organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(4-chloro-3,5-dinitrobenzamido)acetate

Xiang-Xiang Wu,^a Xue-Fen Wu,^a Yi-Min Hou,^a Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aHenan University of Traditional Medicine, Zhengzhou 450008, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 23 November 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.029; *wR* factor = 0.074; data-to-parameter ratio = 11.6.

The title molecule, $C_{10}H_8ClN_3O_7$, is twisted with the dihedral angle between the amide and benzene ring being 38.75 (11)°. The C-N-C-C torsion angle between the amide and acetyl groups is -150.1 (2)°. Finally, each nitro group is twisted out of the plane of the benzene ring to which it is connected [O-N-C-C torsion angles = 34.0 (3) and -64.5 (3)°]. Linear supramolecular chains along [010] and mediated by N-H···O hydrogen bonds between successive amide groups dominate the crystal packing. The chains are consolidated into the threedimensional structure by C-H···O contacts.

Related literature

For biological and crystal engineering studies of related compounds, see: Liu *et al.* (2009); Eissmann & Weber (2011).

Experimental

Crystal data $C_{10}H_8CIN_3O_7$ $M_r = 317.64$ Orthorhombic, Pna2₁

a = 14.5219 (5) Åb = 4.7949 (2) Åc = 18.5368 (6) Å $V = 1290.74 (8) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Agilent SuperNova Dual
diffractometer with Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
$T_{\min} = 0.906, T_{\max} = 0.967$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$
$wR(F^2) = 0.074$
S = 1.08
2258 reflections
194 parameters
2 restraints

 $\mu = 0.34 \text{ mm}^{-1}$ T = 100 K $0.30 \times 0.20 \times 0.10 \text{ mm}$

743 measured reflections
258 independent reflections
2134 reflections with $I > 2\sigma(I)$
$R_{int} = 0.030$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.22 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), 725 Friedel pairs Flack parameter: -0.05 (6)

Table 1		
Hydrogen-bond geome	trv (Å. °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O3^{i}$	0.88 (1)	1.99 (1)	2.833 (3)	163 (3)
C1−H1a···O7 ⁱⁱ	0.98	2.59	3.460 (3)	148
C3−H3a···O6 ⁱⁱⁱ	0.99	2.53	3.502 (3)	169
C3−H3b···O2 ^{iv}	0.99	2.42	3.380 (3)	162
$C10-H10\cdots O5^{v}$	0.95	2.37	3.223 (3)	149

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, -y + 1, z + \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, z + \frac{1}{2}$; (iv) x, y - 1, z; (v) $x - \frac{1}{2}, -y + \frac{3}{2}, z$.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Henan University of Traditional Medicine and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5145).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Eissmann, F. & Weber, E. (2011). J. Mol. Struct. **994**, 392–402.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Liu, J., Fu, Z., Wang, Y., Schmitt, M., Huang, A., Marshall, D., Tonn, G., Seitz, L., Sullivan, T., Tang, H. L., Collins, T. & Medina, J. (2009). *Bioorg. Med. Chem. Lett.* **19**, 6419–6423.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3486 [https://doi.org/10.1107/S1600536811050446]

Methyl 2-(4-chloro-3,5-dinitrobenzamido)acetate

Xiang-Xiang Wu, Xue-Fen Wu, Yi-Min Hou, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Molecules related to the title compound, (I), attract interest for their biological properties (Liu *et al.*, 2009) and also in terms of crystal engineering endeavours (Eissmann & Weber, 2011). In (I), Fig. 1, the dihedral angle between the amide (O3,N1,C4) atoms and the benzene ring is $38.75 (11)^\circ$. The acetyl group is also twisted out of the plane of the amide group with the C4—N1—C3—C2 torsion angle being -150.1 (2)°. Each nitro group is twisted out of the plane of the benzene ring to which it is connected with the O4—N2—C7—C6 torsion angle = $34.0 (3)^\circ$ and with O6—N3—C9—C8 = $-64.5 (3)^\circ$.

The crystal packing is dominated by the formation of linear supramolecular chains along the *b* axis and mediated by N —H…O hydrogen bonds involving the amide group, Fig. 2 and Table 1. Chains are consolidated in the crystal packing by C—H…O interactions, Fig. 3 and Table 1.

S2. Experimental

To a solution of 4-chloro-3,5-dinitrobenzoic acid (0.48 g, 2 mmol) in dichloromethane (30 ml) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimidehydrochloride (0.40 g, 2.1 mmol) and *N*,*N*-dimethylaminopyridine (25 mg, 0.2 mmol). The mixture was stirred at room temperature for an hour. Methyl 2-aminoacetate (178 mg, 2 mmol) in chloroform (20 ml) along with several drops of triethylamine were added. After another six hours, the mixture was subjected to chromatography (petroleum ether/acetone 4:1) to provide the product as a yellow solid (501.5 mg, 80% yield). Crystals were grown from a mixture of dichloromethane and *n*-hexane (1:1 v/v).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88±0.01 Å, and with free U_{iso} .

Figure 1

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 2

Supramolecular linear chain along the b axis in (I). The N—H…O contacts are shown as blue dashed lines.

Figure 3

A view of the unit-cell contents of (I) in projection down the *a* axis. The N—H…O and C—H…O interactions are shown as blue and orange dashed lines, respectively.

Methyl 2-(4-chloro-3,5-dinitrobenzamido)acetate

Crystal data

C₁₀H₈ClN₃O₇ $M_r = 317.64$ Orthorhombic, *Pna*2₁ Hall symbol: P 2c -2n a = 14.5219 (5) Å b = 4.7949 (2) Å c = 18.5368 (6) Å V = 1290.74 (8) Å³ Z = 4

Data collection

Agilent SuperNova Dual	
diffractometer with Atlas detector	
Radiation source: SuperNova (Mo) X-ray	
Source	
Mirror monochromator	
Detector resolution: 10.4041 pixels mm ⁻¹	
ω scan	
Absorption correction: multi-scan	
(CrysAlis PRO; Agilent, 2010)	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.074$ S = 1.082258 reflections 194 parameters 2 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 648 $D_x = 1.635 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2633 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $T_{\min} = 0.906, T_{\max} = 0.967$ 4743 measured reflections 2258 independent reflections 2134 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 2.8^{\circ}$ $h = -13 \rightarrow 18$ $k = -6 \rightarrow 5$ $l = -17 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0367P)^2 + 0.1422P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.25$ e Å⁻³ Absolute structure: Flack (1983), 725 Friedel pairs Absolute structure parameter: -0.05 (6)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.97666 (4)	0.68297 (13)	0.49982 (3)	0.02449 (14)	
01	0.46196 (11)	0.5789 (4)	0.87399 (9)	0.0214 (4)	
O2	0.51448 (12)	0.8605 (3)	0.78629 (9)	0.0232 (4)	
03	0.73214 (11)	0.1135 (3)	0.76810 (9)	0.0212 (4)	
O4	1.03518 (12)	0.0525 (4)	0.65033 (11)	0.0278 (4)	
05	1.09547 (11)	0.4311 (4)	0.60728 (11)	0.0282 (4)	
O6	0.81733 (12)	1.0984 (3)	0.50745 (10)	0.0286 (4)	
07	0.71827 (12)	0.7754 (4)	0.48417 (10)	0.0329 (5)	
N1	0.67321 (13)	0.5506 (4)	0.77382 (11)	0.0154 (4)	
N2	1.03014 (12)	0.2929 (4)	0.62781 (11)	0.0188 (4)	
N3	0.78247 (13)	0.8709 (4)	0.51797 (10)	0.0179 (4)	
C1	0.37848 (17)	0.7447 (6)	0.87927 (14)	0.0260 (5)	
H1A	0.3379	0.6641	0.9160	0.039*	
H1B	0.3469	0.7454	0.8326	0.039*	
H1C	0.3944	0.9363	0.8928	0.039*	
C2	0.52388 (15)	0.6648 (5)	0.82581 (12)	0.0152 (5)	
C3	0.60829 (15)	0.4829 (5)	0.83024 (12)	0.0180 (5)	
H3A	0.6381	0.5085	0.8778	0.022*	
H3B	0.5899	0.2847	0.8259	0.022*	
C4	0.72913 (14)	0.3572 (5)	0.74666 (12)	0.0144 (4)	
C5	0.79056 (16)	0.4510 (5)	0.68634 (11)	0.0141 (5)	
C6	0.87941 (15)	0.3419 (5)	0.68295 (12)	0.0144 (5)	
H6	0.9001	0.2141	0.7186	0.017*	
C7	0.93716 (15)	0.4205 (5)	0.62750 (12)	0.0148 (4)	
C8	0.90958 (15)	0.6012 (5)	0.57315 (12)	0.0154 (5)	
C9	0.81934 (15)	0.6983 (5)	0.57707 (12)	0.0148 (4)	
C10	0.76008 (15)	0.6285 (4)	0.63220 (12)	0.0150 (4)	
H10	0.6992	0.7008	0.6332	0.018*	
H1	0.688(2)	0.722(3)	0.7627 (15)	0.034 (8)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0208 (2)	0.0329 (3)	0.0197 (3)	-0.0005 (2)	0.0067 (3)	0.0055 (3)
01	0.0187 (8)	0.0221 (9)	0.0235 (9)	0.0055 (7)	0.0068 (7)	0.0057 (8)
O2	0.0229 (9)	0.0218 (9)	0.0250 (9)	0.0052 (7)	0.0007 (7)	0.0080 (8)
03	0.0222 (8)	0.0118 (8)	0.0296 (9)	0.0021 (6)	0.0050 (8)	0.0042 (7)
O4	0.0222 (9)	0.0231 (10)	0.0381 (11)	0.0077 (7)	0.0013 (8)	0.0099 (9)
05	0.0127 (8)	0.0264 (9)	0.0455 (11)	-0.0055 (7)	0.0033 (8)	0.0016 (9)
06	0.0452 (10)	0.0165 (8)	0.0239 (9)	-0.0042 (8)	-0.0027 (9)	0.0078 (8)
O7	0.0313 (10)	0.0340 (11)	0.0334 (11)	-0.0022 (8)	-0.0180 (9)	0.0075 (9)
N1	0.0197 (9)	0.0095 (9)	0.0171 (9)	0.0005 (7)	0.0019 (8)	0.0020 (8)
N2	0.0140 (10)	0.0219 (11)	0.0206 (10)	-0.0005 (8)	-0.0006 (8)	0.0001 (9)
N3	0.0220 (9)	0.0187 (10)	0.0129 (9)	0.0047 (8)	0.0004 (8)	-0.0007 (8)
C1	0.0173 (11)	0.0303 (13)	0.0305 (13)	0.0060 (11)	0.0032 (11)	-0.0036 (13)

supporting information

C2	0.0167 (10)	0.0155 (11)	0.0133 (11)	0.0003 (9)	-0.0011 (9)	-0.0038 (9)
C3	0.0195 (11)	0.0176 (12)	0.0171 (11)	0.0029 (9)	0.0023 (9)	0.0044 (9)
C4	0.0133 (9)	0.0149 (12)	0.0150 (10)	-0.0016 (8)	-0.0039 (9)	0.0012 (9)
C5	0.0152 (10)	0.0128 (11)	0.0142 (10)	-0.0023 (9)	-0.0013 (8)	-0.0019 (9)
C6	0.0158 (11)	0.0112 (11)	0.0161 (10)	0.0023 (9)	-0.0031 (9)	0.0005 (9)
C7	0.0111 (10)	0.0131 (10)	0.0201 (11)	0.0018 (9)	-0.0011 (9)	-0.0035 (9)
C8	0.0148 (10)	0.0163 (12)	0.0149 (10)	-0.0029 (9)	0.0026 (9)	-0.0019 (9)
C9	0.0186 (11)	0.0106 (11)	0.0151 (10)	0.0000 (9)	-0.0016 (9)	0.0011 (9)
C10	0.0154 (10)	0.0113 (10)	0.0185 (11)	0.0002 (9)	0.0001 (9)	-0.0029 (9)

Geometric parameters (Å, °)

Cl1—C8	1.718 (2)	C1—H1B	0.9800
O1—C2	1.333 (3)	C1—H1C	0.9800
O1—C1	1.453 (3)	C2—C3	1.507 (3)
O2—C2	1.198 (3)	С3—НЗА	0.9900
O3—C4	1.235 (3)	С3—Н3В	0.9900
O4—N2	1.228 (3)	C4—C5	1.499 (3)
O5—N2	1.218 (2)	C5—C10	1.388 (3)
O6—N3	1.218 (2)	C5—C6	1.394 (3)
O7—N3	1.213 (2)	C6—C7	1.379 (3)
N1—C4	1.331 (3)	С6—Н6	0.9500
N1—C3	1.445 (3)	C7—C8	1.388 (3)
N1—H1	0.875 (10)	C8—C9	1.393 (3)
N2—C7	1.482 (3)	C9—C10	1.377 (3)
N3—C9	1.474 (3)	C10—H10	0.9500
C1—H1A	0.9800		
C2	116.05 (18)	C2—C3—H3B	109.4
C4—N1—C3	121.01 (19)	НЗА—СЗ—НЗВ	108.0
C4—N1—H1	115 (2)	O3—C4—N1	124.0 (2)
C3—N1—H1	123 (2)	O3—C4—C5	120.2 (2)
O5—N2—O4	124.78 (19)	N1	115.9 (2)
O5—N2—C7	118.92 (19)	C10—C5—C6	119.5 (2)
O4—N2—C7	116.30 (18)	C10—C5—C4	122.2 (2)
O7—N3—O6	125.1 (2)	C6—C5—C4	118.15 (19)
O7—N3—C9	116.80 (19)	C7—C6—C5	119.6 (2)
O6—N3—C9	118.10 (19)	С7—С6—Н6	120.2
O1—C1—H1A	109.5	С5—С6—Н6	120.2
O1—C1—H1B	109.5	C6—C7—C8	122.43 (19)
H1A—C1—H1B	109.5	C6—C7—N2	115.99 (19)
01—C1—H1C	109.5	C8—C7—N2	121.56 (19)
H1A—C1—H1C	109.5	C7—C8—C9	116.3 (2)
H1B—C1—H1C	109.5	C7—C8—Cl1	123.59 (17)
O2—C2—O1	125.1 (2)	C9—C8—Cl1	119.92 (18)
O2—C2—C3	125.4 (2)	С10—С9—С8	123.1 (2)
O1—C2—C3	109.49 (19)	C10—C9—N3	117.46 (19)
N1—C3—C2	111.18 (18)	C8—C9—N3	119.4 (2)

N1—C3—H3A C2—C3—H3A N1—C3—H3B	109.4 109.4 109.4	C9—C10—C5 C9—C10—H10 C5—C10—H10	119.1 (2) 120.5 120.5
C1-01-C2-02 $C1-01-C2-C3$ $C4-N1-C3-C2$ $02-C2-C3-N1$ $01-C2-C3-N1$ $C3-N1-C4-03$ $C3-N1-C4-C5$ $03-C4-C5-C10$ $N1-C4-C5-C10$ $03-C4-C5-C6$ $N1-C4-C5-C6$ $C10-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C7$ $C5-C6-C7-C8$ $C5-C6-C7-N2$ $05-N2-C7-C6$ $04-N2-C7-C6$	-1.9(3) 176.48(19) -150.1(2) -7.6(3) 174.00(19) -2.2(3) 177.61(19) 139.5(2) -40.3(3) -36.8(3) 143.4(2) 2.6(3) 179.0(2) -1.6(3) -179.6(2) -144.8(2) 34.0(3)	O4-N2-C7-C8 C6-C7-C8-C9 N2-C7-C8-C9 C6-C7-C8-C11 N2-C7-C8-C11 C7-C8-C9-C10 C11-C8-C9-C10 C7-C8-C9-N3 O7-N3-C9-C10 O6-N3-C9-C10 O7-N3-C9-C10 O7-N3-C9-C8 C8-C9-C10-C5 N3-C9-C10-C5 C6-C5-C10-C9 C4-C5-C10-C9	-144.0(2) -0.6(3) 177.3(2) -174.96(18) 3.0(3) 1.7(3) 176.32(18) -174.6(2) -0.1(3) -59.9(3) 118.9(2) 116.6(2) -64.5(3) -0.7(3) 175.76(19) -1.5(3) -177.75(19)
O5—N2—C7—C8	37.1 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O3 ⁱ	0.88 (1)	1.99 (1)	2.833 (3)	163 (3)
C1—H1a····O7 ⁱⁱ	0.98	2.59	3.460 (3)	148
C3—H3a···O6 ⁱⁱⁱ	0.99	2.53	3.502 (3)	169
C3—H3b····O2 ^{iv}	0.99	2.42	3.380 (3)	162
C10—H10…O5 ^v	0.95	2.37	3.223 (3)	149

Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, z+1/2; (iii) -x+3/2, y-1/2, z+1/2; (iv) x, y-1, z; (v) x-1/2, -y+3/2, z.