Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1E,2E)-1,2-Bis[1-(3-chlorophenyl)ethylidene]hydrazine

Hoong-Kun Fun, ${ }^{\mathbf{a} *} \ddagger$ Patcharaporn Jansrisewangwong, ${ }^{\text {b }}$ Chatchanok Karalai ${ }^{\mathbf{b}}$ and Suchada Chantrapromma ${ }^{\text {b }} \S$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{b}}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my

Received 14 November 2011; accepted 21 November 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.051 ; w R$ factor $=0.180 ;$ data-to-parameter ratio $=21.4$.

The title molecule, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}$, lies on an inversion center. The dihedral angle between the symmetry-related benzene rings is $0.02(11)^{\circ}$. The mean plane of the central C (methyl) -$\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}-\mathrm{C}($ methyl $)$ unit forms a dihedral angle of $5.57(12)^{\circ}$ with the symmetry-unique benzene ring.

Related literature

For background to the biological activity and fluorescent properties of hydrazones, see: Li et al. (2009); Qin et al. (2009). For related structures see: Chantrapromma et al. (2010); Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}$
$b=5.2725(9) \AA$
$M_{r}=305.19$
Monoclinic, $P 2_{1} / c$
$a=10.7796$ (18) A
$c=15.3427$ (18) A
$\beta=121.540(8)^{\circ}$
$V=743.2(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.43 \mathrm{~mm}^{-1}$

Data collection
Bruker APEX DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.880, T_{\text {max }}=0.957$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051 \quad 92$ parameters
$w R\left(F^{2}\right)=0.180 \quad \mathrm{H}$-atom parameters constrained
$S=1.09$
1970 reflections
$T=297 \mathrm{~K}$
$0.31 \times 0.15 \times 0.11 \mathrm{~mm}$

7616 measured reflections 1970 independent reflections 1469 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

PJ thanks the Graduate School and the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5380).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, S., Jansrisewangwong, P. \& Fun, H.-K. (2010). Acta Cryst. E66, o2994-o2995.
Fun, H.-K., Jansrisewangwong, P. \& Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.
Fun, H.-K., Jansrisewangwong, P., Karalai, C. \& Chantrapromma, S. (2011). Acta Cryst. E67, o1526-o1527.
Jansrisewangwong, P., Chantrapromma, S. \& Fun, H.-K. (2010). Acta Cryst. E66, 02170.
Li, Y., Yang, Z.-Y. \& Wang, M.-F. (2009). Eur. J. Med. Chem. 44, 4585-4595.
Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. \& Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.
Qin, D.-D., Yang, Z.-Y. \& Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415420.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supporting information

Acta Cryst. (2011). E67, o3424 [https://doi.org/10.1107/S1600536811049725]
(1E,2E)-1,2-Bis[1-(3-chlorophenyl)ethylidene]hydrazine
Hoong-Kun Fun, Patcharaporn Jansrisewangwong, Chatchanok Karalai and Suchada
Chantrapromma

S1. Comment

Due to the interesting applications of hydrazones with respect to their antibacterial, antiviral and antioxidant (Li et al., 2009) as well as fluorescent properties (Qin et al., 2009), we have synthesized a series of hydrazones in order to study these activities and have reported some of these crystal structures (Chantrapromma et al., 2010; Fun et al., 2010,2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). As part of our on-going research on the medicinal chemistry of hydrazones, the title compound (I) was synthesized and its biological activities will be reported elsewhere. However, it does not possess fluorescent property.
The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains half a molecule and the complete molecule is generated by a crystallographic inversion center at -x, $1-y, 2-z$. The molecule exists in an E, E configuration with respect to the two ethylidene $\mathrm{C}=\mathrm{N}$ bonds $\left[1.279\right.$ (3) \AA] and the torsion angle $\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1=179.8(2)^{\circ}$. The molecule is essentially planar with the dihedral angle between the two benzene rings of $0.02(11)^{\circ}$. The diethylidenehydrazine moiety $(\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 1 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A} / \mathrm{C} 8 \mathrm{~A})$ is planar with the r.m.s of 0.0015 (2) \AA. This central $\mathrm{C}(\mathrm{methyl})-$ $\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}-\mathrm{C}($ methyl $)$ mean plane makes the dihedral angle of $5.57(12)^{\circ}$ with the adjacent benzene rings. The bond distances are within the normal range (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2010; Fun et al., 2010; 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

Although no clasical hydrogen bonds or weak interactions were observed in the crystal structure, the crystal packing is shown in Fig. 2.

S2. Experimental

The title compound (I) was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate ($0.10 \mathrm{ml}, 2 \mathrm{mmol}$) and 3-chloroacetophenone $(0.50 \mathrm{ml}, 4 \mathrm{mmol})$ in ethanol $(20 \mathrm{ml})$. The resulting solution was refluxed for 7 h , yielding the yellow crystalline solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone by slow evaporation of the solvent at room temperature over several days, Mp. 356-358 K.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA$ for aromatic and $0.96 \AA$ for CH_{3} atoms. The $U_{\text {iso }}$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at $1.92 \AA$ from H 8 B and the deepest hole is located at $0.70 \AA$ from Cl 1 .

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. Atoms with suffix A were generated by symmetry code -x, 1-y, 2-z.

Figure 2
The crystal packing of (I). No clasical hydrogen bonds nor weak interactions are observed in the crystal structure

(1E,2E)-1,2-Bis[1-(3-chlorophenyl)ethylidene]hydrazine

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2}$

$M_{r}=305.19$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=10.7796$ (18) \AA
$b=5.2725(9) \AA$
$c=15.3427(18) \AA$
$\beta=121.540(8)^{\circ}$
$V=743.2(2) \AA^{3}$
$Z=2$
$F(000)=316$
$D_{\mathrm{x}}=1.364 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=356-358 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1970 reflections
$\theta=2.2-29.0^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, yellow
$0.31 \times 0.15 \times 0.11 \mathrm{~mm}$

Data collection

Bruker APEX DUO CCD area-detector
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.880, T_{\max }=0.957$

> 7616 measured reflections
> 1970 independent reflections
> 1469 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.028$
> $\theta_{\max }=29.0^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-14 \rightarrow 14$
> $k=-7 \rightarrow 6$
> $l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.180$
$S=1.09$
1970 reflections
92 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0951 P)^{2}+0.2508 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.46$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.49474(7)$	$0.23824(14)$	$0.85934(6)$	$0.0708(3)$
N1	$0.0247(2)$	$0.5365(4)$	$0.96753(14)$	$0.0543(5)$
C1	$0.1907(2)$	$0.4809(4)$	$0.91400(14)$	$0.0413(4)$
C2	$0.3036(2)$	$0.3431(4)$	$0.91724(16)$	$0.0460(5)$
H2A	0.3438	0.2045	0.9607	0.055^{*}
C3	$0.3550(2)$	$0.4148(4)$	$0.85517(16)$	$0.0478(5)$
C4	$0.2988(2)$	$0.6198(5)$	$0.78983(17)$	$0.0527(6)$
H4A	0.3353	0.6655	0.7490	0.063^{*}
C5	$0.1869(3)$	$0.7552(4)$	$0.78659(19)$	$0.0535(6)$
H5A	0.1476	0.8939	0.7430	0.064^{*}
C6	$0.1324(2)$	$0.6875(4)$	$0.84733(16)$	$0.0468(5)$
H6A	0.0565	0.7801	0.8438	0.056^{*}
C7	$0.1350(2)$	$0.4107(4)$	$0.98120(15)$	$0.0426(4)$
C8	$0.2087(3)$	$0.2056(6)$	$1.0585(2)$	$0.0711(8)$
H8A	0.1613	0.1850	1.0964	0.107^{*}
H8B	0.3088	0.2501	1.1045	0.107^{*}

supporting information

H 8 C	0.2034	0.0496	1.0245	0.107^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0653(4)$	$0.0831(5)$	$0.0902(5)$	$0.0089(3)$	$0.0590(4)$	$-0.0068(3)$
N1	$0.0601(11)$	$0.0663(12)$	$0.0567(10)$	$0.0214(9)$	$0.0445(9)$	$0.0206(9)$
C1	$0.0438(10)$	$0.0463(10)$	$0.0414(9)$	$0.0004(8)$	$0.0276(8)$	$-0.0015(8)$
C2	$0.0470(10)$	$0.0503(11)$	$0.0487(10)$	$0.0038(9)$	$0.0306(9)$	$-0.0020(9)$
C3	$0.0459(10)$	$0.0571(13)$	$0.0518(11)$	$-0.0052(9)$	$0.0335(9)$	$-0.0125(9)$
C4	$0.0611(13)$	$0.0609(14)$	$0.0530(11)$	$-0.0129(11)$	$0.0415(11)$	$-0.0081(10)$
C5	$0.0604(13)$	$0.0577(14)$	$0.0507(12)$	$0.0002(10)$	$0.0347(11)$	$0.0068(9)$
C6	$0.0466(10)$	$0.0547(12)$	$0.0473(10)$	$0.0046(9)$	$0.0302(9)$	$0.0048(9)$
C7	$0.0471(10)$	$0.0470(11)$	$0.0435(9)$	$0.0054(8)$	$0.0305(8)$	$0.0023(8)$
C8	$0.0766(17)$	$0.0858(19)$	$0.0761(16)$	$0.0374(15)$	$0.0574(15)$	$0.0370(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C11-C3	1.743 (2)	C4-C5	1.380 (3)
N1-C7	1.279 (3)	C4-H4A	0.9300
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	1.406 (3)	C5-C6	1.383 (3)
C1-C2	1.395 (3)	C5-H5A	0.9300
C1-C6	1.399 (3)	C6-H6A	0.9300
C1-C7	1.486 (3)	C7-C8	1.491 (3)
C2-C3	1.382 (3)	C8-H8A	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	С8-H8B	0.9600
C3-C4	1.380 (3)	C8-H8C	0.9600
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$	113.9 (2)	C4-C5-H5A	119.6
C2- $\mathrm{C} 1-\mathrm{C} 6$	118.78 (18)	C6-C5-H5A	119.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	120.47 (19)	C5-C6-C1	120.5 (2)
C6-C1-C7	120.74 (18)	C5-C6-H6A	119.8
C3-C2-C1	119.3 (2)	C1-C6-H6A	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3	N1-C7-C1	115.82 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3	N1-C7-C8	124.68 (19)
C4-C3-C2	122.2 (2)	C1-C7-C8	119.49 (18)
C4-C3-Cl1	119.20 (16)	C7-C8-H8A	109.5
C2-C3-Cl1	118.63 (18)	C7-C8-H8B	109.5
C5-C4-C3	118.4 (2)	H8A-C8-H8B	109.5
C5-C4-H4A	120.8	C7-C8-H8C	109.5
C3-C4-H4A	120.8	H8A-C8-H8C	109.5
C4-C5-C6	120.9 (2)	H8B-C8-H8C	109.5
C6- $1-\mathrm{C} 2-\mathrm{C} 3$	0.3 (3)	C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.6 (3)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.95 (19)	C7-C1-C6-C5	178.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.2 (3)	N1- ${ }^{\text {i }} 11-\mathrm{C} 7-\mathrm{C} 1$	179.8 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	-179.32 (16)	N1- ${ }^{\text {i }} 1-\mathrm{C} 7-\mathrm{C} 8$	-0.5 (4)
C2-C3-C4-C5	-0.4 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-175.2 (2)

supporting information

$\mathrm{C} 11-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.15(17)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$5.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.0(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$5.1(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.5(4)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-174.1(2)$

Symmetry code: (i) $-x,-y+1,-z+2$.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.
 § Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson
 Reuters ResearcherID: A-5085-2009.

