

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[(μ_3 -5-aminoisophthalato- $\kappa^3 O^1: O^3: N$)(1*H*-imidazole- κN^3)zinc] 0.25-hydrate]

Hai-Wei Kuai* and Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China Correspondence e-mail: hyitshy@126.com

Received 11 September 2011; accepted 22 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.048; wR factor = 0.098; data-to-parameter ratio = 13.1.

In the title coordination polymer, {[$Zn(C_8H_5NO_4)(C_3H_4N_2)$].-0.25H₂O}_n, the Zn²⁺ cation has an N₂O₂ donor set involving two carboxylate O atoms from two 5-aminoisophthalate anions, one N atom from a 5-aminoisophthalate anion, and one imidazole N atom displaying a slightly distorted tetrahedral geometry with two additional O-atom neighbours, with Zn-to-ligand distances of 2.711 (2) and 2.717 (2) Å, respectively. Each 5-aminoisophthalate anion acts as a μ_3 -bridge linking symmetry-related Zn^{II} ions into a layered polymeric structure parallel to (100). The asymmetric unit also comprises a disordered crystal water molecule located on an inversion centre with 0.25 occupancy. In the crystal, N-H···O hydrogen bonds form a three-dimensional network.

Related literature

For related structures, see: Zhang et al. (2007).

Experimental

Crystal data $[Zn(C_8H_5NO_4)(C_3H_4N_2)] \cdot 0.25H_2O$ $M_r = 317.09$ Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.18 \ \text{mm}$

 $\mu = 2.08 \text{ mm}^{-1}$

T = 293 K

Z = 4

Monoclinic, $P2_1/c$ a = 9.6239 (11) Å b = 10.1916 (11) Å c = 12.1927 (13) Å $\beta = 95.146 (2)^{\circ}$ $V = 1191.1 (2) \text{ Å}^3$

Data collection

Bruker SMART APEXII CCD	6327 measured reflections
diffractometer	2340 independent reflections
Absorption correction: multi-scan	1542 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.681, \ T_{\max} = 0.706$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.048 & 178 \text{ parameters} \\ wR(F^2) &= 0.098 & H\text{-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{\text{max}} &= 0.56 \text{ e } \text{\AA}^{-3} \\ 2340 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.57 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

N2-Zn1	1.983	(3) Zn1-	-O4 ⁱ	1.998 (3)
O2-Zn1	1.989	(2) Zn1-	-N1 ⁱⁱ	2.082 (3)
-	 	4 4		

Symmetry codes: (i) x, y - 1, z; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1B \cdots O4^{iii}$	0.91	2.21	3.018 (4)	147
$N1 - H1A \cdots O2^{N}$ $N3 - H3 \cdots O3^{V}$	0.88 0.95	2.17 1.88	2.943(4) 2.822(4)	146 174
Symmetry codes: $-x + 2, y - \frac{1}{2}, -z + \frac{5}{2}.$	(iii) $-x + 1, \frac{1}{2}$	$y - \frac{1}{2}, -z + \frac{3}{2};$	(iv) $-x + 1, y +$	$\frac{1}{2}, -z + \frac{3}{2};$ (v)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2352).

References

- Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). *Polyhedron*, **26**, 2461–2469.

supporting information

Acta Cryst. (2011). E**67**, m1835 [https://doi.org/10.1107/S1600536811050045]

Poly[[(μ_3 -5-aminoisophthalato- $\kappa^3 O^1$: O^3 :N)(1*H*-imidazole- κN^3)zinc] 0.25-hydrate]

Hai-Wei Kuai and Xiao-Chun Cheng

S1. Comment

5-Aminoisophthalic acid is often used as organic ligand to synthesise complexes with variable coordination modes. Herein, we report the crystal structure of title coordination polymer. The asymmetric unit consists of one zinc ion, one 5aminoisophthalate anion, one imidazole and partly occupied crystal water. Each Zn ion has a N₂O₂ donor set and is coordinated by two carboxylate O atoms from two 5-aminoisophthalate anions, one N atom from the amino group of 5aminoisophthalate anion, and one N atom from an imidazole, displaying a slightly distorted tetrahedral geometry (Fig. 1 and Table 1) with the two additional neighbours O1 and O3 with Zn-ligad distances of 2.711 (2) and 2.717 (2) Å, respectively. Each 5-aminoisophthalate anion acts as a μ_3 -bridge. So in the structure of title complex, every 5-aminoisophthalate anion links three zinc ions and every zinc ion bridges three 5-aminoisophthalate anions. This kind of connection proceeds infinitely to form a layer (Fig. 2). Whithin the crystal structure, there are N—H…O hydrogen bonds (Table 2).

S2. Experimental

Reaction mixture of zinc nitrate hexahydrate (29.7 mg, 0.1 mmol), 5-aminoisophthalic acid (18.1 mg, 0.1 mmol), imidazole (6.81 mg, 0.1 mmol), and potassium hydroxide (11.2 mg, 0.2 mmol) in 8 mL H₂O was sealed in a 16 mL Teflon-lined stainless steel container and heated to(1) 453 K for 3 days. After cooling to the room temperature, colourless block crystals of the title complex were obtained.

S3. Refinement

The hydrogen atoms in all C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The hydrogen atoms in N or O atoms can be found at reasonable positions in the difference Fourier maps and located there $[U_{iso}(H) = 1.2U_{eq}(N \text{ or } O)]$.

Figure 1

The coordination environment of zinc ion in the title complex with the ellipsoids drawn at the 30% probability level. Symmetry code used: (A) x, 1/2 - y, 1/2 + z; (B) x, -1 + y, z; (C) x, 1 + y, z; (D) x, 1/2 - y, -1/2 + z.

Figure 2

The layer built from infinite connection of zinc ions and 5-aminoisophthalate anions.

Poly[[(μ_3 -5-aminoisophthalato- $\kappa^3 O^1:O^3:N$)(1*H*-imidazole- κN^3)zinc] 0.25-hydrate]

Crystal	data
---------	------

$[Zn(C_8H_5NO_4)(C_3H_4N_2)] \cdot 0.25H_2O$	<i>c</i> = 12.1927 (13) Å
$M_r = 317.09$	$\beta = 95.146 \ (2)^{\circ}$
Monoclinic, $P2_1/c$	V = 1191.1 (2) Å ³
Hall symbol: -P 2ybc	Z = 4
a = 9.6239 (11) Å	F(000) = 642
b = 10.1916 (11) Å	$D_{\rm x} = 1.768 { m Mg} { m m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 2609 reflections $\theta = 2.6-28.0^{\circ}$ $\mu = 2.08 \text{ mm}^{-1}$

Data collection

Deulean SMADT ADEVIL CCD	
DIUKEI SMARI APEAII CCD	
diffractometer	
Radiation source: sealed tube	
Graphite monochromator	
phi and ω scans	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.681, \ T_{\max} = 0.706$	

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
<i>S</i> = 1.09	H-atom parameters constrained
2340 reflections	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$
178 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.57 \ { m e} \ { m \AA}^{-3}$

T = 293 K

 $R_{\rm int} = 0.038$

 $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 13$

Block, colourless

 $0.20 \times 0.20 \times 0.18 \text{ mm}$

6327 measured reflections 2340 independent reflections 1542 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.6575 (4)	0.3910 (3)	0.9523 (3)	0.0326 (9)	
C2	0.6177 (4)	0.3912 (4)	0.8394 (3)	0.0351 (9)	
H2	0.6037	0.3123	0.8016	0.042*	
C3	0.5989 (4)	0.5098 (3)	0.7836 (3)	0.0320 (8)	
C4	0.6275 (4)	0.6274 (3)	0.8374 (3)	0.0346 (9)	
H4	0.6188	0.7060	0.7987	0.042*	
C5	0.6696 (4)	0.6277 (3)	0.9507 (3)	0.0330 (9)	
C6	0.6827 (4)	0.5094 (4)	1.0076 (3)	0.0361 (9)	
H6	0.7084	0.5093	1.0830	0.043*	
C7	0.6734 (4)	0.2659 (4)	1.0171 (3)	0.0359 (9)	
C8	0.6970 (4)	0.7532 (4)	1.0138 (3)	0.0350 (9)	
С9	0.9582 (5)	0.1183 (4)	1.2027 (4)	0.0439 (11)	

H9	0.9093	0.1936	1.2188	0.053*	
C10	1.0136 (5)	-0.0654 (4)	1.1370 (3)	0.0441 (10)	
H10	1.0093	-0.1433	1.0972	0.053*	
C11	1.1245 (5)	-0.0237 (4)	1.2012 (4)	0.0449 (10)	
H11	1.2095	-0.0667	1.2149	0.054*	
N1	0.5567 (3)	0.5092 (3)	0.6679 (2)	0.0355 (7)	
H1B	0.4983	0.4405	0.6509	0.043*	
H1A	0.5065	0.5794	0.6488	0.043*	
N2	0.9069 (3)	0.0238 (3)	1.1382 (3)	0.0353 (7)	
N3	1.0886 (4)	0.0935 (3)	1.2423 (3)	0.0438 (9)	
H3	1.1418	0.1496	1.2921	0.053*	
01	0.6978 (3)	0.2682 (2)	1.1177 (2)	0.0401 (7)	
O2	0.6629 (3)	0.1581 (2)	0.9615 (2)	0.0339 (6)	
O3	0.7375 (3)	0.7512 (2)	1.1132 (2)	0.0438 (7)	
O4	0.6761 (3)	0.8610(2)	0.9600 (2)	0.0384 (7)	
O1W	0.0000	0.0000	0.5000	0.047 (2)	0.50
H1X	0.0422	0.0359	0.4495	0.056*	0.25
H1Y	0.0453	0.0137	0.5620	0.056*	0.25
Zn1	0.71550 (5)	0.01074 (4)	1.06385 (4)	0.03453 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.034 (2)	0.0284 (18)	0.034 (2)	0.0003 (16)	-0.0028 (18)	-0.0004 (15)
C2	0.035 (2)	0.032 (2)	0.036 (2)	-0.0002 (16)	-0.0064 (17)	-0.0001 (16)
C3	0.0285 (19)	0.035 (2)	0.0310 (19)	0.0022 (16)	-0.0039 (15)	-0.0037 (16)
C4	0.040(2)	0.029 (2)	0.034 (2)	-0.0010 (16)	-0.0003 (18)	0.0027 (15)
C5	0.034 (2)	0.032 (2)	0.031 (2)	0.0018 (15)	-0.0062 (17)	-0.0021 (15)
C6	0.038 (2)	0.036 (2)	0.032 (2)	0.0021 (16)	-0.0083 (16)	0.0001 (15)
C7	0.035 (2)	0.034 (2)	0.037 (2)	0.0038 (16)	-0.0038 (17)	-0.0024 (17)
C8	0.035 (2)	0.032 (2)	0.037 (2)	-0.0009 (15)	-0.0066 (18)	0.0025 (16)
C9	0.048 (3)	0.0297 (19)	0.051 (3)	0.0036 (18)	-0.014 (2)	-0.0107 (18)
C10	0.049 (3)	0.037 (2)	0.044 (3)	0.0067 (19)	-0.0099 (19)	-0.0063 (18)
C11	0.044 (2)	0.043 (2)	0.046 (3)	0.002 (2)	-0.0061 (19)	0.003 (2)
N1	0.0411 (18)	0.0330 (17)	0.0302 (17)	-0.0026 (14)	-0.0086 (13)	0.0019 (13)
N2	0.0377 (18)	0.0316 (16)	0.0345 (18)	0.0041 (14)	-0.0080 (14)	-0.0050 (14)
N3	0.041 (2)	0.0408 (19)	0.045 (2)	-0.0043 (16)	-0.0191 (17)	-0.0124 (15)
01	0.0579 (19)	0.0300 (14)	0.0304 (16)	-0.0015 (12)	-0.0078 (13)	0.0032 (11)
O2	0.0494 (17)	0.0292 (13)	0.0213 (12)	0.0004 (12)	-0.0069 (12)	0.0014 (10)
03	0.0579 (19)	0.0308 (14)	0.0385 (17)	0.0036 (13)	-0.0185 (14)	-0.0028 (12)
O4	0.0510 (18)	0.0314 (15)	0.0303 (14)	0.0001 (12)	-0.0095 (13)	-0.0026 (11)
O1W	0.050 (5)	0.056 (5)	0.034 (4)	0.001 (4)	-0.004 (4)	0.004 (4)
Zn1	0.0402 (3)	0.0300 (3)	0.0312 (3)	0.0001 (2)	-0.00893 (17)	0.0000 (2)

Geometric parameters (Å, °)

C1—C6	1.394 (5)	С9—Н9	0.9300
C1—C2	1.396 (5)	C10-C11	1.335 (6)

supporting information

C1—C7	1.500 (5)	C10—N2	1.372 (5)
C2—C3	1.391 (5)	C10—H10	0.9300
C2—H2	0.9300	C11—N3	1.352 (5)
C3—C4	1.382 (5)	C11—H11	0.9300
C3—N1	1.432 (4)	N1—Zn1 ⁱ	2.082 (3)
C4—C5	1.405 (5)	N1—H1B	0.9104
C4—H4	0.9300	N1—H1A	0.8832
C5—C6	1.391 (5)	N2—Zn1	1.983 (3)
C5—C8	1.503 (5)	N3—H3	0.9504
С6—Н6	0.9300	O2—Zn1	1.989 (2)
C7—O1	1.229 (5)	O4—Zn1 ⁱⁱ	1.998 (3)
C7—O2	1.290 (4)	O1W—H1X	0.8500
C8-03	1.239 (5)	O1W—H1Y	0.8501
C8-04	1.237(3) 1 287(4)	$Zn1-O4^{iii}$	1.998(3)
C9—N2	1.207(1) 1.312(5)	$Zn1 - N1^{iv}$	2.082(3)
C9—N3	1.312(5) 1.327(5)		2.002 (5)
C) 113	1.527 (5)		
C6-C1-C2	1198(3)	C11—C10—N2	110 1 (4)
C6-C1-C7	119.0(3) 118.4(3)	$C_{11} - C_{10} - H_{10}$	125.0
C_{1} C_{1} C_{7}	110.4(3) 121.8(3)	$N_2 C_{10} H_{10}$	125.0
$C_2 = C_1 = C_7$	121.0(3) 1107(3)	$C_{10} C_{11} N_{3}$	125.0 106 3 (4)
$C_3 = C_2 = C_1$	119.7 (5)	$C_{10} = C_{11} = N_3$	126.0
$C_{1} = C_{2} = H_{2}$	120.1	$N_3 C_{11} H_{11}$	126.9
$C_1 = C_2 = H_2$	120.1	13 - C11 - 1111 C2 N1 7 n1i	120.3
C4 = C3 = C2	120.0(3)	C_{3} NI UID	110.5 (2)
C4 = C3 = N1	119.9 (3)	C3—NI—HIB	110.0
$C_2 = C_3 = N_1$	119.4 (3)		105.0
$C_3 - C_4 - C_5$	119.8 (3)	C3—NI—HIA	110.9
C3—C4—H4	120.1	ZnI	109.4
С5—С4—Н4	120.1	HIB—NI—HIA	104.5
C6—C5—C4	119.6 (3)	C9—N2—C10	104.5 (3)
C6—C5—C8	118.6 (3)	C9—N2—Zn1	127.4 (3)
C4—C5—C8	121.8 (3)	C10—N2—Zn1	128.0 (3)
C5—C6—C1	120.3 (3)	C9—N3—C11	107.4 (3)
С5—С6—Н6	119.8	C9—N3—H3	123.7
С1—С6—Н6	119.8	C11—N3—H3	128.8
O1—C7—O2	122.7 (3)	C7—O2—Zn1	108.0 (2)
O1—C7—C1	120.7 (3)	C8—O4—Zn1 ⁱⁱ	108.5 (2)
O2—C7—C1	116.6 (3)	H1X—O1W—H1Y	109.5
O3—C8—O4	122.3 (3)	N2—Zn1—O2	114.21 (12)
O3—C8—C5	120.8 (3)	N2—Zn1—O4 ⁱⁱⁱ	117.19 (12)
O4—C8—C5	117.0 (3)	O2—Zn1—O4 ⁱⁱⁱ	98.96 (10)
N2—C9—N3	111.7 (3)	$N2$ — $Zn1$ — $N1^{iv}$	115.47 (13)
N2—C9—H9	124.1	$O2$ — $Zn1$ — $N1^{iv}$	107.26 (12)
N3—C9—H9	124.1	$O4^{iii}$ —Zn1—N1 ^{iv}	101.77 (12)
C6—C1—C2—C3	-2.2 (6)	C4—C3—N1—Zn1 i	92.1 (4)
C7—C1—C2—C3	177.4 (4)	C2—C3—N1—Zn1 i	-84.6 (4)
C1—C2—C3—C4	4.0 (6)	N3—C9—N2—C10	-0.6(5)

C1—C2—C3—N1	-179.4(4)	N3—C9—N2—Zn1	177.5 (3)
N1-C3-C4-C5	-3.0 (6) -179.6 (4)	C11-C10-N2-C9 C11-C10-N2-Zn1	0.9 (5) -177.2 (3)
C3—C4—C5—C6	0.3 (6)	N2-C9-N3-C11	0.1 (5)
C3—C4—C5—C8	-177.8 (4)	C10-C11-N3-C9	0.5 (5)
C4—C5—C6—C1	1.5 (6)	O1—C7—O2—Zn1	-6.9 (5)
C8—C5—C6—C1	179.6 (4)	C1—C7—O2—Zn1	171.8 (3)
C2-C1-C6-C5	-0.6 (6)	O3—C8—O4—Zn1 ⁱⁱ	-1.3 (5)
C7—C1—C6—C5	179.8 (4)	C5-C8-O4-Zn1 ⁱⁱ	178.6 (3)
C6—C1—C7—O1	5.4 (6)	C9—N2—Zn1—O2	59.6 (4)
C2-C1-C7-O1	-174.2 (4)	C10—N2—Zn1—O2	-122.8 (3)
C6—C1—C7—O2	-173.3 (3)	C9—N2—Zn1—O4 ⁱⁱⁱ	174.6 (3)
C2-C1-C7-O2	7.1 (6)	C10—N2—Zn1—O4 ⁱⁱⁱ	-7.7 (4)
C6—C5—C8—O3	3.8 (6)	C9—N2—Zn1—N1 iv	-65.5 (4)
C4—C5—C8—O3	-178.1 (4)	$C10-N2-Zn1-N1^{iv}$	112.2 (3)
C6—C5—C8—O4	-176.1 (4)	C7—O2—Zn1—N2	-58.7 (3)
C4—C5—C8—O4	2.0 (6)	C7—O2—Zn1—O4 ⁱⁱⁱ	176.0 (3)
N2—C10—C11—N3	-0.8 (5)	$C7-O2-Zn1-N1^{iv}$	70.6 (3)

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*, -*y*+1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A	
N1—H1 <i>B</i> ····O4 ^v	0.91	2.21	3.018 (4)	147	
N1—H1A····O2 ^{vi}	0.88	2.17	2.943 (4)	146	
N3—H3····O3 ^{vii}	0.95	1.88	2.822 (4)	174	

Symmetry codes: (v) -x+1, y-1/2, -z+3/2; (vi) -x+1, y+1/2, -z+3/2; (vii) -x+2, y-1/2, -z+5/2.