

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4,6-Dimethylpyrimidin-2-yl)thiourea

Sohail Saeed,^a* Naghmana Rashid,^a Jerry P. Jasinski^b and Iames A. Golen^b

^aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: sohail262001@yahoo.com

Received 23 October 2011; accepted 13 November 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.144; data-to-parameter ratio = 17.1.

In the crystal structure of the title compound, $C_7H_{10}N_4S$, weak intermolecular N-H···S interactions form a two-dimensional network parallel to the ab plane. An intramolecular N-H...N hydrogen bond occurs.

Related literature

For structural characterization of N-substituted thiourea derivatives with heterocyclic substituents, see: Saeed et al. (2010a,b, 2011). For standard bond lengths, see Allen et al. (1987).

Experimental

Crystal data
$C_7H_{10}N_4S$
$M_r = 182.25$
Orthorhombic, Pna21
a = 8.3372 (5) Å
b = 15.8303 (10) Å
c = 6.618 (1) Å

 $V = 873.45 (15) \text{ Å}^3$ Z = 4Mo Ka radiation $\mu = 0.32 \text{ mm}^{-1}$ T = 173 K $0.30 \times 0.20 \times 0.18 \ \mathrm{mm}$ 7240 measured reflections

 $R_{\rm int} = 0.043$

2057 independent reflections

1588 reflections with $I > 2\sigma(I)$

Data collection

Oxford DiffractionXcalibur Eos Gemini diffractometer Absorption correction: multi-scan (CrvsAlis RED; Oxford Diffraction, 2010) $T_{\min} = 0.910, \ T_{\max} = 0.945$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of
$wR(F^2) = 0.144$	independent and constrained
S = 1.10	refinement
2057 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
120 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
4 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots N4$	0.90 (2)	1.99 (3)	2.676 (3)	131 (3)
$N1 - H1B \cdot \cdot \cdot S1^{i}$	0.87 (2)	2.58 (2)	3.399 (2)	159 (4)
$N2-H2A\cdots S1^{ii}$	0.85 (2)	2.53 (2)	3.338 (2)	160 (4)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z$.

Data collection: CrvsAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2335).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010a). Cent. Eur. J. Chem. 8, 550-558.

Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010b). Eur. J. Med. Chem. 45, 1323-1331.

Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74 - 84

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3347 [https://doi.org/10.1107/S1600536811048148]

1-(4,6-Dimethylpyrimidin-2-yl)thiourea

Sohail Saeed, Naghmana Rashid, Jerry P. Jasinski and James A. Golen

S1. Comment

The crystal structure of the title compound is a byproduct of the reaction of 1-(4,6-dimethylpyrimidin-2-yl)-3-(3,5-dinitrophenyl)thiourea with a copper acetate salt. It is related to our previous studies on the structural chemistry ofheterocyclic compounds containing an N-substituted thiourea (Saeed*et al.*, 2010*a*, 2010*b*, 2011). Herein, as a $continuation of these studies, the structure of the title compound, (I), <math>C_7H_{10}N_4S$, is described.

In the title compound, (I), (Fig. 1) the crystal packing is realized by intramolecular N1—H1…N4 hydrogen bonds and weak N—H…S intermolecular interactions (Table 1) forming a 2-D network along [110] (Fig. 2). Bond distances are in normal ranges (Allen *et al.* (1987).

S2. Experimental

After refluxing a reaction mixture of 1-(4,6-dimethylpyrimidin-2-yl)-3- (3,5-dinitrophenyl)thiourea with copper acetate salt, it was transfered into cold water. The crude solid product was filtered, washed again with water and purified by re-crystallization from ethanol (Yield: 45%). Single crystals of the title compound were obtained by recrystallisation from a dichloromethane/ethanol mixture (2:1).

S3. Refinement

H1A, H1B and H2A were located in a Fourier map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using the riding model with atom—H bond lengths of 0.95Å (CH) or 0.98Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.19 (CH) or 1.48–1.50 (CH₃) times U_{eq} of the parent atom. 928 Friedel pairs were measured.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the c axis. Dashed lines indicate weak N—H···S intermolecular interactions forming a 2-D network along [110].

1-(4,6-Dimethylpyrimidin-2-yl)thiourea

```
Crystal data

C<sub>7</sub>H<sub>10</sub>N<sub>4</sub>S

M_r = 182.25

Orthorhombic, Pna2<sub>1</sub>

Hall symbol: P 2c -2n

a = 8.3372 (5) Å

b = 15.8303 (10) Å

c = 6.618 (1) Å

V = 873.45 (15) Å<sup>3</sup>

Z = 4
```

F(000) = 384 $D_x = 1.386 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2136 reflections $\theta = 3.3-32.5^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 173 KBlock, pale yellow $0.30 \times 0.20 \times 0.18 \text{ mm}$ Data collection

Oxford DiffractionXcalibur Eos Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1500 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010) $T_{min} = 0.910, T_{max} = 0.945$	7240 measured reflections 2057 independent reflections 1588 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -10 \rightarrow 10$ $k = -20 \rightarrow 20$ $l = -8 \rightarrow 8$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.144$ S = 1.10 2057 reflections 120 parameters 4 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 0.3395P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.021$ $\Delta\rho_{max} = 0.57$ e Å ⁻³ $\Lambda_{0} = -0.23$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.39504 (8)	0.77736 (4)	0.3627 (3)	0.0334 (2)	
N1	0.2593 (2)	0.62628 (14)	0.3662 (11)	0.0295 (5)	
H1A	0.261 (4)	0.5693 (11)	0.374 (13)	0.035*	
H1B	0.179 (3)	0.6589 (17)	0.338 (8)	0.035*	
N2	0.5367 (2)	0.62855 (12)	0.3683 (10)	0.0241 (5)	
H2A	0.615 (3)	0.6613 (16)	0.345 (9)	0.029*	
N3	0.7243 (2)	0.52446 (13)	0.3633 (9)	0.0309 (6)	
N4	0.4441 (3)	0.48807 (14)	0.3725 (8)	0.0263 (5)	
C1	0.3948 (3)	0.67031 (15)	0.3601 (11)	0.0246 (6)	
C2	0.5672 (3)	0.54221 (16)	0.3715 (9)	0.0265 (6)	
C3	0.7616 (3)	0.44226 (17)	0.3597 (12)	0.0310 (6)	
C4	0.6435 (3)	0.38055 (16)	0.3665 (14)	0.0318 (6)	
H4A	0.6711	0.3225	0.3786	0.038*	
C5	0.4852 (3)	0.40536 (17)	0.3554 (10)	0.0292 (7)	
C6	0.3496 (3)	0.34350 (17)	0.3676 (15)	0.0403 (8)	

supporting information

H6A	0.2609	0.3629	0.2823	0.060*
H6B	0.3130	0.3390	0.5079	0.060*
H6C	0.3863	0.2881	0.3205	0.060*
C7	0.9355 (3)	0.42072 (19)	0.3708 (14)	0.0413 (9)
H7A	0.9991	0.4684	0.3206	0.062*
H7B	0.9568	0.3707	0.2878	0.062*
H7C	0.9648	0.4089	0.5114	0.062*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0193 (3)	0.0239 (3)	0.0570 (5)	0.0017 (2)	-0.0110 (6)	-0.0034 (11)
N1	0.0161 (10)	0.0256 (10)	0.0466 (15)	0.0014 (8)	-0.007 (3)	-0.008 (3)
N2	0.0173 (10)	0.0222 (10)	0.0328 (13)	-0.0013 (8)	-0.005 (3)	-0.005 (3)
N3	0.0206 (11)	0.0298 (12)	0.0424 (16)	0.0013 (8)	-0.015 (2)	-0.008 (3)
N4	0.0254 (11)	0.0278 (10)	0.0257 (14)	-0.0015 (8)	-0.006 (2)	0.003 (2)
C1	0.0197 (11)	0.0293 (12)	0.0248 (15)	0.0002 (9)	-0.012 (2)	-0.001 (3)
C2	0.0257 (13)	0.0284 (12)	0.0254 (16)	-0.0001 (9)	-0.008 (3)	0.003 (3)
C3	0.0247 (13)	0.0335 (14)	0.0347 (17)	0.0019 (10)	-0.009 (3)	-0.006 (3)
C4	0.0270 (13)	0.0255 (12)	0.0430 (17)	0.0021 (10)	0.007 (4)	0.007 (4)
C5	0.0258 (13)	0.0304 (13)	0.0315 (18)	-0.0027 (10)	-0.009 (2)	0.003 (3)
C6	0.0283 (14)	0.0319 (14)	0.061 (2)	-0.0073 (11)	-0.013 (4)	0.001 (5)
C7	0.0291 (14)	0.0356 (15)	0.059 (2)	0.0061 (12)	-0.014 (4)	-0.001 (4)

Geometric parameters (Å, °)

1.695 (3)	C3—C4	1.388 (4)	
1.328 (3)	C3—C7	1.491 (4)	
0.904 (17)	C4—C5	1.379 (4)	
0.869 (18)	C4—H4A	0.9500	
1.356 (3)	C5—C6	1.497 (4)	
1.390 (3)	C6—H6A	0.9800	
0.846 (17)	C6—H6B	0.9800	
1.338 (3)	С6—Н6С	0.9800	
1.341 (3)	С7—Н7А	0.9800	
1.337 (3)	С7—Н7В	0.9800	
1.358 (3)	С7—Н7С	0.9800	
120.7 (19)	C5—C4—H4A	120.8	
110 (2)	C3—C4—H4A	120.8	
128 (3)	N4—C5—C4	120.8 (3)	
129.7 (2)	N4—C5—C6	115.8 (3)	
112 (2)	C4—C5—C6	122.2 (2)	
118 (2)	С5—С6—Н6А	109.5	
115.6 (2)	С5—С6—Н6В	109.5	
115.1 (2)	H6A—C6—H6B	109.5	
119.0 (2)	С5—С6—Н6С	109.5	
121.71 (19)	H6A—C6—H6C	109.5	
	$\begin{array}{c} 1.695 (3) \\ 1.328 (3) \\ 0.904 (17) \\ 0.869 (18) \\ 1.356 (3) \\ 1.390 (3) \\ 0.846 (17) \\ 1.338 (3) \\ 1.341 (3) \\ 1.341 (3) \\ 1.337 (3) \\ 1.358 (3) \\ \end{array}$ $\begin{array}{c} 120.7 (19) \\ 110 (2) \\ 128 (3) \\ 129.7 (2) \\ 112 (2) \\ 118 (2) \\ 115.6 (2) \\ 115.1 (2) \\ 119.0 (2) \\ 121.71 (19) \end{array}$	1.695(3) $C3-C4$ $1.328(3)$ $C3-C7$ $0.904(17)$ $C4-C5$ $0.869(18)$ $C4-H4A$ $1.356(3)$ $C5-C6$ $1.390(3)$ $C6-H6A$ $0.846(17)$ $C6-H6B$ $1.338(3)$ $C6-H6C$ $1.341(3)$ $C7-H7A$ $1.337(3)$ $C7-H7B$ $1.358(3)$ $C7-H7B$ $1.358(3)$ $C7-H7C$ $120.7(19)$ $C5-C4-H4A$ $110(2)$ $C3-C4-H4A$ $128(3)$ $N4-C5-C4$ $129.7(2)$ $N4-C5-C6$ $112(2)$ $C4-C5-C6$ $118(2)$ $C5-C6-H6A$ $115.6(2)$ $C5-C6-H6B$ $115.1(2)$ $H6AC6-H6B$ $119.0(2)$ $C5-C6-H6C$ $119.0(2)$ $C5-C6-H6C$ $121.71(19)$ $H6AC6-H6C$	1.695 (3) $C3-C4$ $1.388 (4)$ $1.328 (3)$ $C3-C7$ $1.491 (4)$ $0.904 (17)$ $C4-C5$ $1.379 (4)$ $0.869 (18)$ $C4-H4A$ 0.9500 $1.356 (3)$ $C5-C6$ $1.497 (4)$ $1.390 (3)$ $C6-H6A$ 0.9800 $0.846 (17)$ $C6-H6B$ 0.9800 $1.338 (3)$ $C6-H6C$ 0.9800 $1.338 (3)$ $C7-H7A$ 0.9800 $1.337 (3)$ $C7-H7B$ 0.9800 $1.358 (3)$ $C7-H7C$ 0.9800 $1.328 (3)$ $N4-C5-C4$ 120.8 $110 (2)$ $C3-C4-H4A$ 120.8 $120.7 (19)$ $C5-C4-H4A$ 120.8 $120.7 (2)$ $N4-C5-C6$ $115.8 (3)$ $129.7 (2)$ $N4-C5-C6$ $122.2 (2)$ $118 (2)$ $C5-C6-H6A$ 109.5 $115.6 (2)$ $C5-C6-H6B$ 109.5 $115.1 (2)$ $H6A-C6-H6B$ 109.5 $119.0 (2)$ $C5-C6-H6C$ 109.5 $119.0 (2)$ $C5-C6-H6C$ 109.5

N2—C1—S1	119.07 (17)	H6B—C6—H6C	109.5
N4—C2—N3	128.0 (2)	С3—С7—Н7А	109.5
N4—C2—N2	119.3 (2)	С3—С7—Н7В	109.5
N3—C2—N2	112.6 (2)	H7A—C7—H7B	109.5
N3—C3—C4	121.2 (2)	С3—С7—Н7С	109.5
N3—C3—C7	116.6 (2)	H7A—C7—H7C	109.5
C4—C3—C7	121.8 (2)	H7B—C7—H7C	109.5
C5—C4—C3	118.5 (2)		
C2—N2—C1—N1	4.0 (12)	C2—N3—C3—C4	-0.7 (11)
C2—N2—C1—S1	178.8 (6)	C2—N3—C3—C7	-174.2 (6)
C5—N4—C2—N3	-2.7 (10)	N3—C3—C4—C5	6.9 (12)
C5—N4—C2—N2	173.7 (5)	C7—C3—C4—C5	180.0 (8)
C3—N3—C2—N4	-1.4 (10)	C2—N4—C5—C4	9.0 (11)
C3—N3—C2—N2	-178.1 (6)	C2—N4—C5—C6	176.8 (6)
C1—N2—C2—N4	-2.1 (11)	C3—C4—C5—N4	-11.2 (12)
C1—N2—C2—N3	174.9 (8)	C3—C4—C5—C6	-178.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A…N4	0.90 (2)	1.99 (3)	2.676 (3)	131 (3)
N1— $H1B$ ···S1 ⁱ	0.87 (2)	2.58 (2)	3.399 (2)	159 (4)
N2—H2A····S1 ⁱⁱ	0.85 (2)	2.53 (2)	3.338 (2)	160 (4)

Symmetry codes: (i) x-1/2, -y+3/2, z; (ii) x+1/2, -y+3/2, z.