

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isopropyl 3,4-dihydroxybenzoate

Xu-Ji Shen,^a Qun-Zheng Zhang,^b Shi-Xiang Wang,^a Ya-Jun Zhang^a and Xiao-Hui Zheng^c*

^aCollege of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, ^bCollege of Chemistry & Chemical Engineering, Xian Shiyou University, Xi'an 710065, People's Republic of China, and ^cCollege of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, People's Republic of China Correspondence e-mail: zhengxh@nwu.edu.cn

Received 19 September 2011; accepted 27 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.133; data-to-parameter ratio = 13.3.

In the crystal structure of the title compound, $C_{10}H_{12}O_4$, $O - H \cdots O$ hydrogen bonds incorporating $R_2^2(10)$ and $R_2^2(14)$ motifs link molecules into chains along [110]. An intramolecular $O - H \cdots O$ hydrogen bond is also observed.

Related literature

The title compound is a derivative of protocatechuic acid (3,4dihydroxybenzoic acid). For the properties of esters of protocatechuic acid, see: Shizuka *et al.* (2004); Yun-Choi *et al.* (1996); Robert *et al.* (1986). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

$C_{10}H_{12}O_4$
$M_r = 196.20$
Triclinic, P1
a = 5.8485 (12) Å
<i>b</i> = 9.1844 (17) Å
c = 9.9834 (19) Å
$\alpha = 72.629 \ (3)^{\circ}$
$\beta = 80.547 \ (3)^{\circ}$

 $\gamma = 78.980 (3)^{\circ}$ $V = 499.06 (17) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.37 \times 0.25 \times 0.15 \text{ mm}$

organic compounds

Data collection

Bruker APEXII CCD diffractometer 2520 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 131 µ

 $wR(F^2) = 0.133$ H-at

 S = 1.04 $\Delta \rho_m$

 1745 reflections
 $\Delta \rho_m$

1745 independent reflections 1289 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.012$

131 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O4 ⁱ	0.82	2.15	2.844 (2)	142
O3−H3···O4	0.82	2.28	2.720(2)	115
$O4-H4\cdots O2^{ii}$	0.82	1.93	2.747 (2)	175

Symmetry codes: (i) -x + 1, -y - 1, -z; (ii) -x, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The authors are grateful for financial support from the National Natural Sciences Foundation of China (grant No. 20875074), the Higher Specialized Research Fund for the Doctoral Program (grant Nos. 20106101110001 and 20106101120024), the Important Science & Technology Specific Projects of the Innovative Program of Shannxi Province (grant No. 2010ZDKG-46) and the Scientific Research Foundation for PhDs of Xi'an Shiyou University (grant No. 2011BS004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5339).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Robert, W. G., Bienen, E. J. & Allen, B. C. J. (1986). *Mol. Biochem. Parasitol.* **21**, 55–63.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shizuka, S., Yasuko, O. & Jun, K. (2004). Biosci. Biotechnol. Biochem. 68, 1221–1227.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yun-Choi, H. S., Kim, M. H. & Jung, K. H. (1996). Arch. Pharm. Res. 19, 66-70.

supporting information

Acta Cryst. (2011). E67, o3233 [https://doi.org/10.1107/S1600536811044965]

Isopropyl 3,4-dihydroxybenzoate

Xu-Ji Shen, Qun-Zheng Zhang, Shi-Xiang Wang, Ya-Jun Zhang and Xiao-Hui Zheng

S1. Comment

Esters of protocatechuic acid has been shown to have, a DPPH radical scavenging ability, anti-thrombotic activity, and can act as inhibitors of the *sn*-glycerol-3-phosphate oxidase of *Trypanosoma brucei brucei* (Shizuka *et al.*, 2004; Yun-Choi *et al.*, 1996; Robert *et al.*, 1986).

The molecular structure of the title compound (I) is shown in Fig. 1. Intramolecular O—H…O hydrogen bonds form $R^2_2(10)$ and $R^2_2(14)$ motifs (Bernstein *et al.*, 1995). In the crystal, intermolecular O—H…O hydrogen bonds link molecules into chains propagating along [110] (see Fig. 2).

S2. Experimental

To a solution of 0.1*M* protocatechuic acid in 500 ml of 2-propanol at room temperature, 0.01*M* TsOH in 2-propanol was added. After the solution had been allowed to stir and reflux for 16 h, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO₃ solution, saturated aqueous NaCl, dried over MgSO₄, and evaporated. The crude product was purified by chromatography (SiO₂; elution with petroleum ether-acetoacetate, 6:1 *v/v*). Yield 30%. X-ray quality crystals were grown from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR(KBr, χ m⁻¹): 3458, 3314, 2985, 2957, 1677, 1609, 1531, 1445, 1378, 1347, 1299, 1238, 1165, 1101; ¹H NMR (DMSO, δ , p.p.m.): 9.539 (s, 1 H), 9.536 (s, 1 H), 7.363—7.366(d, 1 H), 7.299—7.316 (dd, 1 H), 6.804—7.818 (d, 1 H), 5.037—5.079(m, 1 H), 1.285 (s, 3 H).

S3. Refinement

All H atoms were visible in difference maps but were included in calculated positions with C—H = 0.93 - 0.98Å, O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.2U_{eq}(C_{methyl},O)$.

The molecular structure of (I) showing displacement ellipsoids at the 30% probability level.

Part of the crystal structure of (I) with Hydrogen bonds shown as dashed lines.

Isopropyl 3,4-dihydroxybenzoate

Crystal data

 $\begin{array}{l} C_{10}H_{12}O_4 \\ M_r = 196.20 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 5.8485 (12) \text{ Å} \\ b = 9.1844 (17) \text{ Å} \\ c = 9.9834 (19) \text{ Å} \\ a = 72.629 (3)^{\circ} \\ \beta = 80.547 (3)^{\circ} \\ \gamma = 78.980 (3)^{\circ} \\ V = 499.06 (17) \text{ Å}^3 \end{array}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
2520 measured reflections
1745 independent reflections

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0685P)^2 + 0.037P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 208

 $\theta = 2.4 - 24.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Needle, colorless

 $0.37 \times 0.25 \times 0.15$ mm

 $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

1289 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.012$

 $h = -6 \rightarrow 6$ $k = -10 \rightarrow 10$ $l = -9 \rightarrow 11$

 $D_{\rm x} = 1.306 {\rm Mg} {\rm m}^{-3}$

Melting point: 407(1) K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 666 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.2571 (2)	0.15042 (14)	0.29888 (13)	0.0554 (4)	
O2	-0.0069 (2)	0.13603 (15)	0.16625 (15)	0.0666 (5)	
03	0.7691 (2)	-0.42927 (15)	0.09653 (16)	0.0672 (5)	
Н3	0.7088	-0.4623	0.0452	0.101*	

supporting information

04	0.2545(2)	-0.22701(15)	-0.01521 (15)	0.0667.(5)	
04	0.3343(3)	-0.32701(13)	-0.01331(13)	0.0007 (5)	
H4	0.2401	-0.2741	-0.0586	0.100**	
C1	-0.0633 (5)	0.2409 (3)	0.4524 (3)	0.0925 (9)	
H1A	-0.1650	0.1839	0.4288	0.139*	
H1B	-0.1541	0.3308	0.4754	0.139*	
H1C	0.0143	0.1771	0.5321	0.139*	
C2	0.2856 (5)	0.3780 (3)	0.3562 (3)	0.0811 (7)	
H2A	0.3599	0.3182	0.4385	0.122*	
H2B	0.2030	0.4736	0.3715	0.122*	
H2C	0.4024	0.3988	0.2762	0.122*	
C3	0.1158 (4)	0.2893 (2)	0.3288 (2)	0.0605 (6)	
H3A	0.0369	0.3511	0.2462	0.073*	
C4	0.1778 (3)	0.0861 (2)	0.21617 (18)	0.0471 (5)	
C5	0.3358 (3)	-0.05140 (19)	0.19011 (18)	0.0436 (4)	
C6	0.2685 (3)	-0.12546 (19)	0.10392 (18)	0.0463 (5)	
H6	0.1255	-0.0895	0.0673	0.056*	
C7	0.4099 (3)	-0.25143 (19)	0.07177 (18)	0.0469 (5)	
C8	0.6225 (3)	-0.3068 (2)	0.12786 (19)	0.0485 (5)	
C9	0.6887 (3)	-0.2345 (2)	0.2151 (2)	0.0553 (5)	
H9	0.8301	-0.2720	0.2534	0.066*	
C10	0.5479 (3)	-0.1072 (2)	0.2463 (2)	0.0521 (5)	
H10	0.5949	-0.0590	0.3047	0.063*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0583 (9)	0.0500 (8)	0.0628 (8)	0.0063 (6)	-0.0190 (7)	-0.0256 (6)
O2	0.0620 (9)	0.0635 (9)	0.0807 (10)	0.0197 (7)	-0.0336 (8)	-0.0342 (8)
O3	0.0612 (9)	0.0555 (8)	0.0889 (11)	0.0185 (7)	-0.0253 (8)	-0.0338 (7)
O4	0.0740 (11)	0.0547 (8)	0.0803 (10)	0.0211 (7)	-0.0381 (8)	-0.0354 (8)
C1	0.0704 (16)	0.107 (2)	0.116 (2)	-0.0091 (14)	0.0063 (15)	-0.0656 (18)
C2	0.0992 (19)	0.0651 (14)	0.0901 (17)	-0.0163 (13)	-0.0072 (14)	-0.0374 (13)
C3	0.0705 (14)	0.0491 (11)	0.0651 (13)	0.0111 (10)	-0.0207 (11)	-0.0265 (10)
C4	0.0507 (11)	0.0447 (10)	0.0442 (10)	-0.0008(8)	-0.0102 (8)	-0.0110 (8)
C5	0.0439 (10)	0.0397 (9)	0.0434 (10)	-0.0011 (8)	-0.0072 (8)	-0.0077 (8)
C6	0.0433 (10)	0.0438 (10)	0.0492 (10)	0.0045 (8)	-0.0136 (8)	-0.0115 (8)
C7	0.0518 (11)	0.0398 (10)	0.0491 (10)	0.0002 (8)	-0.0119 (8)	-0.0133 (8)
C8	0.0461 (11)	0.0407 (10)	0.0540 (11)	0.0027 (8)	-0.0091 (8)	-0.0101 (8)
C9	0.0452 (11)	0.0516 (11)	0.0684 (13)	0.0057 (9)	-0.0203 (9)	-0.0166 (9)
C10	0.0521 (11)	0.0488 (11)	0.0580 (11)	-0.0020 (9)	-0.0159 (9)	-0.0172 (9)

Geometric parameters (Å, °)

O1—C4	1.330 (2)	C2—H2B	0.9600	
O1—C3	1.464 (2)	C2—H2C	0.9600	
O2—C4	1.215 (2)	C3—H3A	0.9800	
O3—C8	1.361 (2)	C4—C5	1.479 (2)	
O3—H3	0.8200	C5—C6	1.386 (2)	

supporting information

O4—C7	1 372 (2)	C5-C10	1 389 (3)
04—H4	0.8200	C6—C7	1.307(2)
C1-C3	1 497 (3)	С6—Н6	0.9300
C1—H1A	0.9600	C7-C8	1 391 (3)
C1_HIB	0.9600	C_{8}	1.391(3)
	0.9600	C_{9}	1.380(3)
$C^2 - C^3$	1 502 (3)	C9—H9	0.9300
C2—H2A	0.9600	C10—H10	0.9300
	0.9000		0.9500
C4—O1—C3	118.03 (14)	O2—C4—O1	123.08 (16)
С8—О3—Н3	109.5	O2—C4—C5	123.18 (17)
C7—O4—H4	109.5	O1—C4—C5	113.73 (15)
C3—C1—H1A	109.5	C6—C5—C10	119.21 (16)
C3—C1—H1B	109.5	C6—C5—C4	117.83 (16)
H1A—C1—H1B	109.5	C10—C5—C4	122.95 (17)
C3—C1—H1C	109.5	C7—C6—C5	121.01 (16)
H1A—C1—H1C	109.5	С7—С6—Н6	119.5
H1B—C1—H1C	109.5	С5—С6—Н6	119.5
C3—C2—H2A	109.5	O4—C7—C6	123.48 (16)
C3—C2—H2B	109.5	O4—C7—C8	116.86 (15)
H2A—C2—H2B	109.5	C6—C7—C8	119.66 (16)
C3—C2—H2C	109.5	O3—C8—C9	119.09 (16)
H2A—C2—H2C	109.5	O3—C8—C7	121.41 (16)
H2B—C2—H2C	109.5	C9—C8—C7	119.49 (16)
O1—C3—C1	108.46 (17)	C8—C9—C10	120.90 (17)
01-C3-C2	105.88 (17)	С8—С9—Н9	119.6
C1—C3—C2	113.43 (18)	С10—С9—Н9	119.6
O1—C3—H3A	109.7	C9—C10—C5	119.73 (18)
С1—С3—НЗА	109.7	C9—C10—H10	120.1
С2—С3—Н3А	109.7	С5—С10—Н10	120.1
C4—O1—C3—C1	85.7 (2)	C5—C6—C7—C8	0.8 (3)
C4—O1—C3—C2	-152.21 (17)	O4—C7—C8—O3	0.6 (3)
C3-01-C4-02	-0.9 (3)	C6—C7—C8—O3	-178.80 (16)
C3-01-C4-C5	178.76 (15)	O4—C7—C8—C9	179.39 (17)
O2—C4—C5—C6	0.3 (3)	C6—C7—C8—C9	0.0 (3)
O1—C4—C5—C6	-179.44 (15)	O3—C8—C9—C10	178.19 (17)
O2—C4—C5—C10	179.34 (18)	C7—C8—C9—C10	-0.6 (3)
O1—C4—C5—C10	-0.4 (3)	C8—C9—C10—C5	0.5 (3)
C10-C5-C6-C7	-1.0 (3)	C6—C5—C10—C9	0.3 (3)
C4—C5—C6—C7	178.12 (15)	C4—C5—C10—C9	-178.72 (17)
C5—C6—C7—O4	-178.53 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
03—H3…O4 ⁱ	0.82	2.15	2.844 (2)	142

			supporting information		
О3—Н3…О4	0.82	2.28	2.720 (2)	115	
O4—H4···O2 ⁱⁱ	0.82	1.93	2.747 (2)	175	

Symmetry codes: (i) -x+1, -y-1, -z; (ii) -x, -y, -z.