organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(2*R*,6*S*)-4-(5-amino-3-carboxy-1cyclopropyl-6,8-difluoro-4-oxo-1,4dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium] sulfate pentahydrate

Tao Li,* Lin Yang, Yuan Cheng Wang and Qiang Lian

School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: Itdl@sina.com

Received 19 October 2011; accepted 9 November 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.039; w*R* factor = 0.086; data-to-parameter ratio = 10.7.

The title compound, $C_{19}H_{23}F_2N_4O_3^{+}0.5SO_4^{-2}\cdot 2.5H_2O$, an antibacterial fluoroquinolone, crystallized as a racemic twin (major twin component = 0.633) in the chiral space group *P*1. The asymmetric unit contains two sparfloxacinium cations, one sulfate anion and five molecules of water of solvation. The bond lengths and angles of both cations are almost identical. The quinoline ring systems in the cations are essentially planar, the mean deviations from the best plane being 0.045 (2) and 0.054 (2) Å and make $\pi - \pi$ interactions with each other [centroid–centroid distances of 3.692 (4) Å and 3.744 (4) Å]. The crystal structure features intermolecular $O-H\cdots O$, $O-H\cdots S$, $N^+-H\cdots O$, $N^+-H\cdots S$ and $N-H\cdots O$ hydrogen bonds together with intramolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds. As a result, a three-dimensional supramolecular structure is observed.

Related literature

For the biological activity of sparfloxacin compounds, see: Truffot-Pernot *et al.* (1993). For structures containing sparfloxacin, see: Sivalakshmidevi *et al.* (2000); Shingnapurkar *et al.* (2007); Kalliopi *et al.* (2000).

Experimental

Crystal data

 $2C_{19}H_{23}F_{2}N_{4}O_{3}^{+} \cdot SO_{4}^{2-} \cdot 5H_{2}O$ $M_{r} = 972.97$ Triclinic, *P*1 a = 7.1961 (3) Å b = 9.6892 (4) Å c = 15.6136 (5) Å $\alpha = 84.760 (6)^{\circ}$ $\beta = 83.045 (5)^{\circ}$

Data collection

Rigaku Mercury CCD/AFC diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2007) $T_{\rm min} = 0.966, T_{\rm max} = 0.966$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.086$ S = 0.976614 reflections 620 parameters $V = 1076.03 (7) Å^{3}$ Z = 1Mo K\alpha radiation $\mu = 0.17 \text{ mm}^{-1}$ T = 173 K $0.20 \times 0.20 \times 0.20 \text{ mm}$

 $\gamma = 88.619 \ (5)^{\circ}$

8268 measured reflections 6614 independent reflections 5665 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$

3 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.28$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H5···O8 ⁱ	0.92	1.81	2.724 (3)	170
$N1-H5\cdots S1^{i}$	0.92	2.99	3.860 (3)	158
$N1 - H13 \cdots O10^{ii}$	0.84	2.12	2.799 (3)	138
$N1 - H13 \cdots O12^{ii}$	0.84	2.60	3.257 (4)	135
$N3-H2\cdots O3$	0.86	1.97	2.670 (3)	138
N3-H10···O11	0.89	2.07	2.965 (3)	174
$N5-H8\cdots O12^{iii}$	0.90	1.80	2.687 (3)	169
$N5-H12\cdots O8$	0.90	1.83	2.722 (3)	174
$N5-H12 \cdot \cdot \cdot S1$	0.90	2.80	3.628 (3)	154
$N7-H1\cdots O6$	0.90	2.00	2.673 (3)	131
N7-H4···O15	0.93	2.10	2.997 (3)	162
O2−H6···O3	0.88	1.70	2.523 (3)	156
O5−H9···O6	0.96	1.64	2.543 (3)	156
$O11-H18\cdots O13^{iv}$	0.86	2.06	2.918 (3)	177
$O11 - H14 \cdots O10^{iv}$	0.82	2.04	2.846 (3)	169
$O12 - H12D \cdot \cdot \cdot O7$	0.93	1.81	2.680 (3)	155
$O12-H12D \cdot \cdot \cdot S1$	0.93	2.68	3.479 (2)	145
O12−H12C···O13	0.94	1.92	2.748 (3)	146
O13−H13C···O14	0.84	1.90	2.725 (3)	169
$O13-H13D \cdot \cdot \cdot O4^{v}$	0.90	1.95	2.774 (3)	153
O14−H14C···O1	1.00	1.89	2.834 (3)	157
$O14-H14D\cdots O9^{vi}$	0.89	1.83	2.715 (3)	170
$O15-H15A\cdots O7^{vii}$	0.91	1.85	2.748 (3)	168
$O15-H15A\cdots S1^{vii}$	0.91	2.87	3.680 (2)	150
$O15-H15B\cdots O1^{iii}$	0.89	2.29	2.979 (3)	134

Symmetry codes: (i) x, y + 1, z + 1; (ii) x - 1, y + 1, z + 1; (iii) x - 1, y, z; (iv) x, y, z + 1; (v) x + 1, y, z - 1; (vi) x, y + 1, z; (vii) x - 1, y + 1, z.

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The work was supported by a grant from the National Science Foundation of China (31170520).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2333).

References

Kalliopi, C. S., Catherine, P., Raptopoulou, B., Vassilis, P., Dimitris, P. K. & George, P. (2000). Polyhedron, 28, 3265–3271. Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shingnapurkar, D., Butcher, R., Afrasiabi, Z., Sinn, E., Ahmed, F., Sarkar, F. & Padhye, S. (2007). *Inorg. Chem. Commun.* **10**, 459–462.
- Sivalakshmidevi, A., Vyas, K. & Om Reddy, G. (2000). Acta Cryst. C56, e115– e116.
- Truffot-Pernot, C. L., Grosset, M. & Ji, B. (1993). Antimicrob. Agents Chemother. 37, 407–413.

supporting information

Acta Cryst. (2011). E67, o3366-o3367 [https://doi.org/10.1107/S160053681104757X]

Bis[(2*R*,6*S*)-4-(5-amino-3-carboxy-1-cyclopropyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium] sulfate pentahydrate

Tao Li, Lin Yang, Yuan Cheng Wang and Qiang Lian

S1. Comment

Sparfloxacin belongs to the fourth-generation fluorinated quinolone antimicrobial agents, which have been widely used in the treatment of infections (Truffot-Pernot *et al.*, 1993). Generally the poor solubility of a drug will decrease it's bioavailability. Since sparfloxacin shows a solubility-limited bioavailability, a challenging task in the product development is to improve its solubility. Indeed, a widely accepted approach to overcome poor solubility or inadequate material properties of sparfloxacin is the preparation of the respective salts with protonated sparfloxacin cations. Several structures containing sparfloxacin have been reported, including several salts and metal complexes (Sivalakshmidevi *et al.*, 2000; Shingnapurkar *et al.*, 2007; Kalliopi *et al.*, 2000). Here we report the crystal and molecular structure of sparfloxacin hemisulfate 2.5-hydrate.

The title compound crystallizes in the triclinic space group P1 with two sparfloxacinium cations, one sulfate anion and five hydrate molecules in the asymmetric unit. (Fig. 1). The bond distances and angles are in good agreement with those in *cis*-5-amino-1-cyclopropyl-7- (3,5-dimethylpiperazin-1-yl)-6,8- difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid trihydrate (Sivalakshmidevi *et al.*, 2000). The carboxyl groups in both cations are coplanar with the respective quinolyl moiety, while the planes composed of the cyclopropyl groups are inclined at 70.1 (1)° and 71.9 (1)° with respect to the quinolyl rings. The C—O and C=O bond average distances of the carboxylic acid groups of sparfloxacin molecule are of 1.323 (4) Å and 1.219 (4) Å, respectively. The piperazinium ring adopts a chair conformation. Crystal packing is stabilized by π - π stacking interactions of quinoline rings, in which the N4 ring (N4/C2—C10) stacks with the N8 ring (N8/C21—C29) showing centroid-centroid separations of 3.692 (4) Å and 3.744 (4) Å. Due to the presence of a lot of potential hydrogen bond donor and acceptor sites, numerous intramolecular and intermolecular hydrogen bonds are observed in the crystal structure. (Table 1, Fig. 2)

S2. Experimental

In an attempt to synthesize a vanadium complex a mixture of sparfloxacin (0.4 mmol, 157 mg), vanadyl sulfate hydrate (0.2 mmol, 36 mg) and water (30 ml) was heated to reflux at 100 ° for 4 h. The resulting green crystals were collected through filtration. Anal. calc. for $C_{38}H_{56}F_4N_8O_{15}S$: C, 46.91; H, 5.80; N,11.52; O, 24.67%; Found: C, 46.72; H, 5.83; N,11.51; O, 24.63%. IR (KBr pellet) [cm⁻¹]: 3418(*w*), 1715(*m*), 1633(*vs*), 1590(*w*), 1515(*m*), 1439(*vs*), 1384(*w*), 1300(*m*), 1320(*m*), 1112(*m*), 1030(*w*), 960(*w*), 900(*w*), 870(*w*).

S3. Refinement

H atoms were were located in difference maps and were refined using a riding model with bond lengths C—H = 0.95– 1.00 Å, N—H = 0.84–0.93 Å and O—H = 0.82–1.00 Å). U_{iso} (H) values were fixed at $1.5U_{eq}$ of the parent atom for methyl H atoms and $1.2U_{eq}$ of the parent atom for all other cases. The highest electron-density peak is situated 0.61 Å from C21

and the deepest hole 0.69 Å from S1.

Figure 1

Molecular structure of one sparfloxacinium cation, sulfate and water molecules, displacement ellipsoids are drawn at the 30% probability level (the second cation was omitted for clarity).

Intramolecular and intermoleclar hydrogen bonds (dashed lines) in the structure of the title compound.

Bis[(2*R*,6*S*)-4-(5-amino-3-carboxy-1-cyclopropyl-6,8-difluoro- 4-oxo-1,4-dihydroquinolin-7-yl)-2,6-dimethylpiperazin-1-ium] sulfate pentahydrate

<i>a</i> = 7.1961 (3) Å
b = 9.6892 (4) Å
<i>c</i> = 15.6136 (5) Å
$\alpha = 84.760~(6)^{\circ}$

Cell parameters from 3371 reflections

 $\theta = 2.1 - 27.5^{\circ}$

 $\mu = 0.17 \text{ mm}^{-1}$

T = 173 K

Prism, green

 $0.20 \times 0.20 \times 0.20$ mm

 $\beta = 83.045 (5)^{\circ}$ $\gamma = 88.619 (5)^{\circ}$ $V = 1076.03 (7) Å^{3}$ Z = 1 F(000) = 512 $D_{\rm x} = 1.501 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Rigaku Mercury CCD/AFC	8268 measured reflections
diffractometer	6614 independent reflections
Radiation source: fine-focus sealed tube	5665 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(CrystalClear; Rigaku, 2007)	$k = -11 \rightarrow 11$
$T_{\min} = 0.966, \ T_{\max} = 0.966$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 0.97	H-atom parameters constrained
6614 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2]$
620 parameters	where $P = (F_o^2 + 2F_c^2)/3$
3 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional of	atomic	coordinates	and is	sotropi	c or e	quivalent	isotrop	oic dis	placement	parameters	$(Å^2)$)
						1					\ <i>/</i>	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.61237 (10)	0.18748 (8)	0.24069 (5)	0.01658 (17)	
F1	0.2557 (2)	1.11521 (17)	0.86005 (11)	0.0187 (4)	
F3	-0.0073 (2)	0.84613 (17)	0.47689 (10)	0.0228 (4)	
F2	0.4920 (2)	0.74197 (18)	1.03412 (11)	0.0229 (4)	
F4	0.2141 (2)	0.46692 (17)	0.65128 (10)	0.0189 (4)	
01	0.5379 (3)	0.7840 (2)	0.48993 (13)	0.0236 (5)	
02	0.6093 (3)	0.5909 (2)	0.56733 (14)	0.0221 (5)	
03	0.5740 (3)	0.5853 (2)	0.73035 (13)	0.0186 (5)	
O4	-0.0362 (3)	0.7957 (2)	1.02049 (13)	0.0226 (5)	
05	-0.1285 (3)	0.9874 (2)	0.94714 (14)	0.0232 (5)	

O6	-0.1107 (3)	0.9932 (2)	0.78319(13)	0.0189 (5)
07	0.6739 (3)	0.2460 (2)	0.31751 (12)	0.0225 (5)
08	0.4349 (3)	0.2602 (2)	0.22288 (13)	0.0199 (5)
09	0.5785 (3)	0.0393 (2)	0.26000 (15)	0.0293 (5)
O10	0.7536 (3)	0.2164 (2)	0.16511 (12)	0.0214 (5)
O11	0.7052 (3)	0.4663 (2)	1.05899 (14)	0.0248 (5)
O12	0.9648 (3)	0.4140 (3)	0.26693 (15)	0.0333 (6)
013	0.8398 (3)	0.6479 (2)	0.17674 (14)	0.0280 (5)
O14	0.7095 (3)	0.7864 (2)	0.31659 (14)	0.0289 (5)
015	-0.3039(3)	1.0681 (2)	0.46352 (13)	0.0251 (5)
N1	0.1422 (4)	1.1751 (3)	1.14629 (16)	0.0162 (6)
N2	0.3324 (4)	1.0124 (3)	1.02055 (16)	0.0184 (6)
N3	0.5454 (4)	0.5882 (3)	0.90227 (16)	0.0189 (6)
N4	0.4051 (3)	0.9932(2)	0.70917 (15)	0.0137 (5)
N5	0.2724(3)	0.4163(2)	0.34861 (15)	0.0168 (6)
N6	0.1588 (4)	0.5747 (3)	0.48944 (15)	0.0171 (6)
N7	-0.0781(4)	0.9943(3)	0.61074 (16)	0.0185 (6)
N8	0.0567(3)	0.5850 (2)	0.80159 (15)	0.0144 (6)
C1	0.5499(4)	0.7211(3)	0.5606 (2)	0.0173(7)
C2	0.5003(4)	0.7852(3)	0.64338(19)	0.0151(7)
C3	0.4458(4)	0.9225(3)	0.63933(19)	0.0159(7)
Н3	0.4365	0.9697	0 5839	0.019*
C4	0.4118 (4)	0.9270(3)	0.79258 (18)	0.0132 (7)
C5	0 3558 (4)	0.9936(3)	0.86610 (19)	0.0131 (6)
C6	0.3824(4)	0.9379(3)	0.95065 (19)	0.0131(0) 0.0149(7)
C7	0.4522(4)	0.8036(3)	0.95596 (19)	0.0168(7)
C8	0 4906 (4)	0.7221(3)	0.88655 (19)	0.0151(7)
C9	0.4738 (4)	0.7862(3)	0.80152 (19)	0.0135 (6)
C10	0.5200 (4)	0.7110(3)	0.72568 (19)	0.0138 (6)
C11	0.3807(4)	1.1442 (3)	0.69580 (19)	0.0152(7)
H11	0 2495	1 1813	0 7038	0.018*
C12	0.5164(5)	1 2229 (3)	0.6292.(2)	0.0210(7)
H12A	0.6141	1.1691	0.5958	0.025*
H12B	0.4689	1.3061	0.5966	0.025*
C13	0.5295 (4)	1.2297 (3)	0.7241 (2)	0.0182 (7)
H13A	0.6352	1.1802	0.7489	0.022*
H13B	0.4901	1.3171	0.7496	0.022*
C14	0.3684(4)	1.1602 (3)	1.01852 (19)	0.0174(7)
H14A	0.4069	1.1983	0.9581	0.021*
H14B	0.4716	1.1747	1.0532	0.021*
C15	0.1925 (4)	1.2349 (3)	1.05516 (18)	0.0167(7)
H15	0.0886	1.2168	1.0207	0.020*
C16	0.1175 (4)	1.0209 (3)	1.15505 (19)	0.0176(7)
H16	0.0038	0.9991	1.1280	0.021*
C17	0.2866 (4)	0.9490 (3)	1.10943 (18)	0.0173 (7)
H17A	0.3953	0.9559	1.1420	0.021*
H17B	0.2596	0.8495	1.1081	0.021*
C18	0.0877 (4)	0.9714 (3)	1.25073 (19)	0.0195 (7)
-				

H18A	0.2003	0.9892	1.2774	0.029*
H18B	0.0628	0.8718	1.2575	0.029*
H18C	-0.0193	1.0213	1.2790	0.029*
C19	0.2163 (4)	1.3911 (3)	1.0537 (2)	0.0201 (7)
H19A	0.1000	1.4329	1.0796	0.030*
H19B	0.2453	1.4308	0.9936	0.030*
H19C	0.3188	1.4100	1.0867	0.030*
C20	-0.0654 (4)	0.8576 (3)	0.9520(2)	0.0175 (7)
C21	-0.0290 (4)	0.7921 (3)	0.86875 (19)	0.0147 (7)
C22	0.0190 (4)	0.6558 (3)	0.87196 (19)	0.0154 (7)
H22	0.0264	0.6074	0.9272	0.018*
C23	0.0566 (4)	0.6546 (3)	0.71849 (19)	0.0134 (7)
C24	0.1170 (4)	0.5900 (3)	0.64409 (19)	0.0143(7)
C25	0.0979(4)	0.6487(3)	0.56021 (19)	0.0152(7)
C26	0.0255(4)	0.7821(3)	0.55586(17)	0.0102(7)
C27	-0.0195(4)	0.8598(3)	0.62513(19)	0.0142(7)
C28	-0.0051(4)	0.7952(3)	0.70999(19)	0.0134(6)
C29	-0.0537(4)	0.7952(3)	0.78686(19)	0.0134(0) 0.0145(7)
C30	0.0337(4)	0.0005(3) 0.4335(3)	0.81326 (19)	0.0143(7) 0.0153(7)
H30	0.0722 (4)	0.3028	0.81520 (17)	0.0133 (7)
C31	-0.0717(4)	0.3520	0.87605 (19)	0.018 0.0189(7)
U31A	-0.1606	0.3307 (3)	0.0083	0.0135(7)
	-0.0313	0.4117	0.9085	0.023*
C22	-0.0740(4)	0.2709	0.9085	0.023°
C32	-0.0749(4)	0.3330 (3)	0.77970 (19)	0.0173(7)
HJZA	-0.0368	0.2081	0.7533	0.021*
H32B	-0.1/51	0.4089	0.7551	0.021^{*}
C33	0.0929 (4)	0.4314 (3)	0.48901 (19)	0.01/9(/)
H33A	-0.0253	0.4328	0.4624	0.022*
H33B	0.0680	0.3886	0.5492	0.022*
C34	0.2388 (4)	0.3472 (3)	0.43858 (18)	0.0167 (7)
H34	0.3577	0.3479	0.4658	0.020*
C35	0.3365 (4)	0.5622 (3)	0.34571 (19)	0.0163 (7)
H35	0.4604	0.5625	0.3686	0.020*
C36	0.1950 (4)	0.6453 (3)	0.40178 (19)	0.0179 (7)
H36A	0.2441	0.7390	0.4050	0.021*
H36B	0.0766	0.6557	0.3753	0.021*
C37	0.3584 (4)	0.6241 (3)	0.25213 (19)	0.0212 (7)
H37A	0.4465	0.5671	0.2171	0.032*
H37B	0.4063	0.7185	0.2490	0.032*
H37C	0.2366	0.6266	0.2299	0.032*
C38	0.1820 (4)	0.1980 (3)	0.43606 (19)	0.0244 (8)
H38A	0.0778	0.1953	0.4013	0.037*
H38B	0.1431	0.1575	0.4951	0.037*
H38C	0.2886	0.1450	0.4101	0.037*
H1	-0.1300	1.0360	0.6569	0.027 (10)*
H2	0.5807	0.5485	0.8562	0.027 (10)*
H10	0.5867	0.5545	0.9519	0.014 (8)*
H4	-0.1254	1.0283	0.5602	0.061 (14)*

supporting information

Н5	0.2355	1.1977	1.1777	0.023 (9)*
H6	0.6026	0.5645	0.6229	0.054 (13)*
H13C	0.7892	0.6957	0.2157	0.045 (12)*
H8	0.1637	0.4071	0.3267	0.047 (12)*
H9	-0.1305	1.0152	0.8867	0.072 (15)*
H18	0.7401	0.5202	1.0947	0.058 (13)*
H12	0.3331	0.3680	0.3072	0.067 (14)*
H13	0.0447	1.2048	1.1748	0.027 (10)*
H14	0.7296	0.3913	1.0841	0.083 (18)*
H15A	-0.2943	1.1247	0.4134	0.087 (17)*
H15B	-0.3333	0.9936	0.4382	0.076 (16)*
H14C	0.6764	0.7678	0.3807	0.072 (14)*
H12D	0.8447	0.3787	0.2790	0.15 (3)*
H13D	0.8804	0.7179	0.1378	0.15 (3)*
H14D	0.6538	0.8657	0.3005	0.16 (3)*
H12C	0.9147	0.5046	0.2592	0.10 (2)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
S 1	0.0161 (4)	0.0178 (4)	0.0162 (4)	-0.0001 (3)	-0.0033 (3)	-0.0018 (3)
F1	0.0214 (9)	0.0162 (9)	0.0177 (9)	0.0042 (8)	0.0002 (7)	-0.0025 (7)
F3	0.0324 (11)	0.0220 (10)	0.0136 (9)	0.0064 (9)	-0.0028 (8)	-0.0005 (8)
F2	0.0306 (11)	0.0234 (10)	0.0145 (9)	0.0082 (9)	-0.0053 (8)	-0.0002 (8)
F4	0.0228 (10)	0.0166 (10)	0.0167 (9)	0.0058 (8)	0.0007 (7)	-0.0035 (7)
01	0.0318 (13)	0.0227 (13)	0.0157 (12)	-0.0023 (10)	0.0014 (9)	-0.0032 (10)
O2	0.0325 (13)	0.0152 (12)	0.0186 (13)	0.0006 (10)	-0.0001 (9)	-0.0045 (9)
O3	0.0252 (12)	0.0132 (12)	0.0174 (11)	0.0024 (10)	-0.0010 (9)	-0.0040 (9)
O4	0.0336 (13)	0.0209 (12)	0.0129 (12)	-0.0040 (10)	-0.0002 (9)	-0.0019 (9)
O5	0.0320 (13)	0.0196 (13)	0.0181 (13)	0.0015 (11)	0.0003 (9)	-0.0066 (10)
O6	0.0239 (12)	0.0158 (12)	0.0169 (12)	0.0022 (10)	-0.0012 (9)	-0.0040 (9)
O7	0.0265 (12)	0.0270 (12)	0.0151 (11)	-0.0078 (10)	-0.0081 (9)	0.0021 (9)
08	0.0146 (11)	0.0257 (12)	0.0206 (11)	0.0063 (9)	-0.0047 (8)	-0.0070 (9)
09	0.0319 (13)	0.0156 (11)	0.0413 (14)	-0.0019 (10)	-0.0131 (11)	0.0043 (10)
O10	0.0191 (11)	0.0268 (12)	0.0179 (11)	0.0033 (10)	-0.0006 (8)	-0.0026 (9)
011	0.0332 (13)	0.0231 (13)	0.0193 (12)	0.0034 (11)	-0.0085 (10)	-0.0015 (10)
O12	0.0265 (13)	0.0342 (15)	0.0410 (15)	-0.0086 (12)	-0.0158 (11)	0.0045 (11)
O13	0.0365 (14)	0.0257 (13)	0.0207 (12)	0.0012 (11)	0.0017 (10)	-0.0029 (11)
O14	0.0387 (14)	0.0251 (13)	0.0214 (12)	-0.0017 (12)	0.0055 (10)	-0.0055 (10)
O15	0.0355 (14)	0.0229 (12)	0.0177 (12)	0.0002 (11)	-0.0076 (10)	-0.0003 (10)
N1	0.0165 (14)	0.0176 (14)	0.0146 (13)	0.0007 (12)	-0.0010 (11)	-0.0035 (11)
N2	0.0274 (15)	0.0154 (14)	0.0116 (14)	-0.0017 (12)	0.0027 (11)	-0.0027 (11)
N3	0.0270 (16)	0.0161 (15)	0.0130 (14)	0.0065 (12)	-0.0018 (11)	-0.0004 (12)
N4	0.0147 (13)	0.0133 (14)	0.0130 (13)	0.0022 (11)	-0.0018 (10)	-0.0013 (11)
N5	0.0212 (14)	0.0149 (14)	0.0137 (13)	-0.0016 (11)	0.0004 (11)	-0.0014 (11)
N6	0.0257 (15)	0.0142 (13)	0.0108 (13)	-0.0010 (12)	0.0012 (11)	-0.0028 (11)
N7	0.0245 (15)	0.0159 (15)	0.0146 (14)	0.0022 (12)	-0.0012 (11)	-0.0007 (12)
N8	0.0161 (14)	0.0147 (14)	0.0127 (13)	0.0007 (11)	-0.0019 (10)	-0.0025 (11)

C1	0.0164 (16)	0.0156 (17)	0.0201 (18)	-0.0038 (14)	-0.0003 (13)	-0.0047 (14)
C2	0.0128 (15)	0.0193 (17)	0.0129 (15)	-0.0003 (13)	0.0002 (12)	-0.0026 (13)
C3	0.0151 (15)	0.0187 (17)	0.0137 (16)	-0.0033 (14)	-0.0005 (12)	-0.0008 (13)
C4	0.0111 (15)	0.0161 (17)	0.0123 (16)	-0.0014 (13)	-0.0004 (12)	-0.0023 (13)
C5	0.0128 (15)	0.0086 (16)	0.0175 (16)	0.0034 (13)	-0.0030 (12)	0.0010 (12)
C6	0.0150 (16)	0.0142 (16)	0.0153 (16)	-0.0020 (13)	0.0005 (12)	-0.0035 (13)
C7	0.0174 (17)	0.0212 (18)	0.0117 (16)	0.0025 (14)	-0.0044 (12)	0.0017 (13)
C8	0.0114 (15)	0.0161 (17)	0.0178 (17)	-0.0012 (13)	-0.0011 (12)	-0.0024 (13)
C9	0.0111 (15)	0.0142 (16)	0.0149 (16)	-0.0021 (13)	-0.0006 (12)	-0.0002 (12)
C10	0.0141 (15)	0.0113 (16)	0.0164 (16)	-0.0039 (13)	-0.0013 (12)	-0.0025 (12)
C11	0.0183 (16)	0.0120 (16)	0.0152 (15)	0.0035 (14)	-0.0030 (12)	-0.0010 (13)
C12	0.0278 (18)	0.0157 (17)	0.0184 (17)	0.0019 (15)	-0.0005 (13)	0.0005 (13)
C13	0.0199 (16)	0.0160 (16)	0.0178 (16)	0.0006 (13)	0.0013 (12)	-0.0009 (13)
C14	0.0211 (17)	0.0163 (16)	0.0153 (16)	-0.0041 (14)	-0.0031 (13)	-0.0023 (13)
C15	0.0182 (16)	0.0201 (17)	0.0119 (15)	0.0015 (14)	-0.0027 (12)	-0.0016 (13)
C16	0.0180 (17)	0.0194 (17)	0.0158 (16)	-0.0018 (14)	-0.0025 (13)	-0.0027 (13)
C17	0.0239 (17)	0.0163 (17)	0.0114 (15)	0.0006 (14)	-0.0003 (12)	-0.0014 (12)
C18	0.0202 (17)	0.0179 (17)	0.0193 (17)	-0.0006 (14)	0.0024 (13)	-0.0014 (13)
C19	0.0227 (17)	0.0165 (17)	0.0204 (16)	0.0038 (14)	-0.0028 (13)	-0.0001 (13)
C20	0.0182 (16)	0.0172 (18)	0.0163 (17)	-0.0052 (14)	0.0037 (13)	-0.0037 (13)
C21	0.0149 (16)	0.0132 (16)	0.0164 (16)	-0.0044 (13)	-0.0017 (12)	-0.0028 (13)
C22	0.0152 (15)	0.0201 (17)	0.0110 (15)	-0.0028 (14)	-0.0007 (12)	-0.0036 (13)
C23	0.0119 (15)	0.0146 (17)	0.0145 (16)	-0.0010 (13)	-0.0052 (12)	0.0000 (13)
C24	0.0134 (15)	0.0101 (16)	0.0194 (17)	0.0028 (13)	-0.0016 (12)	-0.0024 (13)
C25	0.0118 (15)	0.0190 (17)	0.0145 (16)	0.0000 (13)	0.0015 (12)	-0.0041 (13)
C26	0.0163 (16)	0.0186 (17)	0.0085 (15)	-0.0026 (14)	-0.0034 (12)	0.0025 (13)
C27	0.0115 (15)	0.0117 (16)	0.0194 (17)	0.0003 (13)	-0.0029 (12)	0.0003 (13)
C28	0.0113 (15)	0.0129 (16)	0.0161 (16)	-0.0026 (13)	-0.0024 (12)	-0.0011 (12)
C29	0.0138 (16)	0.0128 (16)	0.0174 (16)	-0.0030 (13)	-0.0012 (12)	-0.0045 (13)
C30	0.0169 (16)	0.0115 (16)	0.0171 (16)	0.0041 (13)	-0.0020 (12)	-0.0002 (12)
C31	0.0223 (17)	0.0154 (16)	0.0179 (16)	0.0034 (14)	-0.0003 (13)	0.0006 (13)
C32	0.0195 (17)	0.0119 (16)	0.0218 (17)	0.0023 (14)	-0.0043 (13)	-0.0032 (13)
C33	0.0234 (17)	0.0155 (17)	0.0142 (15)	-0.0035 (14)	0.0016 (13)	-0.0017 (13)
C34	0.0221 (16)	0.0171 (17)	0.0111 (15)	-0.0017 (14)	-0.0028 (12)	-0.0010 (12)
C35	0.0189 (17)	0.0148 (16)	0.0157 (16)	-0.0027 (13)	-0.0020 (12)	-0.0026 (12)
C36	0.0194 (17)	0.0166 (17)	0.0170 (16)	-0.0010 (14)	0.0000 (13)	-0.0007 (13)
C37	0.0264 (18)	0.0221 (18)	0.0140 (16)	-0.0017 (15)	0.0031 (13)	-0.0029 (13)
C38	0.0314 (19)	0.0203 (18)	0.0204 (17)	-0.0008 (15)	0.0021 (14)	-0.0023 (14)

Geometric parameters (Å, °)

<u>S1—09</u>	1.460 (2)	C8—C9	1.431 (4)
S1—O10	1.472 (2)	C9—C10	1.447 (4)
S1—O8	1.487 (2)	C11—C13	1.501 (4)
S1—O7	1.4904 (19)	C11—C12	1.504 (4)
F1—C5	1.368 (3)	C11—H11	1.0000
F3—C26	1.373 (3)	C12—C13	1.503 (4)
F2—C7	1.368 (3)	C12—H12A	0.9900

supporting information

F4	1 370 (3)	C12—H12B	0 9900
01-C1	1 223 (3)	C13—H13A	0.9900
02-C1	1 321 (4)	C13—H13B	0.9900
02—H6	0.8777	C14-C15	1 520 (4)
03-C10	1 268 (4)	C14—H14A	0.9900
$04 - C_{20}$	1 216 (4)	C14—H14B	0.9900
05-020	1.210(4) 1.325(4)	C15-C19	1.525(4)
05 49	0.0501	C15 H15	1.0000
06 C29	1.267(4)	C16 C18	1.0000
011 H18	0.8603	C_{16} C_{17}	1.510(4) 1.521(4)
011 H14	0.8105	C_{16} H_{16}	1.0000
012 $H12D$	0.0195	C17 H17A	0.0000
012 H12C	0.9288	C17 = H17P	0.9900
012 - 1112C	0.9437	$C_{12} = H_{12}$	0.9900
012 H12D	0.0409		0.9800
013 $$	1.0015		0.9800
014 1140	0.0007		0.9800
Olf HISA	0.8887	CIQ_HI9A	0.9800
OIS—HISA	0.9103	С19—Н19В	0.9800
OIS—HISB	0.8949	C19—H19C	0.9800
NI-CIS	1.492 (4)	$C_{20} = C_{21}$	1.491 (4)
	1.501 (4)	$C_{21} = C_{22}$	1.355 (4)
NI—H5	0.9198	C21—C29	1.445 (4)
NI—HI3	0.8432	C22—H22	0.9500
N2—C6	1.370 (4)	C23—C24	1.388 (4)
N2—C14	1.458 (4)	C23—C28	1.423 (4)
N2—C17	1.468 (4)	C24—C25	1.401 (4)
N3—C8	1.356 (4)	C25—C26	1.381 (4)
N3—H2	0.8552	C26—C27	1.376 (4)
N3—H10	0.8946	C27—C28	1.427 (4)
N4—C3	1.339 (4)	C28—C29	1.451 (4)
N4—C4	1.404 (4)	C30—C32	1.489 (4)
N4—C11	1.468 (4)	C30—C31	1.499 (4)
N5—C35	1.493 (4)	С30—Н30	1.0000
N5—C34	1.495 (4)	C31—C32	1.508 (4)
N5—H8	0.9005	C31—H31A	0.9900
N5—H12	0.8970	C31—H31B	0.9900
N6—C25	1.393 (4)	C32—H32A	0.9900
N6—C36	1.470 (4)	C32—H32B	0.9900
N6—C33	1.478 (4)	C33—C34	1.504 (4)
N7—C27	1.368 (4)	С33—Н33А	0.9900
N7—H1	0.8963	С33—Н33В	0.9900
N7—H4	0.9266	C34—C38	1.517 (4)
N8—C22	1.344 (4)	C34—H34	1.0000
N8—C23	1.406 (4)	C35—C37	1.519 (4)
N8—C30	1.466 (4)	C35—C36	1.524 (4)
C1—C2	1.486 (4)	С35—Н35	1.0000
C2—C3	1.376 (4)	С36—Н36А	0.9900
C2—C10	1.435 (4)	С36—Н36В	0.9900

C2 112	0.0500		0.0000
C3—H3	0.9500	C37—H37A	0.9800
C4—C5	1.381 (4)	C3/—H3/B	0.9800
C4—C9	1.425 (4)	С37—Н37С	0.9800
C5—C6	1.413 (4)	C38—H38A	0.9800
C6—C7	1.383 (4)	C38—H38B	0.9800
C7—C8	1.396 (4)	C38—H38C	0.9800
O9—S1—O10	112.08 (13)	N1—C16—H16	108.8
O9—S1—O8	109.56 (13)	C18—C16—H16	108.8
O10—S1—O8	108.60 (12)	C17—C16—H16	108.8
O9—S1—O7	109.88 (12)	N2—C17—C16	110.7 (2)
O10—S1—O7	109.60 (12)	N2—C17—H17A	109.5
O8—S1—O7	106.98 (12)	C16—C17—H17A	109.5
С1—О2—Н6	106.7	N2—C17—H17B	109.5
C20-05-H9	106.3	C16—C17—H17B	109.5
H18—011—H14	99.2	H17A—C17—H17B	108.1
H12D - 012 - H12C	90.3	C16-C18-H18A	109.5
H13C_013_H13D	97.9	C_{16} C_{18} H_{18B}	109.5
$H_{14C} = 013 - H_{14D}$	107.3	H18A C18 H18B	109.5
	107.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C15 N1 C16	94.0		109.5
C15 - N1 - C10	115.8 (2)		109.5
CIS—NI—HS	107.5	H18B-C18-H18C	109.5
C16—N1—H5	109.8	С15—С19—Н19А	109.5
C15—N1—H13	118.6	С15—С19—Н19В	109.5
C16—N1—H13	103.6	H19A—C19—H19B	109.5
H5—N1—H13	102.8	С15—С19—Н19С	109.5
C6—N2—C14	122.5 (2)	H19A—C19—H19C	109.5
C6—N2—C17	123.6 (3)	H19B—C19—H19C	109.5
C14—N2—C17	111.9 (2)	O4—C20—O5	122.0 (3)
C8—N3—H2	113.4	O4—C20—C21	121.6 (3)
C8—N3—H10	123.2	O5—C20—C21	116.4 (3)
H2—N3—H10	118.9	C22—C21—C29	120.2 (3)
C3—N4—C4	120.4 (3)	C22—C21—C20	118.1 (3)
C3—N4—C11	118.2 (2)	C29—C21—C20	121.6 (3)
C4—N4—C11	120.8 (2)	N8—C22—C21	123.8 (3)
C35—N5—C34	113.0 (2)	N8—C22—H22	118.1
C35—N5—H8	114.5	C21—C22—H22	118.1
C34—N5—H8	104.3	C24—C23—N8	121.7(3)
$C_{35} N_{5} H_{12}$	113.9	C_{24} C_{23} C_{28}	1188(3)
C_{34} N5—H12	118.1	N8-C23-C28	110.0(3) 119.4(3)
H8 N5 H12	90.6	$F_{4} = C_{24} = C_{23}$	119.4(3) 1101(3)
110 - 110 - 1112	120.0(2)	$F_4 = C_2 - C_2 $	117.1(3) 117.0(3)
$C_{25} = N_{0} = C_{30}$	120.9(2)	14 - 024 - 025	117.0(3) 122.7(2)
$C_{23} = N_0 = C_{33}$	110.0(2) 112.4(2)	$C_{23} = C_{24} = C_{23}$	123.7(3) 125.5(2)
$C_{22} = N_{2} = U_{1}$	112.4 (2)	$C_{20} = C_{23} = N_0$	123.3(3)
$U_2 / - N / - H I$	117.0	120 - 123 - 124	114.8(3)
$U_2 / - N / - H_4$	122.7	No-C25-C24	119.6 (3)
H1—N/—H4	112.4	F3-C26-C27	115.2 (3)
C22—N8—C23	119.8 (3)	F3—C26—C25	119.2 (3)

C22—N8—C30	118.9 (2)	C27—C26—C25	125.6 (3)
C23—N8—C30	120.8 (2)	N7—C27—C26	119.4 (3)
O1—C1—O2	121.2 (3)	N7—C27—C28	122.4 (3)
O1—C1—C2	122.7 (3)	C26—C27—C28	118.1 (3)
O2—C1—C2	116.1 (3)	C23—C28—C27	118.4 (3)
C3—C2—C10	119.9 (3)	C23—C28—C29	119.7 (3)
C3—C2—C1	118.1 (3)	C27—C28—C29	121.9 (3)
C10—C2—C1	121.9 (3)	O6—C29—C21	121.1 (3)
N4—C3—C2	123.6 (3)	O6—C29—C28	122.4 (3)
N4—C3—H3	118.2	C21—C29—C28	116.4 (3)
С2—С3—Н3	118.2	N8—C30—C32	116.2 (2)
C5—C4—N4	121.8 (3)	N8—C30—C31	118.2 (3)
C5—C4—C9	119.2 (3)	C32—C30—C31	60.6 (2)
N4—C4—C9	119.0 (3)	N8—C30—H30	116.7
F1—C5—C4	119.9 (3)	C32—C30—H30	116.7
F1—C5—C6	116.2 (3)	C31—C30—H30	116.7
C4—C5—C6	123.7 (3)	C30—C31—C32	59.39 (19)
N2—C6—C7	124.4(3)	C30—C31—H31A	117.8
N2-C6-C5	120.8(3)	C32—C31—H31A	117.8
C7—C6—C5	114.7(3)	C30—C31—H31B	117.8
F2	119.6 (3)	C32—C31—H31B	117.8
F2-C7-C8	115.0 (3)	H31A—C31—H31B	115.0
C6-C7-C8	125.4 (3)	C_{30} C_{32} C_{31}	59.99 (19)
N3—C8—C7	119.0 (3)	C30—C32—H32A	117.8
N3-C8-C9	123.3 (3)	C31—C32—H32A	117.8
C7—C8—C9	117.6 (3)	C30—C32—H32B	117.8
C4—C9—C8	118.6 (3)	C31—C32—H32B	117.8
C4—C9—C10	120.2 (3)	H32A—C32—H32B	114.9
C8—C9—C10	121.1(3)	N6—C33—C34	109.9 (2)
03-010-02	120.7(3)	N6-C33-H33A	109.7
03-010-09	122.6 (3)	C34—C33—H33A	109.7
C2-C10-C9	116.8 (3)	N6—C33—H33B	109.7
N4-C11-C13	116.2 (3)	C34—C33—H33B	109.7
N4—C11—C12	118.0 (3)	H33A—C33—H33B	108.2
C13—C11—C12	60.0 (2)	N5-C34-C33	107.6 (2)
N4-C11-H11	116.8	N5-C34-C38	10,0(2)
C13—C11—H11	116.8	C33—C34—C38	113.0(2)
C12—C11—H11	116.8	N5-C34-H34	108.7
C13—C12—C11	59.9 (2)	C33—C34—H34	108.7
C13—C12—H12A	117.8	C38—C34—H34	108.7
C11—C12—H12A	117.8	N5-C35-C37	108.6(2)
C13—C12—H12B	117.8	N5-C35-C36	109.7(2)
C11—C12—H12B	117.8	C_{37} — C_{35} — C_{36}	111.1(3)
H12A—C12—H12B	114.9	N5—C35—H35	109.1
C11—C13—C12	60.1 (2)	С37—С35—Н35	109.1
C11—C13—H13A	117.8	C36—C35—H35	109.1
C12—C13—H13A	117.8	N6—C36—C35	110.2 (2)
C11—C13—H13B	117.8	N6—C36—H36A	109.6

C12—C13—H13B	117.8	С35—С36—Н36А	109.6
H13A—C13—H13B	114.9	N6—C36—H36B	109.6
N2-C14-C15	109.7 (2)	С35—С36—Н36В	109.6
N2-C14-H14A	109.7	H36A—C36—H36B	108.1
C15—C14—H14A	109.7	С35—С37—Н37А	109.5
N2—C14—H14B	109.7	С35—С37—Н37В	109.5
C15—C14—H14B	109.7	Н37А—С37—Н37В	109.5
H14A—C14—H14B	108.2	С35—С37—Н37С	109.5
N1-C15-C14	107.6 (2)	Н37А—С37—Н37С	109.5
N1—C15—C19	109.5 (2)	Н37В—С37—Н37С	109.5
C14—C15—C19	113.3 (2)	С34—С38—Н38А	109.5
N1—C15—H15	108.8	С34—С38—Н38В	109.5
C14—C15—H15	108.8	H38A—C38—H38B	109.5
C19—C15—H15	108.8	С34—С38—Н38С	109.5
N1-C16-C18	108.5 (2)	H38A—C38—H38C	109.5
N1-C16-C17	110.8 (2)	H38B—C38—H38C	109.5
C18—C16—C17	111.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H5····O8 ⁱ	0.92	1.81	2.724 (3)	170
$N1$ — $H5$ ··· $S1^{i}$	0.92	2.99	3.860 (3)	158
N1—H13…O10 ⁱⁱ	0.84	2.12	2.799 (3)	138
N1—H13…O12 ⁱⁱ	0.84	2.60	3.257 (4)	135
N3—H2…O3	0.86	1.97	2.670 (3)	138
N3—H10…O11	0.89	2.07	2.965 (3)	174
N5—H8···O12 ⁱⁱⁱ	0.90	1.80	2.687 (3)	169
N5—H12…O8	0.90	1.83	2.722 (3)	174
N5—H12…S1	0.90	2.80	3.628 (3)	154
N7—H1…O6	0.90	2.00	2.673 (3)	131
N7—H4…O15	0.93	2.10	2.997 (3)	162
O2—H6…O3	0.88	1.70	2.523 (3)	156
O5—H9…O6	0.96	1.64	2.543 (3)	156
O11—H18…O13 ^{iv}	0.86	2.06	2.918 (3)	177
O11—H14…O10 ^{iv}	0.82	2.04	2.846 (3)	169
O12—H12D····O7	0.93	1.81	2.680 (3)	155
O12—H12D…S1	0.93	2.68	3.479 (2)	145
O12—H12C···O13	0.94	1.92	2.748 (3)	146
O13—H13C…O14	0.84	1.90	2.725 (3)	169
O13—H13 <i>D</i> ···O4 ^v	0.90	1.95	2.774 (3)	153
O14—H14 <i>C</i> ···O1	1.00	1.89	2.834 (3)	157
O14—H14 D ···O9 ^{vi}	0.89	1.83	2.715 (3)	170
O15—H15A···O7 ^{vii}	0.91	1.85	2.748 (3)	168
O15—H15A····S1 ^{vii}	0.91	2.87	3.680 (2)	150
O15—H15B…O1 ⁱⁱⁱ	0.89	2.29	2.979 (3)	134

Symmetry codes: (i) *x*, *y*+1, *z*+1; (ii) *x*-1, *y*+1, *z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*, *z*+1; (v) *x*+1, *y*, *z*-1; (vi) *x*, *y*+1, *z*; (vii) *x*-1, *y*+1, *z*.