Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-(butan-2-yl)-2-(2-methoxyphenyl)-1H-benzimidazole-5-carboxylate

Natarajan Arumugam,^a Nurziana Ngah,^b Hasnah Osman^c and Aisyah Saad Abdul Rahim^a*

^aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia, ^bKullivvah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia Correspondence e-mail: aisyah@usm.my

Received 17 October 2011; accepted 2 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.045; wR factor = 0.122; data-to-parameter ratio = 14.2

In the title compound, $C_{21}H_{24}N_2O_3$, the mean planes of the benzene ring and the benzimidazole ring system form a dihedral angle of $69.94 (7)^{\circ}$. The ethyl group atoms of the ethanoate fragment are disordered over two sets of sites, with refined occupancies of 0.742 (6) and 0.258 (6). In the crystal, there are weak $C-H \cdots N$ hydrogen bonds which connect molecules into chains along the b axis. A weak intermolecular $C-H \cdots \pi$ interaction is also observed.

Related literature

For the synthesis and a closely related structure, see: Arumugam et al. (2010). For background to microwave chemistry, see: Kappe & Dallinger (2006); Hamzah et al. (2011). For the synthesis of benzimidazole derivatives and their applications, see: Wang et al. (2011); VanVliet et al. (2005); Loupy (2002); Santagada et al. (2001); Nicolaou et al. (2000); Evans et al. (1988). For standard bond lengths, see: Allen et al. (1987).

17688 measured reflections

 $R_{\rm int} = 0.025$

3475 independent reflections

2712 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₂₁ H ₂₄ N ₂ O ₃	$V = 1967.25 (11) \text{ Å}^3$
$M_r = 352.42$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.6746 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 12.3344 (4) Å	T = 296 K
c = 15.6158 (5) Å	$0.52 \times 0.44 \times 0.32 \text{ mm}$
$\beta = 106.901 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min} = 0.959, \ T_{\rm max} = 0.975$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	3 restraints
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
3475 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
245 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N1/N2/C1/C2/C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12 - H12 \cdots N1^{i}$ $C20A - H20C \cdots Cg^{ii}$	0.93 0.97	2.56 2.90	3.471 (2) 3.71 (4)	165 141
Symmetry codes: (i) $-x +$	$+\frac{1}{2}, y - \frac{1}{2}, -z +$	$\frac{3}{2}$; (ii) $-x, -y$	+2, -z+2.	

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NA, HO and ASAR acknowledge the Ministry of Science, Technology and Innovations of Malaysia for funding the synthetic chemistry work under 304/PFARMASI/650544. NA thanks Universiti Sains Malaysia for the award of a postdoctoral fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5357).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010) Acta Cryst E66 0845
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M., Freidinger, R. M., Whitter, W. L., Lundell, G. F., Veber, D. F., Anderson, P. S., Chang, R. S. L., Lotti, V. J., Cerino, D. J., Chen, T. B., Kling, P. J., Kunkel, K. A., Springer, J. P. & Hirshfield, J. (1988). J. Med. Chem. 31, 2235-2246.
- Hamzah, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2704.

Kappe, C. O. & Dallinger, D. (2006). Nat. Rev. Drug Discov. 5, 51-63.

- Loupy, A. (2002). Editor. Microwaves in Organic Synthesis, 1st ed. Weinheim: Wiley-VCH.
- Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939–9953.
 Santagada, V., Perissutti, E., Fiorino, F., Vivenzo, B. & Caliendo, G. (2001).
- Tetrahedron Lett. 42, 2397-2400.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- VanVliet, D. S., Gillespi, P. & Scicinski, J. J. (2005). Tetrahedron Lett. 42, 6741-6743.
- Wang, S.-L., Ding, J., Jiang, B., Gao, Y. & Tu, S.-J. (2011). ACS Comb. Sci. 13, 572-577.

supporting information

Acta Cryst. (2011). E67, o3231–o3232 [https://doi.org/10.1107/S1600536811046095] Ethyl 1-(butan-2-yl)-2-(2-methoxyphenyl)-1*H*-benzimidazole-5-carboxylate Natarajan Arumugam, Nurziana Ngah, Hasnah Osman and Aisyah Saad Abdul Rahim

S1. Comment

Microwave-assisted synthesis of heterocycles proves to be an invaluable technology in the fields of medicinal chemistry and drug discovery (Kappe & Dallinger, 2006). The utility of high-speed microwave chemistry is evident from the reported synthesis of privileged structures (Evans *et al.*, 1988; Nicolaou *et al.*, 2000) such as benzodiazepine (Santagada *et al.*, 2001), indoles (Loupy, 2002) and benzimidazoles (Wang *et al.*, 2011; VanVliet *et al.*, 2005). As a part of our on-going work in benzimidazole synthesis under microwave conditions (Hamzah *et al.*, 2011), we present herein the X-ray crystal structure of the title compound.

The molecular structure of the title compound (Fig. 1) is similiar to the previously reported ethyl 1-*sec*-butyl-2-(4-methoxyphenyl) -1*H*-benzimidazole-5-carboxylate (Arumugam *et al.*, 2010) in that only the position of the methoxy group is different. The benzene [C8—C13] ring and benzimidazole ring system [N1/N2/C1-C7] are essentially planar with maximum deviation of 0.050 (1)Å for atom N2. The mean-planes of the rings form a dihedral angle of 69.94 (7)°. The bond lengths (Allen *et al.*, 1987) and angles aree in the normal ranges and comparable to those in *para*-methoxy derivative. The ethyl atoms (C20 & C21) of ethanoate fragment are disordered over two positions with refined site occupancies of 0.742 (6) and 0.258 (6). In the crystal, a C12—H12···N1ⁱ hydrogen bond connects molecules to form a *zigzag* chain propagating along the *b* axis (Fig. 2). An weak intermolecular C20A—H20C···*Cg*ⁱⁱ (minor component of disorder) interaction is also observed; *Cg*1 is the centroid of N1/N2/C1/C2/C7.

S2. Experimental

The title compound was prepared according to our previous procedure (Arumugam *et al.*, 2010). A solution of the *sec*butyl phenylene diamine (1.0 mmol) and sodium bisulfite adduct of 2-methoxybenzaldehyde (3.5 mmol) in DMF was heated under focused microwave conditions at 403K for 2 minutes. The reaction mixture was diluted in EtOAc (20 ml) and washed with H_2O (20 ml). The organic layer was pooled together, dried over Na_2SO_4 , and then removed *in vacuo*. Recrystallization with ethyl acetate gave the title compound as colourless crystals.

S3. Refinement

All atoms were position geometrically and refined using a riding model, with C—H = 0.93-0.97 Å and U_{iso} (H)= 1.2 or $1.5U_{eq}$ (C). The atoms C20 and C21 are disordered over two sites with site occupancies of 0.742 (6) and 0.258 (2). A rigid body restraint (DELU in SHELXL (Sheldrick, 2008)) was applied for atoms C17 and C18. A rotating group model was applied to the non-disordered methyl groups.

Figure 1

The molecular structure of (I) with displacement ellipsods are drawn at the 40% probability level. Both disordered component are shown, atoms label with suffix A correspond to minor disorder component.

Ethyl 1-(butan-2-yl)-2-(2-methoxyphenyl)-1H-benzimidazole-5-carboxylate

Crystal data

C₂₁H₂₄N₂O₃ $M_r = 352.42$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.6746 (3) Å b = 12.3344 (4) Å c = 15.6158 (5) Å $\beta = 106.901$ (1)° V = 1967.25 (11) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector	17688 measured reflections
diffractometer	3475 independent reflections
Radiation source: fine-focus sealed tube	2712 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
Detector resolution: 83.66 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.1^\circ$
φ and ω scan	$h = -11 \rightarrow 12$
Absorption correction: multi-scan	$k = -11 \rightarrow 14$
(SADABS; Bruker, 2009)	$l = -18 \rightarrow 17$
$T_{\min} = 0.959, \ T_{\max} = 0.975$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.05	H-atom parameters constrained
3475 reflections	$w = 1/[\bar{\sigma^2}(F_o^2) + (0.0526P)^2 + 0.5324P]$
245 parameters	where $P = (F_0^2 + 2F_c^2)/3$

245 parameters3 restraintsPrimary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.18 \text{ e Å}^{-3}$

F(000) = 752

 $\theta = 2.1 - 25.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.52 \times 0.44 \times 0.32 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.190 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8039 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1	1	1	• 1 /		1. 1	,	1821
Fractional atomic	coordinates and	i isotropic oi	• eauivalent	isofronic	displacement	parameters	(A-)
1	eoor annares ann	noon opro or	9900000000	noon op re	mpracement	pen enterers	()

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.22019 (14)	0.60261 (11)	0.83252 (9)	0.0694 (4)	
O2	0.16647 (18)	1.12078 (12)	1.21044 (10)	0.0894 (5)	
03	0.10964 (19)	1.17279 (12)	1.06857 (10)	0.0917 (5)	
N1	0.29480 (16)	0.88252 (11)	0.90695 (9)	0.0562 (4)	

N2	0.36352 (14)	0.74369 (11)	1.00207 (8)	0.0475 (3)	
C1	0.34617 (16)	0.78558 (13)	0.91776 (10)	0.0467 (4)	
C2	0.32104 (16)	0.82294 (12)	1.04995 (10)	0.0445 (4)	
C3	0.31600 (18)	0.82949 (14)	1.13790 (11)	0.0551 (5)	
H3	0.3450	0.7729	1.1781	0.066*	
C4	0.26638 (18)	0.92316 (14)	1.16254 (11)	0.0542 (4)	
H4	0.2638	0.9304	1.2213	0.065*	
C5	0.21963 (17)	1.00806 (13)	1,10246 (11)	0.0496 (4)	
C6	0.22494(19)	1.00099 (13)	1.01515 (11)	0.0540 (5)	
H6	0.1942	1.0572	0.9748	0.065*	
C7	0.27727(17)	0.90788(13)	0.98941(10)	0.0473(4)	
C8	0.38804(17)	0.72852(14)	0.84697 (10)	0.0498(4)	
C9	0.49117(19)	0.76994 (16)	0.82051(12)	0.0606 (5)	
Н9	0.5345	0.8316	0.8484	0.073*	
C10	0.5318 0.5308 (2)	0.72096 (19)	0.75319(13)	0.0711 (6)	
H10	0.6003	0.7493	0.7358	0.085*	
C11	0.4666 (2)	0.63017(18)	0.7533 0.71234(13)	0.0694 (6)	
UП H11	0.4030	0.5966	0.6675	0.083*	
C12	0.3627(2)	0.5900	0.0075 0.73630 (11)	0.0608 (5)	
H12	0.3196	0.5264	0.7076	0.073*	
C13	0.32254 (18)	0.5204	0.7070 0.80372(11)	0.075 0.0517 (4)	
C13	0.32294(10) 0.1359(2)	0.03720(14) 0.52171(19)	0.30372(11) 0.78162(15)	0.0517(4)	
H14A	0.1339(2) 0.0081	0.52171 (19)	0.78102 (15)	0.123*	
	0.0981	0.5475	0.7210	0.123	
H14D	0.0075	0.3003	0.0004	0.123*	
П14C	0.1632 0.42814 (10)	0.4309	0.7803 1.03570 (12)	0.123°	
U15	0.42814 (19)	0.03902 (14)	0.0852	0.0001 (3)	
П15 С16	0.4463 0.2357(2)	0.0042 0.56250 (16)	0.9832	0.072°	
	0.3337(2)	0.50259 (10)	1.00087 (15)	0.0782 (0)	
	0.3108	0.3937	1.1131	0.117*	
	0.3800	0.4933	1.0809	0.117*	
HIOC	0.2589	0.5488	1.01/9	0.11/*	
	0.5563 (2)	0.65788 (19)	1.10606 (15)	0.0816 (6)	
HI/A	0.5395	0.6900	1.1383	0.098*	
HI/B	0.5984	0.5884	1.1238	0.1012 (0)	
	0.6475 (2)	0.7294 (2)	1.07505 (18)	0.1015 (8)	
HIðA	0.6583	0.7017	1.0208	0.152*	
HI8B	0.7308	0.7312	1.1206	0.152*	
HI8C	0.6120	0.8014	1.0660	0.152*	
C19	0.1636 (2)	1.10442 (15)	1.13428 (13)	0.0599 (5)	0.740 (6)
C20	0.0550 (11)	1.2722 (4)	1.0931 (10)	0.103 (2)	0.742 (6)
H20A	-0.0207	1.2560	1.1134	0.124*	0.742 (6)
H20B	0.1196	1.3091	1.1409	0.124*	0.742 (6)
C21	0.0176 (5)	1.3391 (3)	1.0141 (4)	0.1145 (15)	0.742 (6)
H21A	-0.0225	1.4045	1.0269	0.172*	0.742 (6)
H21B	-0.0436	1.3005	0.9667	0.172*	0.742 (6)
H21C	0.0938	1.3571	0.9963	0.172*	0.742 (6)
C21A	0.0967 (16)	1.3540 (11)	1.0711 (11)	0.1145 (15)	0.258 (6)
H21D	0.0569	1.4175	1.0873	0.172*	0.258 (6)

supporting information

H21E	0.0936	1.3581	1.0091	0.172*	0.258 (6)
H21F	0.1863	1.3495	1.1073	0.172*	0.258 (6)
C20A	0.027 (4)	1.2591 (10)	1.086 (3)	0.103 (2)	0.258 (6)
H20C	-0.0605	1.2561	1.0439	0.124*	0.258 (6)
H20D	0.0210	1.2562	1.1463	0.124*	0.258 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0819 (9)	0.0691 (9)	0.0610 (8)	-0.0156 (7)	0.0268 (7)	-0.0184 (6)
O2	0.1453 (15)	0.0707 (10)	0.0661 (9)	0.0110 (9)	0.0526 (10)	-0.0165 (7)
03	0.1471 (15)	0.0615 (9)	0.0743 (10)	0.0397 (9)	0.0445 (10)	-0.0029 (8)
N1	0.0877 (11)	0.0440 (8)	0.0398 (8)	0.0137 (7)	0.0233 (7)	0.0026 (6)
N2	0.0624 (9)	0.0405 (7)	0.0401 (7)	0.0093 (6)	0.0158 (6)	0.0030 (6)
C1	0.0582 (10)	0.0426 (9)	0.0392 (9)	0.0031 (8)	0.0140 (7)	-0.0008 (7)
C2	0.0558 (10)	0.0399 (9)	0.0390 (9)	0.0005 (7)	0.0158 (7)	0.0000 (7)
C3	0.0745 (12)	0.0514 (10)	0.0420 (9)	0.0053 (9)	0.0212 (8)	0.0077 (8)
C4	0.0724 (12)	0.0558 (11)	0.0394 (9)	-0.0028 (9)	0.0243 (8)	-0.0021 (8)
C5	0.0639 (11)	0.0422 (9)	0.0473 (10)	-0.0050 (8)	0.0233 (8)	-0.0073 (7)
C6	0.0795 (12)	0.0391 (9)	0.0451 (10)	0.0076 (8)	0.0207 (9)	0.0020 (7)
C7	0.0662 (11)	0.0398 (9)	0.0377 (9)	0.0034 (8)	0.0179 (8)	-0.0004 (7)
C8	0.0630 (11)	0.0465 (10)	0.0396 (9)	0.0106 (8)	0.0146 (8)	-0.0004 (7)
C9	0.0673 (12)	0.0607 (12)	0.0557 (11)	0.0019 (9)	0.0206 (9)	-0.0064 (9)
C10	0.0667 (12)	0.0876 (15)	0.0654 (12)	0.0048 (11)	0.0291 (10)	-0.0104 (11)
C11	0.0724 (13)	0.0841 (15)	0.0542 (11)	0.0195 (11)	0.0224 (10)	-0.0142 (10)
C12	0.0739 (13)	0.0579 (11)	0.0455 (10)	0.0130 (10)	0.0093 (9)	-0.0108 (8)
C13	0.0608 (11)	0.0507 (10)	0.0417 (9)	0.0078 (8)	0.0118 (8)	-0.0020 (8)
C14	0.0747 (14)	0.0818 (15)	0.0828 (15)	-0.0122 (12)	0.0129 (11)	-0.0203 (12)
C15	0.0793 (13)	0.0460 (10)	0.0529 (11)	0.0168 (9)	0.0158 (9)	0.0044 (8)
C16	0.1111 (18)	0.0497 (11)	0.0806 (14)	0.0041 (11)	0.0386 (13)	0.0131 (10)
C17	0.0878 (15)	0.0715 (14)	0.0733 (14)	0.0173 (11)	0.0039 (11)	0.0000 (11)
C18	0.0757 (16)	0.101 (2)	0.111 (2)	-0.0132 (13)	0.0018 (13)	-0.0121 (15)
C19	0.0810 (13)	0.0475 (10)	0.0584 (12)	-0.0050 (9)	0.0315 (10)	-0.0091 (9)
C20	0.153 (6)	0.058 (2)	0.108 (4)	0.034 (3)	0.053 (5)	-0.011 (2)
C21	0.117 (4)	0.081 (2)	0.142 (4)	0.041 (3)	0.031 (3)	0.006 (3)
C21A	0.117 (4)	0.081 (2)	0.142 (4)	0.041 (3)	0.031 (3)	0.006 (3)
C20A	0.153 (6)	0.058 (2)	0.108 (4)	0.034 (3)	0.053 (5)	-0.011 (2)

Geometric parameters (Å, °)

O1—C13	1.365 (2)	C12—C13	1.388 (2)	
O1-C14	1.422 (2)	C12—H12	0.9300	
O2—C19	1.198 (2)	C14—H14A	0.9600	
O3—C19	1.324 (2)	C14—H14B	0.9600	
O3—C20A	1.456 (5)	C14—H14C	0.9600	
O3—C20	1.456 (4)	C15—C17	1.501 (3)	
N1-C1	1.306 (2)	C15—C16	1.546 (3)	
N1—C7	1.390 (2)	C15—H15	0.9800	

supporting information

N2—C1	1.376 (2)	C16—H16A	0.9600
N2—C2	1.385 (2)	C16—H16B	0.9600
N2—C15	1.480 (2)	C16—H16C	0.9600
C1—C8	1.485 (2)	C17—C18	1.489 (3)
C2—C3	1.392 (2)	С17—Н17А	0.9700
C2—C7	1.397 (2)	С17—Н17В	0.9700
C3—C4	1.372 (2)	C18—H18A	0.9600
С3—Н3	0.9300	C18—H18B	0.9600
C4—C5	1.398 (2)	C18—H18C	0.9600
C4—H4	0.9300	C20—C21	1.441 (12)
C5—C6	1.384 (2)	С20—Н20А	0.9700
C5—C19	1.480 (2)	С20—Н20В	0.9700
C6—C7	1.387 (2)	C21—H21A	0.9600
С6—Н6	0.9300	C21—H21B	0.9600
C_{8}	1 381 (3)	C_{21} H21C	0.9600
C8-C13	1 392 (2)	$C_{21} = C_{20}$	1440(13)
C_{0} C_{10}	1.392(2) 1.381(3)	$C_{21}A = H_{21}D$	0.9600
C_{0} H0	0.0300	C_{21A} H21E	0.9000
$C_{2} = 115$	0.9300	C_{21A} H21E	0.9000
C10_U10	1.370(3)		0.9000
C10—H10	0.9300	$C_{20}A = H_{20}C$	0.9700
	1.373 (3)	C20A—H20D	0.9700
CII—HII	0.9300		
C12 O1 C14	119 20 (15)	N2 C15 C17	111 10 (16)
C13 - 01 - C14	118.20 (15)	$N_2 = C15 = C17$	111.19 (16)
C19 - 03 - C20A	118.4 (17)	$N_2 - C_{15} - C_{16}$	111.76 (15)
C19 - 03 - C20	116.7 (6)		113.08 (17)
CI-NI-C/	104.53 (13)	N2—C15—H15	106.8
CI—N2—C2	106.11 (12)	С17—С15—Н15	106.8
C1—N2—C15	125.83 (13)	С16—С15—Н15	106.8
C2—N2—C15	127.75 (13)	C15—C16—H16A	109.5
N1—C1—N2	113.72 (13)	C15—C16—H16B	109.5
N1—C1—C8	122.94 (14)	H16A—C16—H16B	109.5
N2—C1—C8	123.27 (14)	C15—C16—H16C	109.5
N2—C2—C3	133.33 (15)	H16A—C16—H16C	109.5
N2—C2—C7	105.16 (13)	H16B—C16—H16C	109.5
C3—C2—C7	121.52 (15)	C18—C17—C15	113.38 (19)
C4—C3—C2	117.02 (15)	C18—C17—H17A	108.9
С4—С3—Н3	121.5	С15—С17—Н17А	108.9
С2—С3—Н3	121.5	C18—C17—H17B	108.9
C3—C4—C5	122.30 (15)	C15—C17—H17B	108.9
C3—C4—H4	118.8	H17A—C17—H17B	107.7
C5—C4—H4	118.8	C17—C18—H18A	109.5
C6—C5—C4	120.35 (15)	C17—C18—H18B	109.5
C6—C5—C19	121.18 (16)	H18A—C18—H18B	109.5
C4—C5—C19	118.47 (15)	C17—C18—H18C	109.5
C5—C6—C7	118.24 (15)	H18A—C18—H18C	109.5
С5—С6—Н6	120.9	H18B—C18—H18C	109.5
С7—С6—Н6	120.9	O2—C19—O3	122.81 (18)

C6—C7—N1	128.98 (15)	O2—C19—C5	124.93 (19)
C6—C7—C2	120.55 (14)	O3—C19—C5	112.26 (15)
N1—C7—C2	110.46 (14)	C21—C20—O3	106.8 (8)
C9—C8—C13	119.04 (15)	C21—C20—H20A	110.4
C9—C8—C1	119.08 (16)	O3—C20—H20A	110.4
C13—C8—C1	121.81 (16)	C21—C20—H20B	110.4
C10—C9—C8	120.85 (19)	O3—C20—H20B	110.4
С10—С9—Н9	119.6	H20A—C20—H20B	108.6
С8—С9—Н9	119.6	C20—C21—H21A	109.5
C11—C10—C9	119.33 (19)	C20—C21—H21B	109.5
C11—C10—H10	120.3	$H_{21}A - C_{21} - H_{21}B$	109.5
C9—C10—H10	120.3	C20—C21—H21C	109.5
C10-C11-C12	121.27 (17)	$H_{21}A - C_{21} - H_{21}C$	109.5
C10—C11—H11	119.4	H_{21B} C_{21} H_{21C}	109.5
C12—C11—H11	119.4	C_{20A} C_{21A} H_{21D}	109.5
C11-C12-C13	119 38 (18)	C_{20A} C_{21A} H_{21E}	109.5
$C_{11} - C_{12} - H_{12}$	120.3	H_{21D} C_{21A} H_{21E}	109.5
C13 - C12 - H12	120.3	C_{20A} C_{21A} H_{21E}	109.5
01-C13-C12	120.5	H_{21D} C_{21A} H_{21F}	109.5
01 - C13 - C8	124.40(17) 115 49 (14)	$H_{21E} = C_{21A} = H_{21E}$	109.5
C_{12} C_{13} C_{8}	113.49(14) 120.11(17)	$C_{21} = C_{21} = C$	109.3
$C_{12} = C_{13} = C_{3}$	100.5	$C_{21A} = C_{20A} = 0.5$	101.4 (11)
O1 - C14 - H14R	109.5	$O_3 C_{20A} H_{20C}$	111.5
	109.5	C_{21A} C_{20A} H_{20D}	111.5
$\begin{array}{ccc} \mathbf{H}\mathbf{H}\mathbf{A} & \mathbf{H}\mathbf{H}\mathbf{A} \\ \mathbf{O}\mathbf{I} & \mathbf{C}\mathbf{I}\mathbf{A} & \mathbf{H}\mathbf{I}\mathbf{A}\mathbf{C} \\ \end{array}$	109.5	$C_2TA = C_20A = H_20D$	111.5
	109.5	U_{20}	111.5
H14A - C14 - H14C	109.5	H20C-C20A-H20D	109.5
П14В—С14—П14С	109.5		
C7 - N1 - C1 - N2	0.4(2)	C1—C8—C9—C10	-178 21 (17)
C7 - N1 - C1 - C8	-176.62(16)	C8 - C9 - C10 - C11	0.0(3)
$C_{2} = N_{2} = C_{1} = N_{1}$	-12(2)	C9-C10-C11-C12	0.0(3)
C_{15} N2 C_{1} N1	-175 22 (16)	C_{10} C_{11} C_{12} C_{13}	-0.5(3)
$C_{1} = N_{2} = C_{1} = N_{1}$	175.86 (16)	$C_{14} - O_{1} - C_{13} - C_{12}$	-105(3)
$C_{12} = N_{2} = C_{1} = C_{0}$	18(3)	$C_{14} = 01 = C_{13} = C_{12}$	169.60(17)
$C1_{N2}$ $C2_{C3}$	-17875(18)	$C_{11} - C_{12} - C_{13} - C_{13}$	109.00(17) 179.54(17)
$C_1 = N_2 - C_2 - C_3$	-4.9(3)	$C_{11} C_{12} C_{13} C_{8}$	-0.6(3)
$C_{13} = N_2 = C_2 = C_3$	(3)	$C_{11}^{0} = C_{12}^{0} = C_{13}^{0} = C_{13}^{0}$	-17876(16)
C1 = N2 = C2 = C7	1.57 (16)	$C_{3} = C_{3} = C_{13} = O_{13}$	-1.7(2)
$N_2 C_2 C_3 C_4$	175.20(10) 180.00(18)	$C_1 = C_0 = C_{13} = C_{13}$	1.7(2) 1.2(3)
C_{7} C_{2} C_{3} C_{4}	-0.1(3)	C_{3} C_{1} C_{8} C_{13} C_{12}	1.5(5) 178/10(16)
$C_{1}^{2} = C_{2}^{2} = C_{4}^{2} = C_{4}^{2}$	0.1(3)	C1 = C1 = C15 = C17	1/8.40(10)
$C_2 = C_3 = C_4 = C_5$	1.3(3) -1.5(2)	C1 = N2 = C15 = C17	-617(2)
C_{3} C_{4} C_{5} C_{10}	-1.3(3)	$C_2 = N_2 = C_{15} = C_{17}$	-01.7(2)
$C_{4} = C_{5} = C_{6} = C_{7}^{2}$	1//.90(1/)	$C_1 = N_2 = C_{15} = C_{16}$	-121.50(19)
$C_{4} - C_{5} - C_{0} - C_{1}$	0.2(3)	12 - 12 - 13 - 10	03.7(2)
$C_{19} = C_{0} = C_{0} = C_{0}$	-1/9.20(17)	$N_2 - U_1 - U_1 - U_1 \delta$	-33.0(2)
$C_{2} = C_{2} = C_{2}$	-1/8.9/(1/)	C10-C12-C1/-C18	1/8.28 (19)
C_{2}	1.2 (3)	$C_{20A} = 03 = 019 = 02$	-13.3(18)
CI - NI - C' - C6	-179.38 (19)	C20—O3—C19—O2	1.3 (5)

C1-N1-C7-C2 $N2-C2-C7-C6$ $C3-C2-C7-C6$ $N2-C2-C7-N1$ $C3-C2-C7-N1$ $N1-C1-C8-C9$ $N2-C1-C8-C9$ $N1-C1-C8-C13$ $N2-C1-C8-C13$ $C13-C8-C9-C10$	0.5 (2) 178.70 (16) -1.2 (3) -1.19 (19) 178.91 (16) 65.8 (2) -110.9 (2) -111.2 (2) 72.0 (2) -1 1 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167.2 (17) -178.2 (5) -172.8 (2) 7.8 (3) 6.7 (3) -172.74 (17) 172.8 (5) -86 (10) 119 (2) 33 (6)
C13—C8—C9—C10	-1.1 (3)	C20—O3—C20A—C21A	33 (6)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/N2/C1/C2/C7 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C12—H12…N1 ⁱ	0.93	2.56	3.471 (2)	165
C20 A —H20 C ··· Cg^{ii}	0.97	2.90	3.71 (4)	141

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+3/2; (ii) -*x*, -*y*+2, -*z*+2.