Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Bromo- N^3 -[(E)-(6-bromopyridin-2-yl)methylidene]pyridine-3,4-diamine

Mingjian Cai

Department of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China

Correspondence e-mail: cmj_1237@yahoo.com.cn

Received 2 October 2011; accepted 10 November 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.009 Å; R factor = 0.029; wR factor = 0.055; data-to-parameter ratio = 19.3.

The title compound, C₁₁H₈Br₂N₄, is a Schiff base obtained from 6-bromopicolinaldehyde and 5-bromopyridine-3,4diamine. The molecule has an E configuration about the C=N bond and the dihedral angle between the two pyridine rings is $14.02 (1)^{\circ}$. The observed conformation is stabilised by an intramolecular $N-H \cdots N$ hydrogen bond. In the crystal, molecules are stacked along the *b* axis and are linked through N-H···N hydrogen bonds into chains along the *c* axis.

Related literature

For the use of Schiff bases in coordination, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their properties, see: Kocyigit et al. (2010).

Experimental

Crystal data

C11H8Br2N4 $M_r = 356.03$ Monoclinic, Cc a = 24.941 (2) Å b = 3.8306 (6) Å c = 15.0868 (14) Å $\beta = 126.116 \ (14)^{\circ}$

V = 1164.4 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 6.94 \text{ mm}^{-1}$ T = 113 K $0.20 \times 0.18 \times 0.12$ mm Data collection

Rigaku Saturn 724CCD

diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) $T_{\min} = 0.337, T_{\max} = 0.490$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.055$	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.89	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
2282 reflections	Absolute structure: Flack (1983),
118 parameters	1093 Friedel pairs
38 restraints	Flack parameter: 0.002 (12)

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N4 - H4B \cdots N2$	0.88	2.33	2.686 (6)	104
N4 - H4A \cdots N1 ⁱ	0.88	2.44	3.043 (5)	126

Symmetry code: (i) $x, -y - 1, z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

The authors thank Professor Wang, Department of Chemistry, Nankai University, for providing experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2030).

References

Burkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303-306. Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Keypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9-14.

Kocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334-340.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691-2698.

supporting information

Acta Cryst. (2011). E67, o3402 [https://doi.org/10.1107/S1600536811047702]

5-Bromo-N³-[(*E*)-(6-bromopyridin-2-yl)methylidene]pyridine-3,4-diamine

Mingjian Cai

S1. Comment

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, *et al.*, 2011; Tarafder, *et al.*, 2002). They possess important properties, such as an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of an amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit *et al.*, 2010). In this paper, a new Schiff base compound derived from condensation of 6-bromopicolinaldehyde with 5-bromopyridine-3,4-diamine is reported. The molecule of the title compound has an E configuration about the C6=N2 bond (Fig.1). The dihedral angle between the two pyridyl rings is $14.02 (1)^{\circ}$. An intramolecular N—H…N hydrogen bond forms five-membered ring. The five-membered ring and two pyridyl ring form dihedral angles of $3.60 (1)^{\circ}$ and $4.02 (1)^{\circ}$. In the crystal, molecules are stacked along *y* axis and are linked through intermolecular N—H…N hydrogen bonds into chains propagating along *z* axis (Fig.2).

S2. Experimental

A solution of 6-bromopicolinaldehyde and 5-bromopyridine-3,4-diamine in methanol was refluxed for 30 min, and then the crude product was filtered and recrystallized from methanol to yield yellowish title compound. A small amount of the product was dissolved in methanol and the solution was kept for 5 days at ambient temperature to produce yellowish acicular crystals on slow evaporation of the solvent.

S3. Refinement

Amino H atoms were located in a difference fourier map and were put in ideal positions with N—H=0.88 Å. The remaining H atoms were positioned geometrically, with C—H=0.95 Å, and constrained to ride on their parent atoms, with $U_{iso}(H)=1.2U_{eq}(C/N)$.

supporting information

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

5-bromo-N³-[(*E*)-(6-bromopyridin-2-yl)methylidene]pyridine- 3,4-diamine

F(000) = 688

 $\theta = 1.7 - 27.9^{\circ}$

 $\mu = 6.94 \text{ mm}^{-1}$ T = 113 K

Prism. colorless

 $0.20 \times 0.18 \times 0.12$ mm

 $D_{\rm x} = 2.031 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2086 reflections

Crystal data

 $C_{11}H_8Br_2N_4$ $M_r = 356.03$ Monoclinic, *Cc* a = 24.941 (2) Å b = 3.8306 (6) Å c = 15.0868 (14) Å $\beta = 126.116 (14)^\circ$ $V = 1164.4 (2) Å^3$ Z = 4

Data collection

Rigaku Saturn 724CCD	5047 measured reflections
diffractometer	2282 independent reflections
Radiation source: rotating anode	2070 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.046$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω scans	$h = -30 \rightarrow 29$
Absorption correction: multi-scan	$k = -4 \rightarrow 4$
(CrystalClear; Rigaku/MSC, 2002)	$l = -18 \rightarrow 18$
$T_{\min} = 0.337, \ T_{\max} = 0.490$	

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.029$ H-atom parameters constrained $wR(F^2) = 0.055$ $w = 1/[\sigma^2(F_0^2) + (0.P)^2]$ S = 0.89where $P = (F_0^2 + 2F_c^2)/3$ 2282 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 118 parameters $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ 38 restraints Extinction correction: SHELXL97 (Sheldrick, Primary atom site location: structure-invariant direct methods 2008), Fc^{*}=kFc[1+0.001xFc² $\lambda^{3}/sin(2\theta)$]^{-1/4} Secondary atom site location: difference Fourier Extinction coefficient: 0.00177 (14) Absolute structure: Flack (1983), 1093 Friedel map pairs Absolute structure parameter: 0.002 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt)*etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	-0.32411 (2)	-1.16292 (13)	-0.65216 (3)	0.01513 (13)

Br2	-0.60799 (2)	0.03838 (13)	-0.34064 (3)	0.01849 (14)
C6	-0.4590 (3)	-0.6690 (12)	-0.5248 (4)	0.0102 (6)
H6	-0.4959	-0.7657	-0.5913	0.012*
C1	-0.3284 (3)	-0.9595 (12)	-0.5398 (4)	0.0102 (7)
C9	-0.5986 (3)	-0.1427 (11)	-0.4469 (4)	0.0102 (6)
N2	-0.4692 (2)	-0.4839 (10)	-0.4673 (3)	0.0102 (6)
C4	-0.3354 (3)	-0.6323 (13)	-0.3902 (4)	0.0117 (12)
H4	-0.3393	-0.5114	-0.3393	0.014*
C5	-0.3928 (3)	-0.7397 (13)	-0.4927 (4)	0.0102 (7)
C8	-0.5367 (3)	-0.2611 (13)	-0.4152 (4)	0.0102 (6)
N1	-0.3883 (2)	-0.9064 (10)	-0.5679 (3)	0.0102 (10)
N3	-0.6504 (2)	-0.2897 (11)	-0.6358 (3)	0.0160 (11)
C2	-0.2699 (3)	-0.8765 (12)	-0.4417 (4)	0.0102 (7)
H2	-0.2282	-0.9341	-0.4266	0.012*
C10	-0.6531 (3)	-0.1634 (12)	-0.5552 (4)	0.0102 (6)
H10	-0.6947	-0.0846	-0.5738	0.012*
N4	-0.4818 (2)	-0.2585 (10)	-0.3118 (3)	0.0156 (10)
H4A	-0.4834	-0.1785	-0.2587	0.019*
H4B	-0.4441	-0.3367	-0.2969	0.019*
C3	-0.2743 (3)	-0.7040 (13)	-0.3652 (4)	0.0136 (12)
Н3	-0.2353	-0.6368	-0.2963	0.016*
C11	-0.5907 (3)	-0.3985 (12)	-0.6050 (4)	0.0127 (13)
H11	-0.5878	-0.4893	-0.6606	0.015*
C7	-0.5329 (3)	-0.3906 (12)	-0.4994 (4)	0.0102 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0168 (3)	0.0139 (3)	0.0191 (3)	0.0022 (2)	0.0129 (2)	-0.0024 (2)
Br2	0.0207 (3)	0.0179 (3)	0.0219 (3)	0.0026 (3)	0.0153 (3)	-0.0004 (3)
C6	0.0118 (15)	0.0111 (14)	0.0086 (13)	-0.0005 (15)	0.0064 (12)	0.0002 (13)
C1	0.0100 (17)	0.0077 (15)	0.0135 (17)	-0.0007 (12)	0.0073 (14)	0.0026 (12)
С9	0.0122 (15)	0.0052 (13)	0.0154 (14)	-0.0006 (10)	0.0094 (12)	0.0015 (10)
N2	0.0118 (15)	0.0111 (14)	0.0086 (13)	-0.0005 (15)	0.0064 (12)	0.0002 (13)
C4	0.018 (3)	0.010 (3)	0.010 (3)	0.001 (2)	0.010 (3)	0.002 (2)
C5	0.0100 (17)	0.0077 (15)	0.0135 (17)	-0.0007 (12)	0.0073 (14)	0.0026 (12)
C8	0.0122 (15)	0.0052 (13)	0.0154 (14)	-0.0006 (10)	0.0094 (12)	0.0015 (10)
N1	0.013 (3)	0.008 (2)	0.008 (2)	-0.0011 (18)	0.006 (2)	0.0017 (17)
N3	0.009 (3)	0.023 (3)	0.012 (2)	0.003 (2)	0.004 (2)	0.0014 (19)
C2	0.0100 (17)	0.0077 (15)	0.0135 (17)	-0.0007 (12)	0.0073 (14)	0.0026 (12)
C10	0.0122 (15)	0.0052 (13)	0.0154 (14)	-0.0006 (10)	0.0094 (12)	0.0015 (10)
N4	0.005 (2)	0.031 (3)	0.010 (2)	0.0035 (19)	0.004 (2)	-0.0036 (18)
C3	0.008 (3)	0.017 (3)	0.008 (3)	-0.003 (2)	0.000(2)	0.004 (2)
C11	0.016 (3)	0.011 (3)	0.012 (3)	0.002 (2)	0.009 (3)	0.000(2)
C7	0.0122 (15)	0.0052 (13)	0.0154 (14)	-0.0006 (10)	0.0094 (12)	0.0015 (10)

Geometric parameters (Å, °)

Br1—C1	1.925 (5)	C5—N1	1.363 (6)
Br2—C9	1.884 (5)	C8—N4	1.337 (6)
C6—N2	1.256 (5)	C8—C7	1.418 (7)
C6—C5	1.447 (7)	N3—C11	1.339 (6)
С6—Н6	0.9500	N3—C10	1.347 (5)
C1—N1	1.305 (7)	C2—C3	1.389 (7)
C1—C2	1.370 (7)	С2—Н2	0.9500
C9—C10	1.380 (6)	C10—H10	0.9500
С9—С8	1.397 (7)	N4—H4A	0.8800
N2—C7	1.407 (7)	N4—H4B	0.8800
C4—C3	1.363 (7)	С3—Н3	0.9500
C4—C5	1.414 (7)	C11—C7	1.382 (7)
C4—H4	0.9500	C11—H11	0.9500
N2—C6—C5	122.0 (4)	C11—N3—C10	115.9 (5)
N2—C6—H6	119.0	C1—C2—C3	116.9 (5)
С5—С6—Н6	119.0	C1—C2—H2	121.6
N1—C1—C2	127.0 (5)	C3—C2—H2	121.6
N1—C1—Br1	115.1 (4)	N3—C10—C9	123.4 (5)
C2—C1—Br1	117.9 (4)	N3—C10—H10	118.3
С10—С9—С8	120.4 (5)	C9—C10—H10	118.3
C10—C9—Br2	119.9 (4)	C8—N4—H4A	120.0
C8—C9—Br2	119.6 (4)	C8—N4—H4B	120.0
C6—N2—C7	123.5 (4)	H4A—N4—H4B	120.0
C3—C4—C5	119.4 (5)	C4—C3—C2	119.2 (5)
С3—С4—Н4	120.3	С4—С3—Н3	120.4
C5—C4—H4	120.3	С2—С3—Н3	120.4
N1-C5-C4	121.3 (5)	N3—C11—C7	125.8 (5)
N1—C5—C6	116.6 (5)	N3—C11—H11	117.1
C4—C5—C6	122.1 (5)	C7—C11—H11	117.1
N4—C8—C9	124.2 (5)	C11—C7—N2	126.2 (5)
N4—C8—C7	119.0 (5)	C11—C7—C8	117.7 (5)
C9—C8—C7	116.8 (5)	N2—C7—C8	116.0 (5)
C1—N1—C5	116.2 (4)		
C5—C6—N2—C7	175.6 (5)	C11—N3—C10—C9	0.3 (7)
C3—C4—C5—N1	-1.5 (7)	C8—C9—C10—N3	-1.1 (7)
C3—C4—C5—C6	-179.4 (4)	Br2—C9—C10—N3	-180.0 (4)
N2-C6-C5-N1	-172.0 (4)	C5—C4—C3—C2	1.0 (7)
N2-C6-C5-C4	6.0 (7)	C1—C2—C3—C4	1.0 (7)
C10—C9—C8—N4	-178.3 (4)	C10—N3—C11—C7	-0.2 (8)
Br2—C9—C8—N4	0.6 (7)	N3—C11—C7—N2	-175.7 (5)
C10—C9—C8—C7	1.8 (7)	N3—C11—C7—C8	1.0 (8)
Br2—C9—C8—C7	-179.3 (3)	C6—N2—C7—C11	-19.0 (8)
C2-C1-N1-C5	2.4 (7)	C6—N2—C7—C8	164.2 (4)
Br1-C1-N1-C5	-175.4 (3)	N4—C8—C7—C11	178.4 (4)

supporting information

C4—C5—N1—C1	-0.1 (7)	C9—C8—C7—C11	-1.7 (7)
C6—C5—N1—C1	177.9 (4)	N4—C8—C7—N2	-4.5 (7)
N1—C1—C2—C3	-2.9 (7)	C9—C8—C7—N2	175.4 (4)
Br1—C1—C2—C3	174.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
N4—H4 <i>B</i> …N2	0.88	2.33	2.686 (6)	104
$N4$ — $H4A$ ··· $N1^{i}$	0.88	2.44	3.043 (5)	126

Symmetry code: (i) x, -y-1, z+1/2.