Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

tert-Butyl 6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxvlate

Jie Yang

Microscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: yangjiewf72@126.com

Received 26 October 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.105; data-to-parameter ratio = 9.9.

In the title molecule, $C_{12}H_{20}N_2O_3$, both five-membered rings are in envelope conformations. In the crystal, N-H···O hydrogen bonds link the molecules into chains along [010].

Related literature

For applications of substituted pyrrolidines, see: Domagala et al. (1993); Pedder et al. (1976); Blanco & Sardina (1994); Husinec & Savic (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C12H20N2O3 $M_{\rm w} = 240.30$ Monoclinic, C2 a = 10.495 (5) Å b = 6.283 (3) Å c = 19.247(10) Å $\beta = 97.029 \ (8)^{\circ}$

 $V = 1259.7 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K0.21 \times 0.15 \times 0.06 mm

Data collection

Rigaku Saturn 724+ diffractometer 3265 measured reflections Absorption correction: multi-scan 1557 independent reflections (CrystalClear; Rigaku, 2007) 1452 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$ $T_{\min} = 0.981, T_{\max} = 0.995$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	1 restraint
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
1557 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
157 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $D \cdots A$ $N1 - H1 \cdots O1^i$ 1.97 0.88 2.848 (3) 175

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author would like to thank the Shandong Provincial Natural Science Foundation, China (Y2008B29) and the Weifang Technology Development Project (2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5363).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Blanco, M. J. & Sardina, F. J. (1994). Tetrahedron Lett., 35, 8493-8396.
- Domagala, J. M., Hagan, S. E., Joannides, T., Kiely, J. S., Laborde, E., Schroeder, M. C., Sesnie, J. A., Shapiro, M. A., Suto, M. J. S. & Vanderroest, S. (1993). J. Med. Chem. 36, 871-882.

Husinec, S. & Savic, V. (2005). Tetrahedron Asymmetry, 16, 2047-2061.

- Pedder, D. J., Fales, H. M., Jaouni, T., Blum, M., MacConnell, J. & Crewe, R. M. (1976). Tetrahedron, 32, 2275-227.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3492 [https://doi.org/10.1107/S160053681105046X] *tert-Butyl* 6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate

Jie Yang

S1. Comment

Depending on the substitution pattern and functionalization, different substituted pyrrolidines have been shown to be effective antibacterials or fungicides agents and glycosidase inhibitors (Domagala *et al.*, 1993; Pedder *et al.*, 1976; Blanco *et al.*, 1994); Husinec *et al.*, 2005). The crystal structure of the title compound is reported herein.

In the molecule (Fig. 1), all bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Both five-membered rings are in envelope conformations with C3 and C5 forming the flap. Atoms C6-C8/O2/O3/N2 are essentially planar, with a maximum deviation of 0.0082 (24) Å. In the crystal, N—H…O hydrogen bonds link molecules to form one dimensional chains along [010] (see Table 1).

S2. Experimental

Tert-butyl 6-oxo-2,7-diazasiro[4.4]nonane-2-carboxylate was synthesized with methyl 1-tert-butyl 3-ethyl 3-(cyanomethyl)pyrrolidine-1,3-dicarboxylate (13.4g) and Raney Ni (3.4g) in methanol under H2(50 Psi) atmosphere at room temperature.

Single crystals of the compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature. In the absence of anomalous dispersion effects the Friedel pairs were merged.

S3. Refinement

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.98–0.99 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The N—H distance is 0.88 Å, with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.

F(000) = 520

tert-Butyl 6-oxo-2,7-diazaspiro[4.4]nonane-2-carboxylate

Crystal data

 $C_{12}H_{20}N_2O_3$ $M_r = 240.30$ Monoclinic, C2 Hall symbol: C 2y a = 10.495 (5) Å b = 6.283 (3) Å c = 19.247 (10) Å $\beta = 97.029$ (8)° V = 1259.7 (11) Å³ Z = 4

Data collection

Rigaku Saturn 724+ diffractometer Radiation source: rotating anode Confocal monochromator ω scans at fixed $\chi = 45^{\circ}$ Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2007) $T_{\min} = 0.981, T_{\max} = 0.995$

Refinement

 $D_x = 1.267 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2422 reflections $\theta = 1.1-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KPlatelet, colorless $0.21 \times 0.15 \times 0.06 \text{ mm}$

3265 measured reflections 1557 independent reflections 1452 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -23 \rightarrow 25$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
S = 1.09	H-atom parameters constrained
1557 reflections	$w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 0.9713P]$
157 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.23$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Absolute configuration is unknown, there being no firm chemical evidence for its assignment to hand and it having not been established by anomalous dispersion effects in diffraction measurements on the crystal. An arbitrary choice of enantiomer has been made.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.2715 (2)	0.4600 (3)	0.43850 (10)	0.0313 (5)
O2	0.33362 (17)	0.2042 (3)	0.18571 (9)	0.0289 (5)
03	0.55006 (19)	0.1382 (4)	0.19625 (10)	0.0332 (5)
N1	0.3406 (2)	0.8081 (4)	0.44345 (11)	0.0255 (5)
H1	0.3028	0.8474	0.4798	0.031*
N2	0.4618 (2)	0.3546 (4)	0.27139 (12)	0.0275 (5)
C1	0.3315 (3)	0.6117 (5)	0.41741 (13)	0.0219 (6)
C2	0.4181 (3)	0.9527 (5)	0.40704 (14)	0.0279 (6)
H2B	0.5037	0.9751	0.4339	0.033*
H2A	0.3750	1.0920	0.3984	0.033*
C3	0.4286 (3)	0.8347 (5)	0.33812 (13)	0.0234 (6)
H3B	0.5134	0.8596	0.3220	0.028*
H3A	0.3605	0.8813	0.3011	0.028*
C4	0.4118 (3)	0.5993 (5)	0.35651 (13)	0.0209 (5)
C5	0.5419 (3)	0.4915 (5)	0.38093 (13)	0.0241 (6)
H5B	0.6051	0.5963	0.4027	0.029*
H5A	0.5317	0.3766	0.4150	0.029*
C6	0.5835 (3)	0.4018 (5)	0.31360 (15)	0.0303 (7)
H6B	0.6336	0.5078	0.2902	0.036*
H6A	0.6357	0.2714	0.3230	0.036*
C7	0.3515 (2)	0.4573 (5)	0.29695 (13)	0.0233 (6)
H7B	0.2936	0.3505	0.3143	0.028*
H7A	0.3024	0.5428	0.2596	0.028*
C8	0.4568 (2)	0.2247 (5)	0.21527 (13)	0.0244 (6)
C9	0.3028 (3)	0.0912 (5)	0.11865 (14)	0.0290 (7)
C10	0.3776 (3)	0.1875 (7)	0.06389 (15)	0.0461 (9)
H10A	0.3444	0.1321	0.0176	0.069*
H10C	0.4686	0.1501	0.0745	0.069*
H10B	0.3683	0.3427	0.0641	0.069*
C11	0.3283 (3)	-0.1464 (6)	0.12960 (17)	0.0381 (8)
H11B	0.2717	-0.2031	0.1620	0.057*
H11C	0.4180	-0.1680	0.1492	0.057*
H11A	0.3117	-0.2205	0.0846	0.057*
C12	0.1607 (3)	0.1350 (7)	0.10196 (17)	0.0419 (8)
H12A	0.1281	0.0648	0.0579	0.063*
H12C	0.1466	0.2888	0.0974	0.063*
H12B	0.1154	0.0799	0.1398	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic a	displacement	parameters	$(Å^2)$
----------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0348 (12)	0.0317 (11)	0.0293 (10)	-0.0073 (10)	0.0115 (8)	0.0027 (10)
O2	0.0228 (10)	0.0378 (11)	0.0253 (9)	0.0021 (10)	0.0002 (7)	-0.0106 (10)
O3	0.0261 (11)	0.0410 (13)	0.0335 (10)	0.0050 (10)	0.0074 (8)	-0.0098 (10)
N1	0.0263 (12)	0.0276 (13)	0.0234 (11)	0.0030 (11)	0.0066 (9)	-0.0023 (11)

N2	0.0190 (11)	0.0345 (13)	0.0284 (11)	0.0033 (11)	0.0004 (9)	-0.0091 (11)
C1	0.0200 (13)	0.0256 (13)	0.0200 (11)	-0.0001 (12)	0.0015 (10)	0.0016 (11)
C2	0.0280 (15)	0.0235 (13)	0.0322 (14)	0.0000 (13)	0.0033 (11)	0.0014 (13)
C3	0.0197 (13)	0.0265 (14)	0.0247 (12)	0.0022 (12)	0.0059 (10)	0.0037 (12)
C4	0.0193 (12)	0.0224 (13)	0.0211 (11)	0.0013 (12)	0.0025 (10)	0.0009 (11)
C5	0.0206 (13)	0.0249 (14)	0.0262 (13)	-0.0010 (12)	0.0001 (10)	-0.0014 (12)
C6	0.0183 (13)	0.0383 (18)	0.0336 (14)	0.0040 (13)	0.0001 (11)	-0.0076 (13)
C7	0.0181 (13)	0.0271 (13)	0.0252 (12)	0.0021 (12)	0.0053 (10)	-0.0021 (12)
C8	0.0219 (13)	0.0270 (14)	0.0248 (13)	0.0016 (12)	0.0048 (10)	-0.0003 (12)
C9	0.0309 (15)	0.0351 (16)	0.0212 (13)	-0.0022 (14)	0.0033 (11)	-0.0045 (13)
C10	0.048 (2)	0.062 (3)	0.0283 (15)	-0.009(2)	0.0058 (14)	0.0031 (17)
C11	0.0388 (18)	0.0359 (17)	0.0394 (17)	-0.0022 (16)	0.0030 (14)	-0.0081 (15)
C12	0.0337 (18)	0.050 (2)	0.0395 (17)	0.0044 (17)	-0.0073 (14)	-0.0070 (17)

Geometric parameters (Å, °)

01—C1	1.238 (3)	C5—C6	1.525 (4)	
O2—C8	1.353 (3)	C5—H5B	0.9900	
O2—C9	1.474 (3)	C5—H5A	0.9900	
O3—C8	1.214 (3)	C6—H6B	0.9900	
N1—C1	1.331 (4)	C6—H6A	0.9900	
N1-C2	1.454 (4)	С7—Н7В	0.9900	
N1—H1	0.8800	C7—H7A	0.9900	
N2—C8	1.350 (3)	C9—C12	1.511 (4)	
N2—C6	1.458 (4)	C9—C10	1.516 (4)	
N2C7	1.462 (3)	C9—C11	1.526 (5)	
C1—C4	1.527 (4)	C10—H10A	0.9800	
С2—С3	1.535 (4)	C10—H10C	0.9800	
C2—H2B	0.9900	C10—H10B	0.9800	
C2—H2A	0.9900	C11—H11B	0.9800	
C3—C4	1.536 (4)	C11—H11C	0.9800	
С3—Н3В	0.9900	C11—H11A	0.9800	
С3—НЗА	0.9900	C12—H12A	0.9800	
C4—C7	1.527 (4)	C12—H12C	0.9800	
C4—C5	1.545 (4)	C12—H12B	0.9800	
C8—O2—C9	120.7 (2)	N2—C6—H6A	111.1	
C1—N1—C2	114.6 (2)	С5—С6—Н6А	111.1	
C1—N1—H1	122.7	H6B—C6—H6A	109.1	
C2—N1—H1	122.7	N2	103.8 (2)	
C8—N2—C6	121.0 (2)	N2—C7—H7B	111.0	
C8—N2—C7	125.5 (2)	C4—C7—H7B	111.0	
C6—N2—C7	113.5 (2)	N2—C7—H7A	111.0	
01-C1-N1	127.3 (3)	C4—C7—H7A	111.0	
O1—C1—C4	124.3 (3)	H7B—C7—H7A	109.0	
N1-C1-C4	108.4 (2)	O3—C8—N2	123.9 (3)	
N1—C2—C3	102.6 (2)	O3—C8—O2	126.5 (3)	
N1—C2—H2B	111.2	N2—C8—O2	109.6 (2)	

C3—C2—H2B	111.2	$0^{2}-0^{2}-0^{2}$	101.8(2)
N1-C2-H2A	111.2	02 - C9 - C10	109.8(3)
$C_3 - C_2 - H_2 A$	111.2	$C_{12} - C_{9} - C_{10}$	1112(3)
$H^2B - C^2 - H^2A$	109.2	$0^{2}-0^{9}-0^{11}$	1095(2)
$C_2 - C_3 - C_4$	104.1 (2)	$C_{12} - C_{9} - C_{11}$	109.5(2) 111.1(3)
$C_2 = C_3 = C_4$	110.0	$C_{12} = C_{12} = C_{11}$	111.1(5) 1120(3)
$C_2 = C_3 = H_3 B$	110.9	$C_{10} = C_{10} = C_{10}$	112.9 (5)
$C_2 = C_2 = H_2 \Lambda$	110.9	C_{0} C_{10} H_{10}	109.5
$C_2 = C_3 = H_3 \Lambda$	110.9	$H_{10A} = C_{10} = H_{10C}$	109.5
C4 - C3 - H3A	100.0	HI0A - CI0 - HI0C	109.5
H3B—C3—H3A	109.0		109.5
C1 - C4 - C7	112.9 (2)	HI0A—CI0—HI0B	109.5
C1 - C4 - C3	102.6 (2)	HI0C—CI0—HI0B	109.5
C7—C4—C3	116.0 (2)	C9—C11—H11B	109.5
C1—C4—C5	109.8 (2)	C9—C11—H11C	109.5
C7—C4—C5	104.0 (2)	H11B—C11—H11C	109.5
C3—C4—C5	111.7 (2)	C9—C11—H11A	109.5
C6—C5—C4	103.8 (2)	H11B—C11—H11A	109.5
C6—C5—H5B	111.0	H11C-C11-H11A	109.5
C4—C5—H5B	111.0	C9—C12—H12A	109.5
С6—С5—Н5А	111.0	C9—C12—H12C	109.5
С4—С5—Н5А	111.0	H12A—C12—H12C	109.5
H5B—C5—H5A	109.0	C9—C12—H12B	109.5
N2—C6—C5	103.1 (2)	H12A—C12—H12B	109.5
N2—C6—H6B	111.1	H12C—C12—H12B	109.5
С5—С6—Н6В	111.1		
C2-N1-C1-01	-179.7 (3)	C7—N2—C6—C5	15.7 (3)
C2—N1—C1—C4	1.7 (3)	C4—C5—C6—N2	-30.5 (3)
C1—N1—C2—C3	15.7 (3)	C8—N2—C7—C4	-175.1 (3)
N1—C2—C3—C4	-25.8 (3)	C6—N2—C7—C4	5.9 (3)
O1—C1—C4—C7	37.5 (4)	C1—C4—C7—N2	-143.8 (2)
N1-C1-C4-C7	-143.8(2)	C3-C4-C7-N2	98.2 (3)
01-C1-C4-C3	163.1 (3)	C5-C4-C7-N2	-24.9(3)
N1-C1-C4-C3	-182(3)	C6-N2-C8-O3	0.5(4)
01-C1-C4-C5	-780(3)	C7 - N2 - C8 - O3	-1784(3)
N1 C1 C4 C5	100.7(3)	C_{1} C_{2} C_{3} C_{3} C_{3} C_{3} C_{3}	170.4(3)
$C_2 C_3 C_4 C_1$	267(3)	$C_{0} = N_{2} = C_{0} = C_{2}$	1/9.2(3)
$C_2 = C_3 = C_4 = C_1$	20.7(3)	$C^{-}_{N2} = C^{-}_{02} = C^{-}_{02}$	0.3(4)
$C_2 = C_3 = C_4 = C_7$	130.2(2)	$C_{9} = 02 = C_{8} = 03$	-8.0(4)
$C_2 = C_3 = C_4 = C_5$	-90.8(2)	$C_{9} = 0_{2} = C_{8} = N_{2}$	1/2.7(2)
	155.7 (2)	13 - 02 - 09 - 012	-1/2.4(3)
C/C4C5C6	34.6 (3)	C8—O2—C9—C10	-54.6 (4)
C3—C4—C5—C6	-91.2 (3)	C8—O2—C9—C11	69.9 (3)
C8—N2—C6—C5	-163.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A

supporting information

N1—H1···O1 ⁱ	0.88	1.97	2.848 (3)	175

Symmetry code: (i) -x+1/2, y+1/2, -z+1.