	0.079*
H2B	0.8096	-0.0267	0.3955	0.079*
H2C	0.8126	0.0247	0.3176	0.079*
C3	0.5637 (2)	-0.11099 (9)	0.24153 (17)	0.0610 (5)
H3A	0.4554	-0.1156	0.1850	0.092*
H3B	0.5955	-0.1179	0.3126	0.092*
H3C	0.6098	-0.1509	0.2308	0.092*
C4	0.6403 (3)	0.13895 (10)	0.2002 (2)	0.0778 (7)
H4A	0.7456	0.1355	0.2687	0.093*
H4B	0.6259	0.1020	0.1487	0.093*
C11	0.53379 (15)	0.03600 (8)	0.24184 (11)	0.0357 (3)
C12	0.45154 (19)	0.01992 (9)	0.26930 (13)	0.0477 (4)
H12	0.4452	-0.0323	0.2840	0.057*
C13	0.3783 (2)	0.07688 (10)	0.27620 (14)	0.0505 (4)
H13	0.3235	0.0637	0.2956	0.061*
C14	0.38553 (18)	0.15206 (9)	0.25495 (13)	0.0458 (3)
H14	0.3343	0.1916	0.2579	0.055*
C15	0.46826 (19)	0.16975 (9)	0.22906 (15)	0.0499 (4)
H15	0.4744	0.2223	0.2155	0.060*
C16	0.54339 (17)	0.11350 (8)	0.22197 (13)	0.0428 (3)
C21	0.61156 (17)	0.21996 (8)	0.15524 (13)	0.0428 (3)
C22	0.70386 (17)	0.27937 (10)	0.22356 (13)	0.0495 (4)
H22	0.7828	0.2697	0.2987	0.059*
C23	0.6818 (2)	0.35404 (11)	0.1827 (2)	0.0677 (6)

H23	0.7459	0.3952	0.2294	0.081*
C24	0.5661 (3)	0.36713 (14)	0.0742 (2)	0.0802 (8)
H24	0.5495	0.4177	0.0455	0.096*
C25	0.4755 (3)	0.30789 (18)	0.00804 (18)	0.0823 (8)
H25	0.3949	0.3173	-0.0669	0.099*
C26	0.49900 (19)	0.23568 (14)	0.04793 (15)	0.0637 (5)
H26	0.4355	0.1948	0.0000	0.076*
O2	0.70453 (11)	-0.02771 (7)	0.04946 (8)	0.0462 (3)
H2	0.6841	-0.0321	0.0880	0.069*
C5	0.85971 (15)	-0.04565 (9)	0.11354 (12)	0.0438 (3)
C6	0.8862 (2)	-0.04113 (13)	0.03673 (15)	0.0625 (5)
H6A	0.8188	-0.0769	-0.0239	0.094*
H6B	0.9892	-0.0555	0.0757	0.094*
H6C	0.8677	0.0119	0.0091	0.094*
C7	0.8837 (2)	-0.12903 (10)	0.15236 (17)	0.0607 (5)
H7A	0.8622	-0.1333	0.1989	0.091*
H7B	0.9870	-0.1440	0.1933	0.091*
H7C	0.8172	-0.1634	0.0898	0.091*
C8	0.81113 (17)	0.13174 (10)	0.07974 (14)	0.0516 (4)
H8A	0.7657	0.0919	0.0226	0.062*
H8B	0.7324	0.1520	0.0765	0.062*
C31	0.95608 (15)	0.01350 (9)	0.20631 (11)	0.0376 (3)
C32	1.07226 (16)	-0.01306 (10)	0.31153 (12)	0.0449 (3)
H32	1.0915	-0.0671	0.3237	0.054*
C33	1.16028 (18)	0.03729 (11)	0.39872 (13)	0.0538 (4)
H33	1.2398	0.0179	0.4693	0.065*
C34	1.1315 (2)	0.11554 (12)	0.38212 (14)	0.0579 (4)
H34	1.1888	0.1504	0.4415	0.069*
C35	1.01901 (19)	0.14296 (10)	0.27878 (14)	0.0530 (4)
H35	1.0008	0.1972	0.2679	0.064*
C36	0.93098 (16)	0.09365 (9)	0 18956 (12)	0.0416(3)
C41	0.86805 (17)	0 19740 (9)	0.05614(12)	0.0436(3)
C42	0.000000(17)	0.19710(9)	0.02011(12) 0.02209(14)	0.0150(5) 0.0553(4)
H42	0.7161	0.2775	0.0159	0.0555 (1)
C43	0.8475(3)	0.32829 (10)	-0.00309(15)	0.060
U43	0.7088	0.3771	-0.0261	0.0043 (3)
C44	0.7908	0.3771	0.0201 0.00512(14)	0.077
	0.9002 (2)	0.3573	-0.0127	0.0009(3)
C45	0.3372	0.3373 0.24642 (12)	0.0127 0.03007 (15)	0.075
U45	1.0304 (2)	0.24042 (12)	0.03907 (13)	0.0002 (3)
П43 С46	1.1100	0.2382	0.0432	0.072°
	0.98818 (18)	0.18/25 (10)	0.00445 (14)	0.0523 (4)
H46	1.0381	0.138/	0.0880	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0422 (5)	0.0485 (6)	0.0408 (5)	0.0068 (4)	0.0309 (5)	0.0031 (4)
C1	0.0500 (8)	0.0371 (7)	0.0435 (7)	0.0075 (6)	0.0357 (7)	0.0070 (6)

supporting information

C2	0.0503 (9)	0.0608 (10)	0.0449 (8)	0.0198 (8)	0.0312 (8)	0.0135 (7)
C3	0.0907 (14)	0.0371 (8)	0.0856 (13)	0.0084 (8)	0.0718 (12)	0.0095 (8)
C4	0.1053 (16)	0.0417 (9)	0.155 (2)	0.0107 (10)	0.1157 (18)	0.0167 (11)
C11	0.0390 (7)	0.0374 (7)	0.0348 (6)	0.0026 (5)	0.0266 (6)	0.0025 (5)
C12	0.0650 (10)	0.0435 (8)	0.0574 (9)	0.0039 (7)	0.0505 (9)	0.0076 (7)
C13	0.0627 (10)	0.0563 (9)	0.0594 (9)	0.0027 (8)	0.0521 (9)	0.0028 (7)
C14	0.0511 (8)	0.0482 (8)	0.0511 (8)	0.0061 (7)	0.0397 (8)	-0.0009 (7)
C15	0.0612 (10)	0.0369 (7)	0.0721 (11)	0.0035 (7)	0.0534 (9)	0.0023 (7)
C16	0.0488 (8)	0.0370 (7)	0.0592 (9)	0.0019 (6)	0.0431 (8)	0.0027 (6)
C21	0.0469 (8)	0.0382 (7)	0.0617 (9)	0.0000 (6)	0.0441 (8)	0.0013 (6)
C22	0.0394 (8)	0.0564 (9)	0.0490 (8)	0.0028 (7)	0.0284 (7)	-0.0002 (7)
C23	0.0699 (12)	0.0452 (9)	0.1210 (18)	-0.0125 (9)	0.0779 (14)	-0.0186 (10)
C24	0.1033 (17)	0.0689 (13)	0.131 (2)	0.0483 (13)	0.1041 (18)	0.0576 (14)
C25	0.0711 (13)	0.130 (2)	0.0627 (12)	0.0475 (15)	0.0519 (12)	0.0401 (14)
C26	0.0414 (8)	0.0981 (15)	0.0513 (9)	-0.0025 (9)	0.0312 (8)	-0.0142 (10)
O2	0.0325 (5)	0.0694 (7)	0.0390 (5)	-0.0031 (5)	0.0250 (4)	-0.0037 (5)
C5	0.0329 (7)	0.0575 (9)	0.0430 (7)	-0.0033 (6)	0.0264 (6)	-0.0094 (6)
C6	0.0501 (9)	0.0949 (14)	0.0561 (10)	-0.0121 (9)	0.0413 (9)	-0.0238 (9)
C7	0.0496 (9)	0.0517 (10)	0.0764 (12)	-0.0062 (8)	0.0407 (9)	-0.0144 (9)
C8	0.0389 (8)	0.0609 (10)	0.0589 (9)	0.0083 (7)	0.0346 (8)	0.0143 (8)
C31	0.0324 (6)	0.0485 (8)	0.0387 (7)	-0.0004 (6)	0.0267 (6)	-0.0020 (6)
C32	0.0381 (7)	0.0542 (9)	0.0436 (8)	0.0022 (6)	0.0281 (7)	0.0033 (6)
C33	0.0401 (8)	0.0783 (12)	0.0377 (8)	-0.0057 (8)	0.0242 (7)	-0.0019 (7)
C34	0.0540 (9)	0.0730 (12)	0.0513 (9)	-0.0205 (9)	0.0375 (8)	-0.0225 (8)
C35	0.0561 (9)	0.0486 (9)	0.0644 (10)	-0.0069 (7)	0.0448 (9)	-0.0094 (7)
C36	0.0372 (7)	0.0492 (8)	0.0463 (8)	0.0002 (6)	0.0314 (7)	0.0001 (6)
C41	0.0424 (7)	0.0478 (8)	0.0458 (8)	0.0049 (6)	0.0319 (7)	0.0033 (6)
C42	0.0642 (10)	0.0543 (10)	0.0572 (10)	0.0153 (8)	0.0450 (9)	0.0058 (8)
C43	0.0912 (14)	0.0414 (9)	0.0548 (10)	0.0062 (9)	0.0469 (11)	0.0019 (7)
C44	0.0717 (12)	0.0561 (10)	0.0462 (9)	-0.0214 (9)	0.0364 (9)	-0.0070 (8)
C45	0.0528 (10)	0.0733 (12)	0.0604 (10)	-0.0111 (9)	0.0406 (9)	-0.0002 (9)
C46	0.0474 (9)	0.0530 (9)	0.0646 (10)	0.0060 (7)	0.0412 (8)	0.0072 (8)

Geometric parameters (Å, °)

01—C1	1.4437 (16)	O2—C5	1.4464 (17)
01—H1	0.8400	O2—H2	0.8399
C1—C2	1.527 (2)	C5—C7	1.523 (2)
C1—C3	1.531 (2)	C5—C6	1.529 (2)
C1—C11	1.5364 (19)	C5—C31	1.540 (2)
C2—H2A	0.9800	С6—Н6А	0.9800
C2—H2B	0.9800	С6—Н6В	0.9800
C2—H2C	0.9800	C6—H6C	0.9800
С3—НЗА	0.9800	С7—Н7А	0.9800
С3—Н3В	0.9800	С7—Н7В	0.9800
С3—Н3С	0.9800	C7—H7C	0.9800
C4—C21	1.512 (2)	C8—C41	1.515 (2)
C4—C16	1.522 (2)	C8—C36	1.524 (2)

supporting information

	0.0000	CO HOA	0.0000
C4—H4A	0.9900	С8—Н8А	0.9900
C4—H4B	0.9900	C8—H8B	0.9900
C11—C12	1.3881 (19)	C31—C32	1.397 (2)
C11—C16	1.4018 (19)	C31—C36	1.403 (2)
C12—C13	1 386 (2)	$C_{32} - C_{33}$	1387(2)
C12 U12	0.0500	C22 H22	0.0500
	0.9300		0.9300
013-014	1.364 (2)	033-034	1.3/5 (3)
C13—H13	0.9500	С33—Н33	0.9500
C14—C15	1.378 (2)	C34—C35	1.377 (3)
C14—H14	0.9500	С34—Н34	0.9500
C15—C16	1.396 (2)	C35—C36	1.394 (2)
C15—H15	0.9500	C35—H35	0.9500
	1.262(2)	C41 C42	1.294(2)
C21—C20	1.303 (2)		1.384 (2)
C21—C22	1.374 (2)	C41—C46	1.389 (2)
C22—C23	1.397 (3)	C42—C43	1.390 (3)
С22—Н22	0.9500	C42—H42	0.9500
C23—C24	1.372 (3)	C43—C44	1.377 (3)
C23—H23	0.9500	C43—H43	0.9500
C_{24} C_{25}	1.357(A)	CAA = CA5	1 368 (3)
C24—C25	1.557 (4)		1.508 (5)
C24—H24	0.9500	C44—H44	0.9500
C25—C26	1.350 (3)	C45—C46	1.382 (2)
C25—H25	0.9500	C45—H45	0.9500
С26—Н26	0.9500	C46—H46	0.9500
C101H1	109.4	C502H2	109.3
$C_1 = C_1 = C_2$	109.4 106.57(12)	0^{2} 0^{2} 0^{2} 0^{2}	107.3
01 - C1 - C2	100.37(12)	02-05-07	107.22(12)
01 - C1 - C3	106.50 (13)	02	106.36 (13)
C2—C1—C3	108.58 (14)	C7—C5—C6	108.63 (14)
O1—C1—C11	110.01 (11)	O2—C5—C31	109.39 (11)
C2-C1-C11	111.55 (12)	C7—C5—C31	113.51 (13)
C3—C1—C11	113.30 (12)	C6—C5—C31	111.40 (12)
C1 - C2 - H2A	109.5	С5—С6—Н6А	109.5
$C_1 = C_2 = H_2 R$	109.5	$C_5 \subset C_6 \cup C_6$	109.5
	109.5		109.5
H2A—C2—H2B	109.5	Н6А—С6—Н6В	109.5
C1—C2—H2C	109.5	С5—С6—Н6С	109.5
H2A—C2—H2C	109.5	H6A—C6—H6C	109.5
H2B—C2—H2C	109.5	H6B—C6—H6C	109.5
С1—С3—НЗА	109.5	С5—С7—Н7А	109.5
C1_C3_H3B	109.5	C5-C7-H7B	109.5
	100.5		109.5
	109.5		109.5
С1—С3—Н3С	109.5	С5—С/—Н/С	109.5
НЗА—СЗ—НЗС	109.5	Н7А—С7—Н7С	109.5
НЗВ—СЗ—НЗС	109.5	H7B—C7—H7C	109.5
C21—C4—C16	115.49 (14)	C41—C8—C36	113.72 (13)
C21—C4—H4A	108.4	C41—C8—H8A	108.8
C16—C4—H4A			
\cdot	108.4	C36—C8—H8A	108.8
$C_{10} C_{4} H_{4}P$	108.4	C36—C8—H8A	108.8
C21— $C4$ — $H4B$	108.4 108.4	C36—C8—H8A C41—C8—H8B	108.8 108.8

H4A—C4—H4B	107.5	H8A—C8—H8B	107.7
C12—C11—C16	117.75 (13)	C32—C31—C36	118.29 (13)
C12—C11—C1	119.36 (12)	C32—C31—C5	119.27 (14)
C16—C11—C1	122.89 (12)	C36—C31—C5	122.44 (13)
C13—C12—C11	122.68 (14)	C33—C32—C31	121.87 (16)
C13—C12—H12	118.7	C33—C32—H32	119.1
C11—C12—H12	118.7	C31—C32—H32	119.1
C14—C13—C12	119.51 (14)	C34—C33—C32	119.43 (16)
C14—C13—H13	120.2	С34—С33—Н33	120.3
C12—C13—H13	120.2	С32—С33—Н33	120.3
C13—C14—C15	118.97 (14)	C33—C34—C35	119.54 (16)
C13—C14—H14	120.5	C33—C34—H34	120.2
C15—C14—H14	120.5	C35—C34—H34	120.2
C14—C15—C16	122.58 (15)	C34—C35—C36	122.06 (17)
C14—C15—H15	118.7	C34—C35—H35	119.0
C16—C15—H15	118.7	C36—C35—H35	119.0
C15—C16—C11	118.50 (13)	C35-C36-C31	118.74 (14)
C_{15} C_{16} C_{4}	118.95 (14)	$C_{35} - C_{36} - C_{8}$	116 63 (15)
$C_{11} - C_{16} - C_{4}$	122.44 (13)	$C_{31} - C_{36} - C_{8}$	124 63 (14)
C_{26} C_{21} C_{22}	118 66 (16)	C42-C41-C46	117 88 (15)
$C_{26} - C_{21} - C_{4}$	121.96 (18)	C42 - C41 - C8	120.72(14)
$C_{22} - C_{21} - C_{4}$	119 35 (17)	C46-C41-C8	120.72(11) 121.37(14)
C_{21} C_{22} C_{23} C_{23}	120.08 (17)	C41-C42-C43	120.72(17)
$C_{21} - C_{22} - H_{22}$	120.00	C41-C42-H42	119.6
C_{23} C_{22} H_{22}	120.0	C43-C42-H42	119.6
C_{24} C_{23} C_{22}	119 11 (19)	C44 - C43 - C42	120 39 (17)
C24—C23—H23	120.4	C44-C43-H43	119.8
$C_{22} - C_{23} - H_{23}$	120.4	C42-C43-H43	119.8
C_{25} C_{24} C_{23}	120.03 (18)	C45-C44-C43	119.46 (17)
$C_{25} - C_{24} - H_{24}$	120.05 (10)	C45—C44—H44	120.3
C_{23} C_{24} H_{24}	120.0	C43—C44—H44	120.3
$C_{26} - C_{25} - C_{24}$	120.5(2)	C44-C45-C46	120.31 (17)
C26—C25—H25	119.8	C44-C45-H45	119.8
C_{24} C_{25} H_{25}	119.8	C46-C45-H45	119.8
$C_{25} - C_{26} - C_{21}$	121.7(2)	C45-C46-C41	121 23 (16)
C_{25} C_{26} H_{26}	119.2	C45—C46—H46	119.4
C_{21} C_{26} H_{26}	119.2	C41 - C46 - H46	119.4
021 020 1120	119.2		119.1
01 - C1 - C11 - C12	129 43 (14)	02 - C5 - C31 - C32	131 82 (13)
C_{2} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1} C_{1}	-112.53(16)	C7-C5-C31-C32	12.12 (18)
C_{3} C_{1} C_{11} C_{12}	10.4(2)	C6-C5-C31-C32	-110.88(16)
01-C1-C11-C16	-51.21(18)	02 - C5 - C31 - C36	-47.57(17)
$C_2 - C_1 - C_{11} - C_{16}$	66.83 (18)	C7-C5-C31-C36	-167.27(13)
C3-C1-C11-C16	-170.28(15)	C6-C5-C31-C36	69.72 (18)
C16—C11—C12—C13	0.9 (2)	C36—C31—C32—C33	1.1 (2)
C1-C11-C12-C13	-179.75 (15)	C5-C31-C32-C33	-178.27(13)
C11—C12—C13—C14	0.3 (3)	C31—C32—C33—C34	1.2 (2)
C12—C13—C14—C15	-1.2 (3)	C32—C33—C34—C35	-2.2(2)
			-·-

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.1 \ (3) \\ 0.1 \ (3) \\ -176.00 \ (18) \\ -1.0 \ (2) \\ 179.59 \ (14) \\ 174.93 \ (18) \\ -4.4 \ (3) \\ -17.7 \ (3) \\ 166.40 \ (17) \\ -81.9 \ (2) \\ 100.1 \ (2) \\ -0.2 \ (2) \\ 177.91 \ (14) \\ 0.8 \ (2) \\ -0.3 \ (3) \\ -0.7 \ (3) \\ 1.3 \ (3) \\ -0.8 \ (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.9 \ (2) \\ 1.4 \ (2) \\ -179.60 \ (14) \\ -2.39 \ (19) \\ 177.01 \ (12) \\ 178.73 \ (12) \\ -1.9 \ (2) \\ 51.16 \ (19) \\ -129.93 \ (15) \\ -129.26 \ (16) \\ 52.9 \ (2) \\ 0.1 \ (3) \\ -177.79 \ (16) \\ 0.2 \ (3) \\ -0.5 \ (3) \\ 0.1 \ (3) \\ -0.3 \ (3) \end{array}$
C22—C21—C26—C25	-0.8 (2)	C42—C41—C46—C45	-0.3 (3)
C4—C21—C26—C25	-178.88 (16)	C8—C41—C46—C45	177.62 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1···O2 ⁱ	0.84	1.98	2.7997 (14)	166
O2—H2…O1	0.84	1.94	2.7486 (14)	161

Symmetry code: (i) -x+1, -y, -z.