Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Acetyl-3-hydroxy-4-phenyl-4,5dihvdro-1H-1.5-benzodiazepin-2(3H)one

Mohamed Rida,^a Abdusalam Alsubari,^a El Mokhtar Essassi,^a Hafid Zouihri^b and Seik Weng Ng^{c,d}*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bInstitute of Nanomaterials and Nanotechnology MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 7 November 2011: accepted 10 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.149; data-to-parameter ratio = 20.2.

In the title compound, $C_{17}H_{16}N_2O_3$, the seven-membered diazepine ring adopts a boat conformation with the hydroxysubstituted C atom at the prow and fused benzene ring C atoms at the stern. The phenyl substituent occupies an equatorial position. The amino group of the ring system is a hydrogen-bond donor to the oxo O atom of an inversionrelated molecule, and the hydroxy group is a hydrogen-bond donor to the acetyl O atom of another inversion-related molecule. The two hydrogen bonds generate a ribbon motif parallel to $[10\overline{1}]$ in the crystal structure.

Related literature

For a related 1,5-benzodiazepin-2(3H)-one structure, see: Rida et al. (2011).

3584 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.024$

Experimental

Crystal data

C ₁₇ H ₁₆ N ₂ O ₃	$\gamma = 80.146 \ (1)^{\circ}$
$M_r = 296.32$	V = 719.95 (1) Å ³
Triclinic, P1	Z = 2
a = 8.9710 (1) Å	Mo $K\alpha$ radiation
b = 9.3142(1) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 9.4129 (1) Å	T = 293 K
$\alpha = 81.563 \ (1)^{\circ}$	$0.29 \times 0.23 \times 0.18 \text{ mm}$
$\beta = 68.921 \ (1)^{\circ}$	

Data collection

Bruker APEX DUO diffractometer 19110 measured reflections 4203 independent reflections

Refinement

D-N1

02

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.149$	independent and constrained
S = 1.02	refinement
4203 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1 F

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$-H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} -H1 \cdots O1^{i} \\ -H2 \cdots O3^{ii} \end{array}$	0.89 (2)	2.04 (2)	2.924 (1)	175 (2)
	0.83 (2)	2.09 (2)	2.905 (1)	168 (2)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5376).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Rida, M., Essassi, E. M., Massip, S., Lazar, S. & Zouihri, H. (2011). Acta Cryst. E67, o945-o946.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3337 [https://doi.org/10.1107/S1600536811047878]

5-Acetyl-3-hydroxy-4-phenyl-4,5-dihydro-1*H*-1,5-benzodiazepin-2(3*H*)-one

Mohamed Rida, Abdusalam Alsubari, El Mokhtar Essassi, Hafid Zouihri and Seik Weng Ng

S1. Comment

The report on 3-hydroxy-4-phenyl-1-[(3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl]-4,5-dihydro-1*H*-1,5benzodiazepin-2(3*H*)-one provides the preparation and biological activity of this class of benzodiazepin-2-ones (Rida *et al.*, 2011). In the present study, the reactant, 3-ydroxy-4-phenyl-4,5-dihydro-1*H*-1,5-benzodiazepin-2(3*H*)-one, has two amino -NH- units in the ring system; however, only one site is acetylated when the compound is treated with acetic anhydride. In the title compound, the seven-membered diazepine ring adopts a boat conformation with the hydroxy-substituted C atom at the prow and fused-ring C atoms at the stern; the phenyl substituent occupies an equatorial position (Fig. 1). The amino group of the ring system is a hydrogen-bond donor to the oxo O atom of an inversion-related molecule, and the hydroxy group is hydrogen-bond donor to the acetyl O atom of another inversion-related molecule (Table 1). The two hydrogen bonds generate a ribbon motif parallel to [1 0 - 1] (Fig. 2).

S2. Experimental

3-Hydroxy-4-phenyl-4,5-dihydro-1*H*-1,5-benzodiazepin-2(3*H*)-one (1 g. 3.9 mmol) was heated in acetic anhydride (20 ml) for 12 h. The precipitate was collected and recrystallized from ethanol to afford colorless crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C). The amino and hydroxy H-atoms were located in a difference Fourier map and were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{17}H_{16}N_2O_3$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2 Ribbon motif.

5-Acetyl-3-hydroxy-4-phenyl-4,5-dihydro-1H-1,5-benzodiazepin- 2(3H)-one

Crystal data

$C_{17}H_{16}N_2O_3$	$\beta = 68.921 \ (1)^{\circ}$
$M_r = 296.32$	$\gamma = 80.146 (1)^{\circ}$
Triclinic, $P\overline{1}$	V = 719.95 (1) Å ³
Hall symbol: -P 1	Z = 2
a = 8.9710 (1) Å	F(000) = 312
b = 9.3142(1) Å	$D_{\rm x} = 1.367 {\rm ~Mg} {\rm ~m}^{-3}$
c = 9.4129(1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 81.563 \ (1)^{\circ}$	Cell parameters from 9950 reflections

 $\theta = 2.2 - 34.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

allactic л

Data collection	
Bruker APEX DUO	3584 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Graphite monochromator	$h = -12 \rightarrow 12$
ω scans	$k = -13 \rightarrow 13$
19110 measured reflections	$l = -13 \rightarrow 13$
4203 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: diffe

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4203 reflections	and constrained refinement
208 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0876P)^2 + 0.1414P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.27 \ m e \ m \AA^{-3}$

Prism, colorless $0.29\times0.23\times0.18~mm$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.18813 (12)	0.41278 (9)	0.39332 (11)	0.0488 (2)
O2	0.50968 (12)	0.39185 (9)	0.34285 (10)	0.0430 (2)
O3	0.41433 (13)	0.74792 (11)	-0.06449 (10)	0.0513 (2)
N1	0.14350 (13)	0.64817 (10)	0.44597 (12)	0.0426 (2)
N2	0.37829 (11)	0.75893 (9)	0.18338 (9)	0.03178 (19)
C1	0.19921 (15)	0.78134 (12)	0.44620 (13)	0.0406 (3)
C2	0.1358 (2)	0.85962 (16)	0.57413 (16)	0.0656 (5)
H2A	0.0547	0.8253	0.6599	0.079*
C3	0.1927 (3)	0.98823 (18)	0.5745 (2)	0.0756 (6)
Н3	0.1499	1.0396	0.6609	0.091*
C4	0.3123 (2)	1.04144 (16)	0.4483 (2)	0.0639 (4)
H4	0.3501	1.1280	0.4496	0.077*
C5	0.37548 (17)	0.96508 (13)	0.31996 (15)	0.0468 (3)
Н5	0.4570	0.9999	0.2349	0.056*
C6	0.31790 (13)	0.83653 (11)	0.31723 (12)	0.0346 (2)
C7	0.24114 (14)	0.52550 (11)	0.39399 (12)	0.0363 (2)
C8	0.42230 (13)	0.53221 (11)	0.34285 (11)	0.0329 (2)
H8	0.4407	0.5843	0.4171	0.039*
С9	0.48415 (12)	0.61900 (10)	0.18549 (10)	0.0293 (2)
Н9	0.4758	0.5617	0.1099	0.035*
C10	0.65889 (13)	0.64317 (11)	0.13784 (12)	0.0345 (2)
C11	0.72509 (17)	0.67606 (14)	0.24003 (18)	0.0493 (3)

H11	0.6625	0.6825	0.3425	0.059*	
C12	0.8864 (2)	0.69927 (17)	0.1874 (3)	0.0685 (5)	
H12	0.9311	0.7212	0.2555	0.082*	
C13	0.98046 (18)	0.69010 (16)	0.0359 (3)	0.0722 (6)	
H13	1.0876	0.7066	0.0020	0.087*	
C14	0.91519 (18)	0.65653 (16)	-0.0649 (2)	0.0624 (4)	
H14	0.9786	0.6493	-0.1671	0.075*	
C15	0.75549 (15)	0.63361 (13)	-0.01454 (15)	0.0450 (3)	
H15	0.7120	0.6115	-0.0835	0.054*	
C16	0.35154 (14)	0.81314 (12)	0.05077 (12)	0.0371 (2)	
C17	0.24042 (18)	0.95367 (15)	0.05114 (17)	0.0529 (3)	
H17A	0.1983	0.9597	-0.0303	0.079*	
H17B	0.2988	1.0350	0.0367	0.079*	
H17C	0.1532	0.9560	0.1472	0.079*	
H1	0.042 (2)	0.635 (2)	0.498 (2)	0.057 (5)*	
H2	0.517 (2)	0.353 (2)	0.266 (2)	0.065 (5)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0575 (5)	0.0342 (4)	0.0491 (5)	-0.0188 (4)	-0.0046 (4)	-0.0074 (3)
O2	0.0622 (5)	0.0290 (4)	0.0370 (4)	0.0006 (3)	-0.0196 (4)	-0.0017 (3)
O3	0.0650 (6)	0.0559 (6)	0.0302 (4)	0.0024 (4)	-0.0175 (4)	-0.0038 (4)
N1	0.0456 (5)	0.0311 (5)	0.0406 (5)	-0.0124 (4)	0.0015 (4)	-0.0043 (4)
N2	0.0399 (4)	0.0259 (4)	0.0254 (4)	-0.0040 (3)	-0.0067 (3)	-0.0015 (3)
C1	0.0511 (6)	0.0282 (5)	0.0330 (5)	-0.0082(4)	-0.0009 (4)	-0.0050 (4)
C2	0.0924 (12)	0.0422 (7)	0.0385 (6)	-0.0147 (7)	0.0118 (7)	-0.0120 (5)
C3	0.1156 (15)	0.0465 (8)	0.0507 (8)	-0.0142 (9)	-0.0023 (9)	-0.0248 (6)
C4	0.0897 (11)	0.0368 (6)	0.0631 (9)	-0.0180 (7)	-0.0139 (8)	-0.0185 (6)
C5	0.0571 (7)	0.0316 (5)	0.0465 (6)	-0.0148 (5)	-0.0066(5)	-0.0058 (4)
C6	0.0432 (5)	0.0258 (4)	0.0298 (5)	-0.0061 (4)	-0.0052 (4)	-0.0040 (3)
C7	0.0491 (6)	0.0288 (5)	0.0270 (4)	-0.0114 (4)	-0.0062 (4)	-0.0004 (3)
C8	0.0469 (5)	0.0254 (4)	0.0259 (4)	-0.0063 (4)	-0.0116 (4)	-0.0009 (3)
C9	0.0385 (5)	0.0249 (4)	0.0240 (4)	-0.0057 (3)	-0.0091 (3)	-0.0028 (3)
C10	0.0389 (5)	0.0254 (4)	0.0381 (5)	-0.0054 (4)	-0.0111 (4)	-0.0034 (4)
C11	0.0556 (7)	0.0410 (6)	0.0608 (8)	-0.0076 (5)	-0.0281 (6)	-0.0112 (5)
C12	0.0610 (9)	0.0441 (7)	0.1198 (16)	-0.0066 (6)	-0.0511 (10)	-0.0159 (8)
C13	0.0406 (7)	0.0385 (7)	0.1285 (17)	-0.0077 (5)	-0.0178 (9)	-0.0063 (8)
C14	0.0456 (7)	0.0411 (7)	0.0778 (10)	-0.0069 (5)	0.0034 (7)	0.0027 (6)
C15	0.0454 (6)	0.0376 (6)	0.0426 (6)	-0.0069 (5)	-0.0042 (5)	-0.0013 (4)
C16	0.0414 (5)	0.0350 (5)	0.0313 (5)	-0.0071 (4)	-0.0097 (4)	0.0036 (4)
C17	0.0566 (7)	0.0426 (6)	0.0510(7)	0.0028 (5)	-0.0171 (6)	0.0076 (5)

Geometric parameters (Å, °)

01	1.2261 (13)	С7—С8	1.5297 (16)
O2—C8	1.4046 (13)	C8—C9	1.5382 (13)
O2—H2	0.83 (2)	C8—H8	0.9800

supporting information

O3—C16	1.2247 (14)	C9—C10	1.5148 (14)
N1—C7	1.3510 (15)	С9—Н9	0.9800
N1—C1	1.4149 (14)	C10—C11	1.3897 (17)
N1—H1	0.89 (2)	C10—C15	1.3905 (16)
N2—C16	1.3637 (14)	C11—C12	1.395 (2)
N2—C6	1.4302 (13)	C11—H11	0.9300
N2—C9	1.4776 (12)	C12—C13	1.378 (3)
C1—C2	1.3886 (17)	С12—Н12	0.9300
C1—C6	1.3950 (15)	C13—C14	1.375 (3)
$C^2 - C^3$	1 381 (2)	C13—H13	0.9300
$C_2 - H_2 A$	0.9300	C14— $C15$	1 3818 (19)
$C_2 - C_4$	1 378 (3)	C14 - H14	0.9300
$C_3 = U_3$	0.0300		0.9300
C_3	1.2814(10)	C16 C17	0.9300
$C_4 = C_3$	0.0200	C17 = U17	1.3031(17)
	0.9300	C17_H1/A	0.9600
C5—C6	1.3897 (15)	С17—Н17В	0.9600
С5—Н5	0.9300	CI/—HI/C	0.9600
С8—О2—Н2	109.8 (14)	N2—C9—C10	111.43 (8)
C7—N1—C1	124.00 (10)	N2-C9-C8	109.66 (8)
C7—N1—H1	114.4 (12)	C10—C9—C8	113.46 (9)
C1—N1—H1	120.4 (12)	N2—C9—H9	107.3
C16 - N2 - C6	122.88 (9)	C10-C9-H9	107.3
$C_{16} = N_{2} = C_{9}$	118 55 (8)	C8-C9-H9	107.3
C6-N2-C9	118 41 (8)	C_{11} C_{10} C_{15}	107.5 119.09(12)
C_{2} C_{1} C_{6}	110.41(0) 110.01(11)	$C_{11} - C_{10} - C_{13}$	119.09(12) 122.52(10)
$C_2 = C_1 = C_0$	120.58 (11)	$C_{10} = C_{10} = C_{10}$	122.32(10) 118.38(10)
$C_2 = C_1 = N_1$	120.38(11) 120.40(10)	$C_{10} = C_{10} = C_{10}$	110.38(10) 110.33(15)
C_{0}	120.40(10) 120.25(12)	$C_{10} = C_{11} = C_{12}$	119.55 (15)
C_{3}	120.25 (15)		120.5
$C_3 = C_2 = H_2 A$	119.9		120.3
C1 - C2 - H2A	119.9		120.92 (16)
C4 - C3 - C2	120.84 (13)	C13—C12—H12	119.5
C4—C3—H3	119.6	C11—C12—H12	119.5
С2—С3—Н3	119.6	C14—C13—C12	119.71 (14)
C3—C4—C5	119.44 (13)	C14—C13—H13	120.1
C3—C4—H4	120.3	С12—С13—Н13	120.1
C5—C4—H4	120.3	C13—C14—C15	120.03 (16)
C4—C5—C6	120.37 (12)	C13—C14—H14	120.0
C4—C5—H5	119.8	C15—C14—H14	120.0
С6—С5—Н5	119.8	C14—C15—C10	120.91 (14)
C5—C6—C1	120.05 (10)	C14—C15—H15	119.5
C5—C6—N2	121.01 (10)	C10—C15—H15	119.5
C1—C6—N2	118.94 (9)	O3—C16—N2	120.90 (10)
O1—C7—N1	122.08 (11)	O3—C16—C17	121.05 (11)
O1—C7—C8	121.49 (10)	N2-C16-C17	118.04 (10)
N1—C7—C8	116.36 (9)	С16—С17—Н17А	109.5
O2—C8—C7	111.68 (8)	C16—C17—H17B	109.5
O2—C8—C9	110.91 (8)	H17A—C17—H17B	109.5

supporting information

C7—C8—C9	111.53 (9)	C16—C17—H17C	109.5
O2—C8—H8	107.5	H17A—C17—H17C	109.5
C7—C8—H8	107.5	H17B—C17—H17C	109.5
С9—С8—Н8	107.5		
C7—N1—C1—C2	-134.65 (15)	C6—N2—C9—C10	-87.10 (10)
C7—N1—C1—C6	45.87 (19)	C16—N2—C9—C8	-145.05 (10)
C6—C1—C2—C3	-1.6 (3)	C6—N2—C9—C8	39.37 (12)
N1—C1—C2—C3	178.87 (17)	O2—C8—C9—N2	173.40 (8)
C1—C2—C3—C4	0.3 (3)	C7—C8—C9—N2	48.24 (11)
C2-C3-C4-C5	0.1 (3)	O2—C8—C9—C10	-61.29 (11)
C3-C4-C5-C6	0.7 (3)	C7—C8—C9—C10	173.56 (8)
C4 - C5 - C6 - C1	-2.0(2)	N2-C9-C10-C11	84.57 (12)
C4 - C5 - C6 - N2 C2 - C1 - C6 - C5	2.5 (2)	N2-C9-C10-C15	-39.79 (14) -94.64 (11)
N1—C1—C6—C5	-178.04 (12)	C8—C9—C10—C15	140.99 (10)
C2-C1-C6-N2	-177.42(13)	C15-C10-C11-C12	0.26 (18)
N1-C1-C6-N2	2.06 (18)	C9-C10-C11-C12	-1/8.95 (11)
C16-N2-C6-C5	-67.48 (16)	C10-C11-C12-C13	0.0 (2)
C9—N2—C6—C5	107.89 (12)	C11—C12—C13—C14	-0.5 (2)
C16—N2—C6—C1	112.42 (13)	C12—C13—C14—C15	0.7 (2)
C9—N2—C6—C1	-72.21 (14)	C13—C14—C15—C10	-0.4 (2)
C1—N1—C7—O1	-178.75 (11)	C11—C10—C15—C14	-0.10 (18)
C1—N1—C7—C8	4.08 (17)	C9—C10—C15—C14	179.14 (11)
O1—C7—C8—O2	-18.12 (14)	C6—N2—C16—O3	175.01 (10)
N1—C7—C8—O2	159.07 (10)	C9—N2—C16—O3	-0.35 (16)
01	106.61 (11)	C6—N2—C16—C17	-6.10 (16)
	-76.20 (12)	C9—N2—C16—C17	178.53 (10)
C16—N2—C9—C10	88.48 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
N1—H1···O1 ⁱ	0.89 (2)	2.04 (2)	2.924 (1)	175 (2)
O2—H2…O3 ⁱⁱ	0.83 (2)	2.09 (2)	2.905 (1)	168 (2)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.