

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-1-[2-(Trifluoromethyl)benzylidene]thiosemicarbazide

Xin Chen and Zuo-Liang Jing*

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China Correspondence e-mail: jzl74@tust.edu.cn

Received 10 October 2011; accepted 10 November 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.113; data-to-parameter ratio = 12.2.

In the crystal structure of the title compound, $C_9H_8F_3N_3S$, all atoms except for two of the F atoms are located on a mirror plane. In the crystal, the molecules are connected by N-H···S hydrogen bonds, forming a molecular tape along the *a* axis.

Related literature

For general background to metal complexes with Shiff bases, see: Kahwa *et al.* (1986); Deng *et al.* (2005). For related structures, see: Guo *et al.* (2006); Jing *et al.* (2005); Santos *et al.* (2001); Yu *et al.* (2005).

Experimental

Crystal data

 $V = 1097.2 (5) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 294 K $0.40 \times 0.40 \times 0.30 \text{ mm}$ 5953 measured reflections

 $R_{\rm int} = 0.028$

1228 independent reflections

869 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.886, T_{max} = 0.912
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$vR(F^2) = 0.113$	independent and constrained
S = 1.07	refinement
228 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
01 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3B\cdots S1^{i}$ $N2-H2A\cdots S1^{ii}$	0.88 (4) 0.82 (3)	2.54 (4) 2.61 (3)	3.418 (3) 3.430 (2)	174 (3) 173 (3)
	1 5		6	

Symmetry codes: (i) $x + \frac{1}{2}, y, -z + \frac{5}{2}$; (ii) $x - \frac{1}{2}, y, -z + \frac{5}{2}$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Tianjn University of Science and Technology Research Fund (No. 20090216).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2791).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.
- Guo, M.-J., Sun, J.-C., Jing, Z.-L., Yu, M. & Chen, X. (2006). Acta Cryst. E62, 0820–0821.
- Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, 03208–03209.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Yu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, o1345-o1346.

Acta Cryst. (2011). E67, o3369 [https://doi.org/10.1107/S1600536811047623] (*Z*)-1-[2-(Trifluoromethyl)benzylidene]thiosemicarbazide

Xin Chen and Zuo-Liang Jing

S1. Comment

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa *et al.*, 1986; Santos *et al.*, 2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands (Yu *et al.*, 2005; Deng *et al.*, 2005; Jing, Fan *et al.*, 2005; Guo, Sun *et al.*, 2006), we report the synthesis and structure of the title compound, (I). In the molecular structure of the title compound (Fig. 1), the expected geometric parameters are observed. The molecules are associated *via* weak intermolecular N—H…S hydrogen-bonding interactions (Table 1) to form a supramolecular network as illustrated in Fig. 2.

S2. Experimental

An anhydrous ethanol solution(50 mL) of thiosemicarbazide (0.91 g, 10 mmol) was added to an anhydrous ethanol solution(50 mL) of 2-(trifluoromethyl)benzaldehyde (1.74 g, 10 mmol) and the mixture was stirred at 350 K for 6 h under N_2 , whereupon a straw colorless solution appeared. The solvent was removed and the residue recrystallized from anhydrous ethanol. The product was isolated and then dried *in vacuo* to give pure (I) in 77% yield (Fig. 3). The colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution of (I).

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and their positions were refined freely with $U_{iso}(H) = 1.2U_{eq}(N)$ [N—H = 0.82 (3)–0.93 (4) Å]. C-bound H atoms were included in calculated positions (C—H = 0.93 Å) and refined using the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

A packing diagram of the title compound viewed down the *b* axis, showing intermolecular hydrogen bonds (dashed lines).

F(000) = 504

 $\theta = 2.6 - 26.2^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Block, colorless

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

5953 measured reflections

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

1228 independent reflections

869 reflections with $I > 2\sigma(I)$

T = 294 K

 $R_{\rm int} = 0.028$

 $h = -10 \rightarrow 7$

 $k = -7 \longrightarrow 8$ $l = -22 \longrightarrow 22$

 $D_{\rm x} = 1.497 {\rm Mg} {\rm m}^{-3}$

Mo Ka radiation. $\lambda = 0.71073$ Å

Cell parameters from 2111 reflections

Figure 3

The synthetic scheme of the title compound.

(Z)-1-[2-(Trifluoromethyl)benzylidene]thiosemicarbazide

Crystal data

 $C_9H_8F_3N_3S$ $M_r = 247.24$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 8.628 (2) Å b = 6.9795 (17) Å c = 18.222 (4) Å V = 1097.2 (5) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.31 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.886, T_{\max} = 0.912$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.036$ H atoms treated by a mixture of independent $wR(F^2) = 0.113$ and constrained refinement *S* = 1.07 $w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.3737P]$ where $P = (F_o^2 + 2F_c^2)/3$ 1228 reflections 101 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods Extinction correction: SHELXL97 (Sheldrick, Secondary atom site location: difference Fourier 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0104 (19) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.72882 (8)	0.2500	1.28034 (4)	0.0803 (4)	
F1	0.0437 (2)	0.2500	0.91939 (12)	0.0999 (8)	
F2	0.15033 (14)	0.0964 (2)	1.00795 (8)	0.0891 (5)	
N1	0.6005 (2)	0.2500	1.07458 (11)	0.0465 (6)	
N2	0.5981 (2)	0.2500	1.14995 (12)	0.0519 (6)	
H2A	0.513 (4)	0.2500	1.1704 (16)	0.062*	
N3	0.8620 (3)	0.2500	1.14879 (15)	0.0726 (9)	
H3A	0.862 (4)	0.2500	1.098 (2)	0.087*	
H3B	0.953 (5)	0.2500	1.1704 (19)	0.087*	
C1	0.1665 (3)	0.2500	0.96416 (18)	0.0636 (8)	
C2	0.3177 (3)	0.2500	0.92383 (15)	0.0490 (7)	
C3	0.3171 (4)	0.2500	0.84755 (17)	0.0691 (9)	
H3	0.2231	0.2500	0.8226	0.083*	
C4	0.4530 (4)	0.2500	0.80832 (18)	0.0847 (11)	
H4	0.4510	0.2500	0.7573	0.102*	
C5	0.5928 (4)	0.2500	0.84529 (17)	0.0775 (10)	
H5	0.6851	0.2500	0.8189	0.093*	
C6	0.5970 (3)	0.2500	0.92107 (16)	0.0561 (8)	
H6	0.6922	0.2500	0.9451	0.067*	
C7	0.4604 (3)	0.2500	0.96217 (14)	0.0428 (6)	
C8	0.4682 (3)	0.2500	1.04285 (14)	0.0442 (6)	
H8	0.3777	0.2500	1.0706	0.053*	
С9	0.7324 (3)	0.2500	1.18753 (16)	0.0538 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters (A^2)	Atomic	displ	lacement	parameters	$(Å^2)$
--	--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0329 (4)	0.1575 (10)	0.0504 (4)	0.000	-0.0050 (3)	0.000
F1	0.0416 (10)	0.161 (2)	0.0973 (15)	0.000	-0.0225 (9)	0.000
F2	0.0515 (7)	0.1089 (12)	0.1070 (11)	-0.0201 (7)	0.0044 (7)	0.0278 (10)
N1	0.0349 (11)	0.0577 (15)	0.0469 (12)	0.000	0.0003 (9)	0.000
N2	0.0282 (11)	0.0807 (18)	0.0468 (12)	0.000	0.0005 (9)	0.000
N3	0.0300 (11)	0.132 (3)	0.0555 (14)	0.000	-0.0005 (11)	0.000
C1	0.0383 (14)	0.082 (2)	0.071 (2)	0.000	-0.0100 (13)	0.000
C2	0.0419 (13)	0.0487 (16)	0.0565 (15)	0.000	-0.0049 (12)	0.000
C3	0.0595 (18)	0.091 (3)	0.0566 (17)	0.000	-0.0154 (14)	0.000
C4	0.074 (2)	0.129 (3)	0.0511 (17)	0.000	-0.0017 (17)	0.000
C5	0.062 (2)	0.113 (3)	0.0578 (18)	0.000	0.0124 (15)	0.000
C6	0.0410 (14)	0.069 (2)	0.0587 (16)	0.000	0.0015 (12)	0.000
C7	0.0381 (13)	0.0409 (15)	0.0495 (14)	0.000	-0.0003 (11)	0.000
		. ,			. ,	

Co	0.0205 (12)	0.0507 (1()	0.0512 (14)	0.000	0.0010 (10)	0.000
C8	0.0305(12)	0.0507(16)	0.0513(14)	0.000	0.0019 (10)	0.000
C9	0.0321 (12)	0.074 (2)	0.0554 (15)	0.000	-0.0012 (11)	0.000

Geometric parameters (Å, °)

Geometric purumeters (A,)			
S1—C9	1.691 (3)	C2—C3	1.390 (4)
F1—C1	1.338 (3)	C2—C7	1.416 (3)
F2—C1	1.343 (2)	C3—C4	1.373 (5)
N1—C8	1.279 (3)	С3—Н3	0.9300
N1—N2	1.374 (3)	C4—C5	1.381 (5)
N2—C9	1.346 (3)	C4—H4	0.9300
N2—H2A	0.82 (3)	C5—C6	1.381 (4)
N3—C9	1.322 (3)	С5—Н5	0.9300
N3—H3A	0.93 (4)	C6—C7	1.397 (4)
N3—H3B	0.88 (4)	С6—Н6	0.9300
$C1$ — $F2^{i}$	1.343 (2)	C7—C8	1.472 (3)
C1—C2	1.497 (4)	C8—H8	0.9300
C8—N1—N2	116.0 (2)	C3—C4—C5	119.4 (3)
C9—N2—N1	119.7 (2)	C3—C4—H4	120.3
C9—N2—H2A	122 (2)	C5—C4—H4	120.3
N1—N2—H2A	118 (2)	C6—C5—C4	120.7 (3)
C9—N3—H3A	122 (2)	С6—С5—Н5	119.7
C9—N3—H3B	121 (2)	C4—C5—H5	119.7
H3A—N3—H3B	117 (3)	C5—C6—C7	120.9 (3)
$F1$ — $C1$ — $F2^{i}$	106.24 (16)	С5—С6—Н6	119.5
F1—C1—F2	106.24 (16)	С7—С6—Н6	119.5
$F2^{i}$ —C1—F2	105.8 (3)	C6—C7—C2	118.0 (2)
F1—C1—C2	113.0 (3)	C6—C7—C8	119.8 (2)
$F2^{i}$ —C1—C2	112.47 (15)	C2—C7—C8	122.2 (2)
F2—C1—C2	112.47 (15)	N1—C8—C7	119.5 (2)
C3—C2—C7	119.8 (3)	N1—C8—H8	120.3
C3—C2—C1	119.2 (3)	С7—С8—Н8	120.3
C7—C2—C1	121.0 (2)	N3—C9—N2	117.1 (2)
C4—C3—C2	121.2 (3)	N3—C9—S1	123.3 (2)
С4—С3—Н3	119.4	N2—C9—S1	119.5 (2)
С2—С3—Н3	119.4		
C8—N1—N2—C9	180.000(1)	C5—C6—C7—C2	0.000 (2)
F1—C1—C2—C3	0.000 (2)	C5—C6—C7—C8	180.000 (1)
$F2^{i}$ —C1—C2—C3	-120.30 (18)	C3—C2—C7—C6	0.000 (2)
F2—C1—C2—C3	120.30 (18)	C1—C2—C7—C6	180.000 (1)
F1—C1—C2—C7	180.000(1)	C3—C2—C7—C8	180.000 (1)
$F2^{i}$ —C1—C2—C7	59.70 (18)	C1—C2—C7—C8	0.000 (1)
F2—C1—C2—C7	-59.70 (18)	N2—N1—C8—C7	180.000 (1)
C7—C2—C3—C4	0.000 (2)	C6—C7—C8—N1	0.000 (1)
C1—C2—C3—C4	180.000 (1)	C2—C7—C8—N1	180.000 (1)
C2—C3—C4—C5	0.000 (2)	N1—N2—C9—N3	0.000 (2)

C3—C4—C5—C6	0.000 (2)	N1—N2—C9—S1	180.0
C4—C5—C6—C7	0.000 (2)		

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3 <i>B</i> …S1 ⁱⁱ	0.88 (4)	2.54 (4)	3.418 (3)	174 (3)
N2—H2A···S1 ⁱⁱⁱ	0.82 (3)	2.61 (3)	3.430 (2)	173 (3)

Symmetry codes: (ii) x+1/2, y, -z+5/2; (iii) x-1/2, y, -z+5/2.