

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N^4 , N^6 -Dimethyl- N^4 , N^6 -diphenylpyrimidine-4,5,6-triamine

Fugiang Shi,^a Li-Hong Zhu,^a Li Mu,^b Long Zhang^a and Ya-Feng Li^a*

^aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China, and ^bSchool of Bioscience and Technology. Changchun University, Changchun 130012, People's Republic of China Correspondence e-mail: fly012345@sohu.com

Received 28 October 2011; accepted 5 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.137; data-to-parameter ratio = 17.4.

In the title compound, $C_{18}H_{19}N_5$, the pyrimidine ring makes dihedral angles of 56.49 (9) and 70.88 (9) $^{\circ}$ with the phenyl rings. The dihedral angle between the two phenyl rings is 72.45 (9)°. No significant intermolecular interactions are observed in the crystal structure.

Related literature

For applications and the biological activity of pyrimidine triamines, see: Barillari et al. (2001); Itoh et al. (2004); Koppel & Robins (1958).

Experimental

Crystal data

$C_{18}H_{19}N_5$	$V = 3205.4 (11) \text{ Å}^3$
$M_r = 305.38$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.8859 (18) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 14.360 (3) Å	T = 293 K
c = 25.121 (5) Å	$0.32 \times 0.28 \times 0.22$

Data collection

Rigaku R-AXIS RAPID	28152
diffractometer	3664
Absorption correction: multi-scan	2119
(ABSCOR; Higashi, 1995)	$R_{\rm int} =$
$T_{\min} = 0.975, T_{\max} = 0.983$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.137$ S = 1.033664 reflections

Κ $0.28 \times 0.22 \text{ mm}$

measured reflections independent reflections reflections with $I > 2\sigma(I)$ 0.065

210 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$ = -0.18 e Å⁻³

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry (20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2800).

References

Barillari, C., Barlocco, D. & Raveglia, L. (2001). Eur. J. Org. Chem. pp. 4737-4741

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Itoh, T., Sato, K. & Mase, T. (2004). Adv. Synth. Catal. 346, 1859-1867.

Koppel, H. & Robins, R. (1958). J. Org. Chem. 23, 1457-1460.

- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3249 [https://doi.org/10.1107/S1600536811046642] N^4 , N^6 -Dimethyl- N^4 , N^6 -diphenylpyrimidine-4,5,6-triamine

Fuqiang Shi, Li-Hong Zhu, Li Mu, Long Zhang and Ya-Feng Li

S1. Comment

Pyrimidine triamines not only exhibit a wide range of biological activities (Barillari *et al.*, 2001), but also are important intermediate products (Koppel & Robins, 1958; Itoh *et al.*, 2004). Here, the crystal structure of N^4 , N^6 -dimethyl- N^6 -d

S2. Experimental

 N^4 , N^6 -dimethyl-5-nitro- N^4 , N^6 -diphenylpyrimidine-4, 6-diamine (502.5 mg, 1.5 mmol) was dissolved in a mixture of ethanol (16 mL) and water (4 mL). Then, iron powder (504 mg, 9 mmol) and NH₄Cl (96.3 mg, 1.8 mmol) were added. The mixture was then stirred in reflux for 6 h, cooled to room temperature, and filtered through a pad of celite. The filtrate was concentrated in vacuo. The residue was extracted with EtOAc, and the organic extract was washed with saturated NaHCO₃, water, and brine and dried over anhydrous MgSO₄. It was then filtered and concentrated in vacuo to the crude product which was purified by flash chromatography (elution with 9% EtOAc in petroleum ether followed by 20% EtOAc in petroleum ether) to give N^4 , N^6 -dimethyl- N^4 , N^6 - diphenylpyrimidine-4,5,6-triamine (colorless solid, 310 mg, 67.8%, 88.6-90.6 °C).

S3. Refinement

All H atoms were located from difference Fourier maps and then were treated as riding, with C—H = 0.93–0.96 Å and N —H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$ or $1.5U_{eq}(\text{methyl } C)$.

The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoid are shown at the 50% probability level.

 N^4 , N^6 -Dimethyl- N^4 , N^6 - diphenylpyrimidine-4, 5, 6-triamine

Crystal data

$C_{18}H_{19}N_5$
$M_r = 305.38$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 8.8859 (18) Å
b = 14.360(3) Å
c = 25.121(5) Å
V = 3205.4 (11) Å ³
Z = 8

Data collection

Rigaku R-AXIS RAPID 28152 measured reflections diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.065$ Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -11 \rightarrow 10$ ω scans $k = -18 \rightarrow 18$ Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $l = -32 \rightarrow 32$ $T_{\rm min} = 0.975, T_{\rm max} = 0.983$

F(000) = 1296 $D_{\rm x} = 1.266 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1000 reflections $\theta = 3.2 - 27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.32 \times 0.28 \times 0.22 \text{ mm}$

3664 independent reflections 2119 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.137$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.03	H-atom parameters constrained
3664 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0693P)^2]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.13$ e Å ⁻³ $\Delta ho_{ m min} = -0.18$ e Å ⁻³

Special details

Experimental. ¹H NMR (CDCl₃, 400 Hz), δ: 8.38 (s, 1H), 7.27 (t, J = 7.6Hz, 4H), 7.00(t, J = 7.2Hz, 2H), 6.90(d, J = 8.0Hz, 4H), 3.50 (s, 6H); 2.90 (s, 2H). ¹³C NMR (CDCl₃, 100 Hz), δ: 151.1, 148.0, 145.7, 129.3, 122.8, 122.7, 120.0, 39.7. ES-MS: 336.1 [(M + H⁺)].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0279 (3)	0.46280 (13)	0.41196 (8)	0.0660 (6)	
H1	-0.0833	0.5128	0.4249	0.079*	
C2	0.0751 (2)	0.32120 (11)	0.42746 (6)	0.0483 (4)	
C3	0.15006 (19)	0.32587 (11)	0.37827 (6)	0.0460 (4)	
C4	0.1152 (2)	0.40201 (11)	0.34631 (6)	0.0484 (4)	
C5	0.1622 (2)	0.34917 (11)	0.25472 (6)	0.0480 (4)	
C6	0.0766 (2)	0.26882 (12)	0.26084 (7)	0.0563 (5)	
H6	0.0287	0.2573	0.2931	0.068*	
C7	0.0620(2)	0.20590 (13)	0.21954 (8)	0.0626 (5)	
H7	0.0059	0.1519	0.2245	0.075*	
C8	0.1296 (2)	0.22228 (16)	0.17087 (8)	0.0689 (6)	
H8	0.1205	0.1795	0.1433	0.083*	
C9	0.2099 (2)	0.30237 (15)	0.16412 (8)	0.0679 (6)	
H9	0.2534	0.3148	0.1312	0.082*	
C10	0.2278 (2)	0.36518 (14)	0.20496 (7)	0.0586 (5)	
H10	0.2842	0.4189	0.1994	0.070*	
C11	0.0814 (2)	0.15421 (10)	0.44409 (6)	0.0478 (4)	
C12	0.1647 (2)	0.08195 (13)	0.46579 (7)	0.0612 (5)	
H12	0.2369	0.0943	0.4917	0.073*	
C13	0.1404 (3)	-0.00819 (13)	0.44895 (9)	0.0713 (6)	
H13	0.1949	-0.0566	0.4642	0.086*	
C14	0.0367 (3)	-0.02727 (13)	0.40991 (9)	0.0732 (6)	

supporting information

H14	0.0223	-0.0882	0.3983	0.088*	
C15	-0.0447 (3)	0.04322 (13)	0.38829 (8)	0.0688 (6)	
H15	-0.1150	0.0305	0.3619	0.083*	
C16	-0.0238 (2)	0.13385 (12)	0.40531 (7)	0.0570 (5)	
H16	-0.0810	0.1815	0.3905	0.068*	
C17	0.2467 (3)	0.50505 (12)	0.28371 (9)	0.0743 (6)	
H17A	0.3482	0.4977	0.2713	0.111*	
H17B	0.2464	0.5430	0.3152	0.111*	
H17C	0.1874	0.5345	0.2566	0.111*	
C18	0.0744 (4)	0.26304 (14)	0.51905 (7)	0.0931 (9)	
H18A	0.1106	0.3236	0.5290	0.140*	
H18B	0.1257	0.2163	0.5395	0.140*	
H18C	-0.0318	0.2593	0.5258	0.140*	
N1	0.02716 (19)	0.47211 (9)	0.36360 (6)	0.0593 (4)	
N2	-0.01344 (19)	0.39000 (10)	0.44460 (6)	0.0602 (4)	
N3	0.18291 (19)	0.41347 (9)	0.29607 (6)	0.0578 (4)	
N4	0.25718 (18)	0.26103 (9)	0.36391 (6)	0.0583 (4)	
H4A	0.3049	0.2669	0.3343	0.070*	
H4B	0.2762	0.2147	0.3845	0.070*	
N5	0.1029 (2)	0.24762 (9)	0.46223 (5)	0.0568 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0737 (15)	0.0553 (10)	0.0688 (13)	0.0106 (10)	0.0113 (11)	-0.0102 (9)
C2	0.0550 (11)	0.0480 (9)	0.0419 (9)	-0.0040 (8)	-0.0006 (8)	-0.0048 (7)
C3	0.0475 (10)	0.0451 (8)	0.0454 (9)	-0.0010 (8)	0.0001 (8)	-0.0040 (7)
C4	0.0528 (11)	0.0448 (8)	0.0475 (10)	-0.0015 (8)	-0.0008 (8)	-0.0016 (7)
C5	0.0473 (10)	0.0530 (9)	0.0437 (9)	0.0073 (8)	-0.0007 (7)	0.0038 (7)
C6	0.0542 (11)	0.0653 (11)	0.0493 (10)	-0.0004 (9)	0.0027 (9)	0.0004 (8)
C7	0.0603 (13)	0.0644 (11)	0.0631 (12)	0.0040 (10)	-0.0090 (10)	-0.0071 (9)
C8	0.0674 (14)	0.0877 (14)	0.0517 (12)	0.0182 (12)	-0.0070 (10)	-0.0156 (10)
C9	0.0669 (14)	0.0877 (14)	0.0492 (11)	0.0198 (12)	0.0063 (10)	-0.0004 (10)
C10	0.0547 (12)	0.0690 (11)	0.0522 (11)	0.0099 (9)	0.0064 (9)	0.0093 (9)
C11	0.0520 (10)	0.0490 (9)	0.0425 (9)	-0.0001 (8)	0.0037 (8)	0.0017 (7)
C12	0.0571 (12)	0.0726 (12)	0.0540 (11)	0.0066 (10)	0.0002 (9)	0.0098 (9)
C13	0.0785 (16)	0.0578 (11)	0.0776 (14)	0.0206 (11)	0.0180 (12)	0.0118 (10)
C14	0.0905 (18)	0.0519 (11)	0.0770 (15)	-0.0024 (11)	0.0167 (13)	-0.0077 (10)
C15	0.0737 (15)	0.0623 (12)	0.0703 (13)	-0.0102 (11)	-0.0048 (11)	-0.0086 (10)
C16	0.0578 (12)	0.0547 (10)	0.0585 (11)	0.0006 (9)	-0.0063 (9)	0.0003 (8)
C17	0.0932 (17)	0.0561 (11)	0.0734 (14)	-0.0147 (11)	0.0105 (12)	0.0092 (9)
C18	0.164 (3)	0.0758 (13)	0.0391 (11)	-0.0086 (15)	0.0004 (13)	-0.0048 (9)
N1	0.0656 (11)	0.0511 (8)	0.0611 (10)	0.0072 (8)	0.0001 (8)	-0.0028 (7)
N2	0.0707 (11)	0.0551 (8)	0.0548 (9)	0.0016 (8)	0.0109 (8)	-0.0073 (7)
N3	0.0740 (12)	0.0528 (8)	0.0466 (8)	-0.0090 (8)	0.0073 (7)	0.0052 (6)
N4	0.0607 (10)	0.0602 (9)	0.0542 (9)	0.0132 (8)	0.0116 (8)	0.0062 (7)
N5	0.0807 (12)	0.0530 (8)	0.0366 (8)	-0.0063 (8)	-0.0048 (7)	-0.0014 (6)

Geometric parameters (Å, °)

C1—N1	1.316 (2)	C11—C16	1.381 (2)
C1—N2	1.335 (2)	C11—C12	1.386 (2)
C1—H1	0.9300	C11—N5	1.429 (2)
C2—N2	1.334 (2)	C12—C13	1.379 (3)
C2—N5	1.393 (2)	C12—H12	0.9300
C2—C3	1.406 (2)	C13—C14	1.374 (3)
C3—N4	1.379 (2)	С13—Н13	0.9300
C3—C4	1.391 (2)	C14—C15	1.357 (3)
C4—N1	1.347 (2)	C14—H14	0.9300
C4—N3	1.408 (2)	C15—C16	1.383 (2)
С5—С6	1.391 (2)	C15—H15	0.9300
C5—C10	1.398 (2)	C16—H16	0.9300
C5—N3	1.402 (2)	C17—N3	1.465 (2)
C6—C7	1.382 (2)	C17—H17A	0.9600
С6—Н6	0.9300	C17—H17B	0.9600
С7—С8	1.382 (3)	С17—Н17С	0.9600
С7—Н7	0.9300	C18—N5	1.466 (2)
C8—C9	1.364 (3)	C18—H18A	0.9600
С8—Н8	0.9300	C18—H18B	0.9600
С9—С10	1.375 (3)	C18—H18C	0.9600
С9—Н9	0.9300	N4—H4A	0.8600
C10—H10	0.9300	N4—H4B	0.8600
N1—C1—N2	127.64 (17)	C14—C13—C12	120.75 (19)
N1—C1—H1	116.2	C14—C13—H13	119.6
N2—C1—H1	116.2	С12—С13—Н13	119.6
N2-C2-N5	117.64 (15)	C15—C14—C13	119.64 (19)
N2—C2—C3	121.86 (15)	C15—C14—H14	120.2
N5—C2—C3	120.22 (15)	C13—C14—H14	120.2
N4—C3—C4	122.23 (15)	C14—C15—C16	120.4 (2)
N4—C3—C2	121.66 (15)	C14—C15—H15	119.8
C4—C3—C2	116.04 (15)	C16—C15—H15	119.8
N1—C4—C3	122.05 (15)	C11—C16—C15	120.57 (17)
N1-C4-N3	116.75 (14)	C11—C16—H16	119.7
C3—C4—N3	120.91 (16)	C15—C16—H16	119.7
C6—C5—C10	117.61 (16)	N3—C17—H17A	109.5
C6—C5—N3	122.42 (15)	N3—C17—H17B	109.5
C10—C5—N3	119.97 (16)	H17A—C17—H17B	109.5
C7—C6—C5	120.74 (17)	N3—C17—H17C	109.5
С7—С6—Н6	119.6	H17A—C17—H17C	109.5
С5—С6—Н6	119.6	H17B—C17—H17C	109.5
C6—C7—C8	120.78 (19)	N5—C18—H18A	109.5
С6—С7—Н7	119.6	N5-C18-H18B	109.5
С8—С7—Н7	119.6	H18A—C18—H18B	109.5
C9—C8—C7	118.74 (18)	N5—C18—H18C	109.5
С9—С8—Н8	120.6	H18A—C18—H18C	109.5

С7—С8—Н8	120.6	H18B—C18—H18C	109.5
C8—C9—C10	121.40 (19)	C1—N1—C4	115.94 (15)
С8—С9—Н9	119.3	C2—N2—C1	116.00 (16)
С10—С9—Н9	119.3	C5—N3—C4	122.09 (14)
C9—C10—C5	120.70 (19)	C5—N3—C17	118.99 (15)
С9—С10—Н10	119.7	C4—N3—C17	117.41 (14)
C5-C10-H10	119.7	C3—N4—H4A	120.0
C16—C11—C12	118.70 (16)	C3—N4—H4B	120.0
C16—C11—N5	120.91 (15)	H4A—N4—H4B	120.0
C12—C11—N5	120.38 (16)	C2—N5—C11	119.23 (13)
C13—C12—C11	119.90 (19)	C2—N5—C18	117.72 (15)
C13—C12—H12	120.0	C11—N5—C18	115.39 (14)
C11—C12—H12	120.0		