ISSN 1600-5368

## 2-n-Butyl-6-chloro-1-(2,4-dimethylphenylsulfonyl)-1H-benzimidazole-2-n-butyl-5-chloro-1-(2,4-dimethylphenylsulfonyl)-1H-benzimidazole (0.759/0.241)

## K. B. Abdirevmov.<sup>a</sup>\* N. S. Mukhamedov.<sup>a</sup> R. Ya. Okmanov,<sup>a</sup> M. J. Ayimbetov<sup>b</sup> and B. Tashkhodjaev<sup>a</sup>

<sup>a</sup>S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, and <sup>b</sup>Kara-Kalpak State University, Acad. Abdirov Str., 1, Nukus 742000, Uzbekistan Correspondence e-mail: abdireymovqudaybergen@mail.ru

Received 18 October 2011; accepted 11 November 2011

Key indicators: single-crystal X-ray study; T = 290 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.069; wR factor = 0.191; data-to-parameter ratio = 11.3.

The title compound,  $0.759C_{19}H_{21}CIN_2O_2S \cdot 0.241C_{19}H_{21}CIN_2$ -O<sub>2</sub>S, was synthesized by arylsulfonylation of 2-n-butyl-5chloro-1H-benzimidazole in the presence of triethylamine. The crystal structure is composed of two molecules, 2-n-butyl-6-chloro-1-(2,4-dimethylphenylsulfonyl)-1*H*-benzimidazole and 1-(2,4-dimethylphenylsulfonyl)-2-n-butyl-5-chloro-1Hbenzimidazole, in the refined ratio of 0.759 (4):0.241 (4) disordered at the same position in the unit cell. The molecule has three essentially planar fragments viz. benzimidazole, dimethylbenzene and n-butyl (r.m.s. deviations of 0.009, 0.024 and 0.003 Å, respectively). The angle between the benzimidazole and dimethylbenzene fragments is 86.0 (1)°. In the crystal, pairs of intermolecular  $C-H\cdots\pi$  interactions form centrosymmetrical dimers, which are linked by weak intermolecular C-H···O hydrogen bonds.

### **Related literature**

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Koči et al. (2002); Matsuno et al. (2000); Garuti et al. (1999). For the synthesis, biological activity and related structures of 2-n-butylbenzimidazole derivatives, see: Kubo et al. (1993a,b); For the arylsulfonylation of benzimidazole derivatives, see: Abdireimov et al. (2010).





 $\beta = 78.38 \ (3)^{\circ}$ 

 $\gamma = 76.75 \ (3)^{\circ}$ 

Z = 2

V = 931.1 (3) Å<sup>3</sup>

Cu Ka radiation

 $0.68 \times 0.45 \times 0.20 \text{ mm}$ 

2714 independent reflections

intensity decay: 10.4%

2460 reflections with  $I > 2\sigma(I)$ 

3 standard reflections every 60 min

 $\mu = 2.98 \text{ mm}^{-3}$ 

T = 290 K

 $\theta_{\rm max} = 60.0^{\circ}$ 

### **Experimental**

Crvstal data 0.759C19H21ClN2O2S·0.241C19H21C-CIN<sub>2</sub>O<sub>2</sub>S  $M_r = 376.89$ Triclinic, P1 a = 8.7340 (17) Åb = 10.251 (2) Å c = 11.390 (2) Å  $\alpha = 71.29(3)^{\circ}$ 

### Data collection

Stoe Stadi-4 four-circle diffractometer Absorption correction:  $\psi$  scan (X-RED; Stoe & Cie, 1997)  $T_{\min} = 0.250, T_{\max} = 0.551$ 2722 measured reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.069$ | 240 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.191$               | H-atom parameters constrained                              |
| S = 1.12                        | $\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ \AA}^{-3}$  |
| 2714 reflections                | $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C12-C17 ring.

| $D - H \cdots A$                                                             | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------------------------------------------------------------|-------------|-------------------------|--------------|---------------------------|
| $\begin{array}{c} C19-H19B\cdots O2^{i}\\ C4-H4A\cdots Cg3^{ii} \end{array}$ | 0.96        | 2.62                    | 3.554 (7)    | 165                       |
|                                                                              | 0.93        | 2.76                    | 3.665 (8)    | 163                       |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grants FA-F3-T045 and FA-A6-T114).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2330).

### References

Abdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Zh. & Shakhidoyatov, Kh. M. (2010). Chem. Heterocycl. Compd, 46, 941-946.

Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525–2530.

- Koči, J., Klimešová, V., Waisser, K., Kaustová, J., Dahse, H. M. & Möllmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275–3278.
- Kubo, K., Inada, Y., Koharo, Y., Sugiura, Y., Ojima, M., Itoh, K., Furukawa, Y., Nashikawa, K. & Naka, T. (1993a). J. Med. Chem. 36, 1772–1784.
- Kubo, K., Kohara, Y., Yoshimura, Y., Inada, Y., Shibouta, Y., Furukawa, Y., Kato, T., Nashikawa, K. & Naka, T. (1993b). J. Med. Chem. 36, 2343–2349.
- Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). *Chem. Pharm. Bull.* **48**, 1778–1781.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supporting information

Acta Cryst. (2011). E67, o3345–o3346 [https://doi.org/10.1107/S1600536811047957]

2-*n*-Butyl-6-chloro-1-(2,4-dimethylphenylsulfonyl)-1*H*-benzimidazole–2-*n*-butyl-5-chloro-1-(2,4-dimethylphenylsulfonyl)-1*H*-benzimidazole (0.759/0.241)

## K. B. Abdireymov, N. S. Mukhamedov, R. Ya. Okmanov, M. J. Ayimbetov and B. Tashkhodjaev

### S1. Comment

Benzimidazole (Koči *et al.*, 2002; Matsuno *et al.*, 2000; Garuti *et al.*, 1999) and 2-*n*-butylbenzimidazole (Kubo *et al.*, 1993*a*; 1993*b*) derivatives are important heterocyclic compounds which have attracted great attention due to their biological and pharmaceutical activities.

Reaction of 2-1*n*-butyl-5-chloro-1*H*-benzimidazole with 2,4-dimethylbenzenesulfonyl chloride in the presence of triethylamine results in a mixture of 1-(2,4-dimethylbenzenesulfonyl)-2-*n*-butyl-6-chloro-1*H*-benzimidazole and 1-(2,4-dimethylbenzenesulfonyl)-2-*n*-butyl-5-chloro-1*H*-benzimidazole, in the refined ratio of 0.759 (4):0.241 (4) (Abdireimov *et al.*, 2010). The structure of the received product is investigated by <sup>1</sup>H NMR and X-ray diffraction.

As a whole the molecule consists of three flat fragments: benzimidazole (N1/C2/N3/C3A–C7A), dimethylbenzene (C12–C19) and *n*-butyl (C8–C11) (r.m.s. deviations are 0.009, 0.024 and 0.003 Å, respectively). The angle between flat benzimidazole and dimethylbenzene fragment is 86.0 (1)°, and between benzimidazole and *n*-butyl is 4.4 (2)° (Fig. 1).

The crystal structure is stabilized by intermolecular C—H··· $\pi$  interactions observed between the atoms of two benzene rings of neighboring molecules with distance C4—H··· $Cg3^i = 3.665$  (2) Å [symmetry code: (i) 1 - *x*, 1 - *y*, 1 - *z*; *Cg*3 is centroid of the C12–C17 benzene ring]. Observable C—H··· $\pi$  interactions form centrosymmetric dimers, another weak intermolecular H-bond such as C19—H···O2 sew these dimers (Table 1).

### **S2. Experimental**

In the three-necked round-bottomed flask, supplied with a mechanical mixer, dropping funnel and backflow condenser, were placed 2.04 g (10 mmol) 2,4-dimethylbenzenesulfonyl chloride in 15 ml of acetone and was added a solution of 2.08 g (10 mmol) 2-1*n*-butyl-5-chloro-1*H*-benzimidazole and 1.01 g (10 mmol) triethylamine in 30 ml acetone by stirring and cooling. The reaction mixture was stirred at room temperature for 4 h. Afterwards acetone is evaporated. The residual product was washed with 100 ml of the water, obtained crystals were filtered and recrystallized from ethanol. 2.18 g (56%) mixed crystals of 1-(2,4-dimethylbenzenesulfonyl)-2-*n*-butyl-6-chloro-1*H*-benzimidazole (**B**), melting in the temperature range of 108–117°C were obtained.

Colorless crystals suitable for XRD have been received from ethanol at room temperature.

### **S3. Refinement**

The 10.4% decay correction was applied by using the programm *X-RED*. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH<sub>2</sub>; 0.96 Å for CH<sub>3</sub>; and 0.93 Å for C<sub>ar</sub>) and included in the refinement in a riding motion approximation with  $U_{iso}=1.2U_{eq}(C)$  [ $U_{iso}=1.5U_{eq}(C)$  for methyl H atoms].





Molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.

2-*n*-Butyl-6-chloro-1-(2,4-dimethylphenylsulfonyl)-1*H*- benzimidazole–2-*n*-butyl-5-chloro-1-(2,4-dimethylphenylsulfonyl)- 1*H*-benzimidazole (0.759/0.241)

Crystal data

| 0.7590.241C <sub>19</sub> H <sub>21</sub> ClN <sub>2</sub> O <sub>2</sub> S·0.2410.241C <sub>19</sub> H <sub>21</sub> ClN <sub>2</sub> O <sub>2</sub> S | Z = 2                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $M_r = 376.89$                                                                                                                                          | F(000) = 396                                              |
| Triclinic, $P\overline{1}$                                                                                                                              | $D_x = 1.344 \text{ Mg m}^{-3}$                           |
| Hall symbol: -P 1                                                                                                                                       | Melting point < 381(9) K                                  |
| a = 8.7340 (17) Å                                                                                                                                       | Cu K\alpha radiation, \lambda = 1.54184 \mathbf{A}        |
| b = 10.251 (2) Å                                                                                                                                        | Cell parameters from 13 reflections                       |
| c = 11.390 (2) Å                                                                                                                                        | $\theta = 10-20^{\circ}$                                  |
| a = 71.29 (3)°                                                                                                                                          | $\mu = 2.98 \text{ mm}^{-1}$                              |
| $\beta = 78.38$ (3)°                                                                                                                                    | T = 290  K                                                |
| $\gamma = 76.75$ (3)°                                                                                                                                   | Prizmatic, colorless                                      |
| V = 931.1 (3) Å <sup>3</sup>                                                                                                                            | $0.68 \times 0.45 \times 0.20 \text{ mm}$                 |
| Stoe Stadi-4 four-circle                                                                                                                                | 2722 measured reflections                                 |
| diffractometer                                                                                                                                          | 2714 independent reflections                              |
| Radiation source: fine-focus sealed tube                                                                                                                | 2460 reflections with $I > 2\sigma(I)$                    |
| Graphite monochromator                                                                                                                                  | $R_{int} = 0.000$                                         |
| Scan width ( $\omega$ ) = 1.56 – 1.80, scan ratio 2 $\theta$ : $\omega$ =                                                                               | $\theta_{max} = 60.0^{\circ}, \theta_{min} = 4.1^{\circ}$ |
| 1.00 I(Net) and sigma(I) calculated according to                                                                                                        | $h = -9 \rightarrow 9$                                    |
| Blessing (1987)                                                                                                                                         | $k = -10 \rightarrow 11$                                  |
| Absorption correction: $\psi$ scan                                                                                                                      | $l = 0 \rightarrow 12$                                    |
| ( <i>X-RED</i> ; Stoe & Cie, 1997)                                                                                                                      | 3 standard reflections every 60 min                       |
| $T_{min}$ = 0.250, $T_{max}$ = 0.551                                                                                                                    | intensity decay: 10.4%                                    |

Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                                                                                         |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                                                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.069$                                | H-atom parameters constrained                                                                                                 |
| $wR(F^2) = 0.191$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0919P)^2 + 1.1929P]$                                                                             |
| S = 1.12                                                       | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                |
| 2714 reflections                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                           |
| 240 parameters                                                 | $\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$                                                                       |
| 0 restraints                                                   | $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$                                                                    |
| Primary atom site location: structure-invariant direct methods | Extinction correction: SHELXL,<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Secondary atom site location: difference Fourier               | Extinction coefficient: 0.026 (3)                                                                                             |
| map                                                            |                                                                                                                               |

### Special details

**Experimental**. Empirical absorption correction using  $\psi$  Scan. Reflections used Mu \* R = 0.00 H K L,  $\theta$ ,  $\chi$ ,  $I_{min}/I_{max}$ : -1 -2 4 45.0 82.7 0.455

<sup>1</sup>**H NMR (400 MHz, CDCl-3~):** 1-(2,4-dimethylbenzenesulfonyl)-2-*n*-butyl-6- chloro-1*H*-benzimidazole (**A**). 7.97 (1*H*, d, J=2.1 Hz, H-7), 7.49 (1*H*, d, J=8.3 Hz, H-17), 7.49 (1*H*, d, J=8.5 Hz, H-4), 7.37 (2*H*, d, J=7.9 Hz, H-14, 16), 7.29 (1*H*, dd, J=2.0, J=8.5 H-5), 3.08 (2*H*, m, CH<sub>2</sub>-8), 2.34 (6*H*, s, CH<sub>3</sub>-18, 19), 1.73 (2*H*, m, CH<sub>2</sub>-9), 1.37 (2*H*, m, CH<sub>2</sub>-10), 0.89 (3*H*, t, J=7.3 Hz, CH<sub>3</sub>-11).

1-(2,4-dimethylbenzenesulfonyl)-2-*n*-butyl-5-chloro- 1*H*-benzimidazole (**B**). 7.95 (1*H*, d, J=8.7 Hz, H-7), 7.78 (1*H*, d, J=8.3 Hz, H-17), 7.52 (1*H*, d, J=2.0 Hz, H-4), 7.35 (2*H*, d, J=7.9 Hz, H-14, 16), 7.31 (1*H*, dd, J=2.0, J=8.5 H-6), 3.08 (2*H*, m, CH<sub>2</sub>-8), 2.34 (6*H*, s, CH<sub>3</sub>-18, 19), 1.73 (2*H*, m, CH<sub>2</sub>-9), 1.37 (2*H*, m, CH<sub>2</sub>-10), 0.90 (3*H*, t, J=7.5 Hz, CH<sub>3</sub>-11). **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) х Ζ v **S**1 0.0537(4)0.65554 (11) 0.25613 (12) 0.19565 (9) **O**1 0.2520(4)0.5625(3)0.0660(9)0.1267(3)0.0647 (9) 02 0.1230(4)0.7622(3)0.2077(3)N1 0.2783 (4) 0.5558 (3) 0.3424(3)0.0511 (8) N3 0.3767 (4) 0.3796(4)0.4993(3)0.0606 (10) C2 0.4310 (4) 0.3863(5)0.3785(4)0.0552(10)C3A 0.4705 (4) 0.5479 (4) 0.0552 (10) 0.2567(5)C4 0.1997 (6) 0.4606(5)0.6731(4)0.0688 (13) H4A 0.2428 0.3874 0.7370 0.083\* C5 0.0780(6) 0.5624(5)0.6986 (4) 0.0658 (12) H5A 0.079\* 0.0377 0.5584 0.7815 0.759(4)C6 0.0142(5)0.6701 (5) 0.6052(4)0.0604(11)H6A -0.06840.7372 0.6269 0.072\* 0.241(4)C7 0.0675 (5) 0.6835 (5) 0.4791 (4) 0.0573 (11) 0.0226 0.7564 0.4158 0.069\* H7A

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C7A  | 0.1909 (5)  | 0.5817 (4)   | 0.4545 (4)   | 0.0498 (10) |           |
|------|-------------|--------------|--------------|-------------|-----------|
| C8   | 0.4990 (5)  | 0.3662 (5)   | 0.2876 (4)   | 0.0606 (11) |           |
| H8A  | 0.5704      | 0.4300       | 0.2385       | 0.073*      |           |
| H8B  | 0.4397      | 0.3519       | 0.2306       | 0.073*      |           |
| C9   | 0.5963 (6)  | 0.2267 (5)   | 0.3510 (4)   | 0.0640 (12) |           |
| H9A  | 0.6586      | 0.2409       | 0.4061       | 0.077*      |           |
| H9B  | 0.5255      | 0.1631       | 0.4016       | 0.077*      |           |
| C10  | 0.7063 (7)  | 0.1625 (5)   | 0.2552 (5)   | 0.0754 (14) |           |
| H10A | 0.7774      | 0.2261       | 0.2052       | 0.090*      |           |
| H10B | 0.6439      | 0.1496       | 0.1997       | 0.090*      |           |
| C11  | 0.8036 (7)  | 0.0226 (6)   | 0.3163 (6)   | 0.0918 (18) |           |
| H11A | 0.8725      | -0.0141      | 0.2528       | 0.138*      |           |
| H11B | 0.7337      | -0.0417      | 0.3638       | 0.138*      |           |
| H11C | 0.8662      | 0.0349       | 0.3710       | 0.138*      |           |
| C12  | 0.4289 (5)  | 0.7259 (4)   | 0.1379 (4)   | 0.0498 (10) |           |
| C13  | 0.4696 (5)  | 0.8270 (4)   | 0.1800 (4)   | 0.0553 (11) |           |
| C14  | 0.6081 (6)  | 0.8746 (4)   | 0.1239 (4)   | 0.0603 (11) |           |
| H14A | 0.6356      | 0.9413       | 0.1512       | 0.072*      |           |
| C15  | 0.7100 (5)  | 0.8296 (5)   | 0.0291 (4)   | 0.0615 (11) |           |
| C16  | 0.6664 (6)  | 0.7320 (5)   | -0.0118 (4)  | 0.0657 (12) |           |
| H16A | 0.7317      | 0.6998       | -0.0757      | 0.079*      |           |
| C17  | 0.5288 (6)  | 0.6823 (5)   | 0.0405 (4)   | 0.0609 (11) |           |
| H17A | 0.5009      | 0.6178       | 0.0105       | 0.073*      |           |
| C18  | 0.3722 (6)  | 0.8773 (5)   | 0.2876 (5)   | 0.0702 (13) |           |
| H18A | 0.4075      | 0.9581       | 0.2906       | 0.105*      |           |
| H18B | 0.3850      | 0.8043       | 0.3646       | 0.105*      |           |
| H18C | 0.2623      | 0.9014       | 0.2761       | 0.105*      |           |
| C19  | 0.8634 (6)  | 0.8809 (7)   | -0.0233 (6)  | 0.0881 (16) |           |
| H19A | 0.9019      | 0.8631       | -0.1029      | 0.132*      |           |
| H19B | 0.9399      | 0.8329       | 0.0331       | 0.132*      |           |
| H19C | 0.8471      | 0.9796       | -0.0340      | 0.132*      |           |
| C11  | -0.1412 (2) | 0.79798 (18) | 0.64266 (16) | 0.0782 (7)  | 0.759 (4) |
| Cl1′ | 0.0475 (7)  | 0.5668 (7)   | 0.8540 (5)   | 0.081 (2)   | 0.241 (4) |
|      |             |              |              |             |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0575 (7)  | 0.0540 (7)  | 0.0473 (6)  | -0.0039 (5)  | -0.0118 (5)  | -0.0129 (5)  |
| 01  | 0.077 (2)   | 0.073 (2)   | 0.0594 (18) | -0.0196 (16) | -0.0128 (15) | -0.0283 (16) |
| O2  | 0.0621 (18) | 0.0621 (18) | 0.0554 (18) | 0.0096 (14)  | -0.0143 (14) | -0.0076 (14) |
| N1  | 0.056 (2)   | 0.0460 (18) | 0.0433 (18) | -0.0003 (15) | -0.0038 (15) | -0.0104 (15) |
| N3  | 0.068 (2)   | 0.053 (2)   | 0.054 (2)   | 0.0043 (17)  | -0.0096 (17) | -0.0153 (17) |
| C2  | 0.056 (2)   | 0.049 (2)   | 0.059 (3)   | 0.0009 (19)  | -0.0074 (19) | -0.020(2)    |
| C3A | 0.058 (2)   | 0.050(2)    | 0.054 (2)   | 0.0005 (19)  | -0.0065 (19) | -0.0173 (19) |
| C4  | 0.082 (3)   | 0.066 (3)   | 0.049 (3)   | 0.000 (2)    | -0.008 (2)   | -0.013 (2)   |
| C5  | 0.073 (3)   | 0.070 (3)   | 0.049 (2)   | -0.009(2)    | 0.002 (2)    | -0.019 (2)   |
| C6  | 0.054 (2)   | 0.062 (3)   | 0.063 (3)   | -0.006(2)    | 0.001 (2)    | -0.025 (2)   |
| C7  | 0.053 (2)   | 0.056 (2)   | 0.056 (3)   | 0.0005 (19)  | -0.0031 (19) | -0.016 (2)   |
|     |             |             |             |              |              |              |

# supporting information

| C7A  | 0.051 (2)   | 0.049 (2)   | 0.046 (2)   | -0.0048 (18) | -0.0043 (17) | -0.0128 (18) |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C8   | 0.063 (3)   | 0.058 (3)   | 0.058 (3)   | 0.003 (2)    | -0.004 (2)   | -0.024 (2)   |
| C9   | 0.063 (3)   | 0.060 (3)   | 0.065 (3)   | 0.006 (2)    | -0.008 (2)   | -0.025 (2)   |
| C10  | 0.084 (3)   | 0.058 (3)   | 0.078 (3)   | 0.011 (2)    | -0.008 (3)   | -0.028 (3)   |
| C11  | 0.082 (4)   | 0.075 (4)   | 0.112 (5)   | 0.023 (3)    | -0.021 (3)   | -0.041 (3)   |
| C12  | 0.057 (2)   | 0.045 (2)   | 0.045 (2)   | -0.0020 (18) | -0.0097 (18) | -0.0132 (17) |
| C13  | 0.067 (3)   | 0.045 (2)   | 0.053 (2)   | 0.001 (2)    | -0.015 (2)   | -0.0169 (19) |
| C14  | 0.071 (3)   | 0.049 (2)   | 0.063 (3)   | -0.011 (2)   | -0.021 (2)   | -0.011 (2)   |
| C15  | 0.063 (3)   | 0.062 (3)   | 0.053 (2)   | -0.008(2)    | -0.013 (2)   | -0.006 (2)   |
| C16  | 0.071 (3)   | 0.068 (3)   | 0.054 (3)   | -0.013 (2)   | 0.002 (2)    | -0.016 (2)   |
| C17  | 0.076 (3)   | 0.057 (3)   | 0.051 (2)   | -0.010 (2)   | -0.004 (2)   | -0.021 (2)   |
| C18  | 0.085 (3)   | 0.065 (3)   | 0.065 (3)   | -0.004 (2)   | -0.009 (2)   | -0.033 (2)   |
| C19  | 0.076 (4)   | 0.096 (4)   | 0.086 (4)   | -0.026 (3)   | -0.013 (3)   | -0.010 (3)   |
| Cl1  | 0.0714 (11) | 0.0803 (12) | 0.0733 (11) | 0.0080 (8)   | 0.0057 (8)   | -0.0333 (9)  |
| Cl1′ | 0.077 (4)   | 0.100 (4)   | 0.069 (3)   | -0.018 (3)   | 0.010 (3)    | -0.039 (3)   |
|      |             |             |             |              |              |              |

Geometric parameters (Å, °)

| S1—O2     | 1.419 (3)   | С9—Н9А      | 0.9700    |
|-----------|-------------|-------------|-----------|
| S1—O1     | 1.427 (3)   | С9—Н9В      | 0.9700    |
| S1—N1     | 1.679 (3)   | C10—C11     | 1.517 (7) |
| S1—C12    | 1.739 (4)   | C10—H10A    | 0.9700    |
| N1—C2     | 1.401 (5)   | C10—H10B    | 0.9700    |
| N1—C7A    | 1.420 (5)   | C11—H11A    | 0.9600    |
| N3—C2     | 1.298 (6)   | C11—H11B    | 0.9600    |
| N3—C3A    | 1.387 (5)   | C11—H11C    | 0.9600    |
| C2—C8     | 1.488 (6)   | C12—C17     | 1.394 (6) |
| C3A—C7A   | 1.389 (6)   | C12—C13     | 1.410 (6) |
| C3A—C4    | 1.392 (6)   | C13—C14     | 1.366 (6) |
| C4—C5     | 1.366 (7)   | C13—C18     | 1.508 (6) |
| C4—H4A    | 0.9300      | C14—C15     | 1.383 (7) |
| C5—C6     | 1.365 (7)   | C14—H14A    | 0.9300    |
| C5—Cl1′   | 1.750 (7)   | C15—C16     | 1.382 (7) |
| С5—Н5А    | 0.9300      | C15—C19     | 1.493 (7) |
| C6—C7     | 1.390 (6)   | C16—C17     | 1.362 (7) |
| C6—C11    | 1.747 (5)   | C16—H16A    | 0.9300    |
| С6—Н6А    | 0.9300      | C17—H17A    | 0.9300    |
| C7—C7A    | 1.371 (6)   | C18—H18A    | 0.9600    |
| С7—Н7А    | 0.9300      | C18—H18B    | 0.9600    |
| C8—C9     | 1.522 (6)   | C18—H18C    | 0.9600    |
| C8—H8A    | 0.9700      | C19—H19A    | 0.9600    |
| C8—H8B    | 0.9700      | C19—H19B    | 0.9600    |
| C9—C10    | 1.515 (6)   | С19—Н19С    | 0.9600    |
|           |             |             |           |
| O2—S1—O1  | 119.5 (2)   | С8—С9—Н9В   | 109.4     |
| O2—S1—N1  | 105.51 (18) | Н9А—С9—Н9В  | 108.0     |
| O1—S1—N1  | 106.36 (18) | C9—C10—C11  | 112.0 (5) |
| O2—S1—C12 | 110.7 (2)   | C9—C10—H10A | 109.2     |

| O1—S1—C12                                                                                     | 108.22 (19)           | C11—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.2                 |
|-----------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| N1—S1—C12                                                                                     | 105.50 (18)           | C9-C10-H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.2                 |
| C2—N1—C7A                                                                                     | 106.4 (3)             | C11—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.2                 |
| C2—N1—S1                                                                                      | 126.9 (3)             | H10A—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.9                 |
| C7A—N1—S1                                                                                     | 126.7 (3)             | C10-C11-H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                 |
| C2—N3—C3A                                                                                     | 105.6 (3)             | C10—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                 |
| N3—C2—N1                                                                                      | 112.4 (4)             | H11A—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| N3—C2—C8                                                                                      | 124.4 (4)             | C10—C11—H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                 |
| N1—C2—C8                                                                                      | 123.2 (4)             | H11A—C11—H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| N3—C3A—C7A                                                                                    | 112.1 (4)             | H11B—C11—H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| N3-C3A-C4                                                                                     | 128.0 (4)             | C17—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.9 (4)             |
| C7A—C3A—C4                                                                                    | 119.9 (4)             | C17 - C12 - S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.9 (3)             |
| C5-C4-C3A                                                                                     | 117.5 (4)             | C13 - C12 - S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.2(3)              |
| C5—C4—H4A                                                                                     | 121.3                 | C14-C13-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.5 (4)             |
| C3A - C4 - H4A                                                                                | 121.3                 | C14-C13-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6 (4)             |
| C6-C5-C4                                                                                      | 121.5                 | C12 - C13 - C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122 8 (4)             |
| C6-C5-C11'                                                                                    | 121.3(1)<br>122.7(4)  | C13 - C14 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122.0(1)<br>124 2 (4) |
| C4-C5-C11'                                                                                    | 122.7(4)<br>114.0(4)  | $C_{13}$ $C_{14}$ $H_{14A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.9                 |
| C6-C5-H5A                                                                                     | 119.2                 | C15 - C14 - H14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.9                 |
| $C_{4}$ $C_{5}$ $H_{5A}$                                                                      | 110.2                 | $C_{15} = C_{14} = M_{4X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.3(A)              |
| $C_{4}$                                                                                       | 119.2                 | $C_{10} = C_{13} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.5(4)<br>121.5(5)  |
| $C_{5} = C_{6} = C_{1}$                                                                       | 122.0(4)<br>110.8 (4) | $C_{10} = C_{13} = C_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.3(5)<br>121.2(5)  |
| $C_{7}$ $C_{6}$ $C_{11}$                                                                      | 117.0(4)<br>117.4(4)  | $C_{17} = C_{15} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.2(3)<br>120.8(4)  |
| $C_{2} = C_{2} = C_{1}$                                                                       | 117.4 (4)             | $C_{17} = C_{10} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.8 (4)             |
| $C_{2}$                                                                                       | 118.6                 | $C_{1} = C_{10} = H_{16A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.0                 |
| $C7 \land C7 \land C6$                                                                        | 116.0<br>115.2(4)     | $C_{15} = C_{10} = 110 \text{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.0<br>121.4(4)     |
| C7A C7 H7A                                                                                    | 113.2 (4)             | $C_{10} - C_{17} - C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.4 (4)             |
| C/A - C/- H/A                                                                                 | 122.4                 | $C_{10} - C_{17} - H_{17A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5                 |
| $C_0 = C_1 = \Pi/A$                                                                           | 122.4                 | $C_{12}$ $C$ | 119.5                 |
| $C_{A} = C_{A} = C_{A}$                                                                       | 123.0(4)<br>123.5(4)  | $C_{13} = C_{10} = H_{10} R_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                 |
| $C_{A} C_{A} N_{A}$                                                                           | 133.3(4)<br>103.5(2)  | $\begin{array}{c} 13 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                 |
| $C_{3A} - C_{A} - N_{1}$                                                                      | 105.5(3)<br>112.6(4)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 |
| $C_2 = C_8 = U_8 \Lambda$                                                                     | 112.0 (4)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                 |
| $C_2 = C_0 = H_0 A$                                                                           | 109.1                 | $H_{18} = C_{18} = H_{18} C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                 |
| $C_2 = C_0 = H_0 R_0$                                                                         | 109.1                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                 |
| $C_2 = C_0 = H_0 B$                                                                           | 109.1                 | С15—С19—Н19А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                 |
| $C_{2}$ $C_{2}$ $H_{2}B$                                                                      | 109.1                 | U104 С10 Ц10Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| $H \circ A = C \circ B \circ C \circ$ | 107.8                 | ПІ9А—СІ9—ПІ9В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| C10 - C9 - C8                                                                                 | 111.0 (4)             | U104 С10 Ц10С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| $C_{10} - C_{9} - H_{9}A$                                                                     | 109.4                 | HI9A—C19—HI9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| $C_{8}$ $C_{9}$ $H_{9}$ $H_{9}$ $H_{9}$                                                       | 109.4                 | H19B—C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                 |
| С10—С9—Н9В                                                                                    | 109.4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 02 - S1 - N1 - C2                                                                             | 174 6 (3)             | $C4 - C3 \Delta - C7 \Delta - N1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180.0 (4)             |
| 01 - 81 - 11 - 02                                                                             | 467(4)                | $C_{-}N_{-}C_{-}N_{-}C_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1775(5)              |
| C12 S1 N1 C2                                                                                  | -68 1 (4)             | $S1_N1_C7A_C7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25(7)                 |
| 02 - 51 - 101 - 02                                                                            | -5 A (A)              | $C_{2}N_{1}C_{2} C_{2}N_{1}C_{2}C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3(7)                |
| 01  S1 N1 C7A                                                                                 | -133 3 (3)            | $C_2 = 101 = C_7 A = C_3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -170 1 (2)            |
| $C_{12} = S_1 = N_1 = C/A$                                                                    | 133.3(3)              | $N_{2} = C_{2} = C_{2} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/7.1(3)              |
| $C12 \rightarrow 31 \rightarrow 101 \rightarrow C/A$                                          | 111.9 (4)             | NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0(/)                |

| C3A—N3—C2—N1   | 1.0 (5)    | N1-C2-C8-C9     | -176.6 (4) |
|----------------|------------|-----------------|------------|
| C3A—N3—C2—C8   | -179.2 (4) | C2-C8-C9-C10    | 178.5 (4)  |
| C7A—N1—C2—N3   | -1.2 (5)   | C8—C9—C10—C11   | -179.4 (5) |
| S1—N1—C2—N3    | 178.8 (3)  | O2—S1—C12—C17   | -133.0 (3) |
| C7A—N1—C2—C8   | 179.0 (4)  | O1—S1—C12—C17   | -0.2 (4)   |
| S1—N1—C2—C8    | -1.0 (6)   | N1—S1—C12—C17   | 113.3 (3)  |
| C2—N3—C3A—C7A  | -0.4 (5)   | O2—S1—C12—C13   | 44.3 (4)   |
| C2—N3—C3A—C4   | 179.3 (5)  | O1—S1—C12—C13   | 177.1 (3)  |
| N3—C3A—C4—C5   | -179.1 (5) | N1—S1—C12—C13   | -69.4 (4)  |
| C7A—C3A—C4—C5  | 0.6 (7)    | C17—C12—C13—C14 | -1.5 (6)   |
| C3A—C4—C5—C6   | 0.0 (8)    | S1-C12-C13-C14  | -178.7 (3) |
| C3A—C4—C5—Cl1′ | -164.9 (4) | C17—C12—C13—C18 | -177.9 (4) |
| C4—C5—C6—C7    | 0.1 (8)    | S1-C12-C13-C18  | 4.9 (6)    |
| Cl1′—C5—C6—C7  | 163.8 (4)  | C12—C13—C14—C15 | 0.0 (7)    |
| C4—C5—C6—Cl1   | -179.9 (4) | C18—C13—C14—C15 | 176.5 (4)  |
| Cl1′—C5—C6—Cl1 | -16.3 (7)  | C13—C14—C15—C16 | 1.0 (7)    |
| C5—C6—C7—C7A   | -0.9 (7)   | C13—C14—C15—C19 | -176.8 (4) |
| Cl1—C6—C7—C7A  | 179.2 (3)  | C14—C15—C16—C17 | -0.4 (7)   |
| C6—C7—C7A—C3A  | 1.5 (6)    | C19—C15—C16—C17 | 177.4 (5)  |
| C6—C7—C7A—N1   | 179.6 (4)  | C15—C16—C17—C12 | -1.1 (7)   |
| N3—C3A—C7A—C7  | 178.3 (4)  | C13—C12—C17—C16 | 2.1 (7)    |
| C4—C3A—C7A—C7  | -1.4 (7)   | S1—C12—C17—C16  | 179.5 (4)  |
| N3—C3A—C7A—N1  | -0.3 (5)   |                 |            |

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

| D—H···A                              | D—H  | H···A | D···A     | D—H···A |
|--------------------------------------|------|-------|-----------|---------|
| C19—H19 <i>B</i> ····O2 <sup>i</sup> | 0.96 | 2.62  | 3.554 (7) | 165     |
| C4—H4 $A$ ···Cg3 <sup>ii</sup>       | 0.93 | 2.76  | 3.665 (8) | 163     |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, –*y*+1, –*z*+1.