

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) naphthalene-2,7-disulfonate

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 3 November 2011; accepted 17 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.031; wR factor = 0.084; data-to-parameter ratio = 15.2.

The Ni^{II} atom in the title salt, $[Ni(C_2H_8N_2)_3](C_{10}H_6O_6S_2)$, is chelated by three ethylenediamine ligands in an octahedral geometry. The cation and anion are linked by N-H···O hydrogen bonds into a three-dimensional network. One of the two -SO₃ groups is disordered over two positions in a 1:1 ratio.

Related literature

For the structure of tris(ethylenediamine)nickel(II) 2,6-naphthalenedisulfonate monohydrate, see: Huo *et al.* (2004).

Experimental

Crystal data $[Ni(C_2H_8N_2)_3](C_{10}H_6O_6S_2)$ $M_r = 525.59$ Monoclinic, C2/c a = 23.624 (8) Å b = 14.203 (6) Å c = 14.715 (4) Å $\beta = 115.152$ (12)° V = 4469 (3) Å³ Z = 8 Mo *Kα* radiation $\mu = 1.10$ mm⁻¹

 $\mu = 1.10 \text{ mm}$ T = 293 K $0.20 \times 0.16 \times 0.13 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.810, T_{max} = 0.870$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.084$ S = 1.055107 reflections 337 parameters 36 restraints 21605 measured reflections 5107 independent reflections 4533 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.57\ \text{e}\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.36\ \text{e}\ \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H11···O1	0.88 (1)	2.09 (2)	2.866 (7)	146 (2)
$N1 - H12 \cdot \cdot \cdot O2^{i}$	0.87(1)	2.21 (2)	3.040 (5)	160 (3)
$N1 - H12 \cdot \cdot \cdot O2'^{i}$	0.87 (1)	2.21 (2)	3.009 (5)	152 (3)
$N2-H21\cdots O5^{ii}$	0.88(1)	2.26 (1)	3.075 (2)	155 (2)
$N2 - H22 \cdot \cdot \cdot O6^{iii}$	0.88 (1)	2.22 (2)	3.035 (2)	154 (2)
$N3-H31\cdots O4^{iv}$	0.88(1)	2.28 (1)	3.140 (2)	166 (2)
N3−H32···O4 ⁱⁱⁱ	0.88(1)	2.34 (1)	3.210 (2)	169 (2)
$N5-H51\cdots O4^{iv}$	0.88 (1)	2.25 (1)	3.093 (3)	159 (2)
$N5-H52\cdots O3^{v}$	0.88(1)	2.10(2)	2.860 (6)	144 (2)
$N5-H52\cdots O3'^{v}$	0.88 (1)	2.20 (2)	3.016 (6)	155 (2)
$N6-H61\cdots O1$	0.88(1)	2.02(2)	2.88 (1)	168 (2)
$N6-H62\cdots O6^{iii}$	0.88 (1)	2.26 (2)	3.055 (2)	151 (2)

Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (iii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iv) -x + 1, y + 1, $-z + \frac{3}{2}$; (v) x, -y + 1, $z + \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2123).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Huo, L.-H., Gao, S., Lu, Z.-Z., Xu, S.-X. & Zhao, H. (2004). Acta Cryst. E60, m1205–m1207.

Acta Cryst. (2011). E67, m1817 [https://doi.org/10.1107/S1600536811049063] Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) naphthalene-2,7-disulfonate

Shan Gao and Seik Weng Ng

S1. Comment

A previous study reported the crystal structure of tris(ethylenediamine)nickel(II) 2,6-naphthalenedisulfonate, which exists as a monohydrated salt (Huo *et al.*, 2004). The present 2,7-naphtalenedisulfonate is an anhydrous salt (Scheme I). The Ni^{II} atom in Ni(en)₃]²⁺ ($C_{10}H_6O_6S_2$)²⁻ is chelated by the en ligands in an octahedral geometry (Fig. 1). The cation and anion are linked by N–H···O hydrogen bonds into a hydrogen-bonded three-dimensional network (Table 1). One of the two – SO₃ groups is disordered over two positions in a 1:1 ratio.

S2. Experimental

Nickel nitrate (1 mmol) and sodium 2,7-naphthalenedisulfonate (1 mmol) were dissolved in water (10 mol); the pH was adjusted to *ca* 6 by the dropwise addition of ethylenediamine. The solution was filtered; the solvent was allowed to evaporate for several days. Red crystals were isolated from the filtrate after several days.

S3. Refinement

C-bound H-atoms were generated geometrically and were included in the riding model approximation [C–H 0.93–0.97 Å, $U 1.2 U_{eq}$ (C)]. The amino H atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

One sulfonate $-SO_3$ group is disordered over two positions in respect of the O atoms. Each pair of S–O/S–O' distances were restrained to within 0.01 Å of each other, and the temperature factors of the primed atoms were set to those of the unprimed ones. The anisotropic temperature factors of the disordered atoms were restrained to be nearly isotropic. The occupancy could not be refined, and the disorder was assumed to be a 1:1 type of disorder.

Figure 1

A displacement ellipsoid plot of $[Ni(en)_3]$ ($C_{10}H_6O_6S_2$) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius; the disorder in the $-SO_3$ is not shown.

Tris(ethylenediamine- $\kappa^2 N, N'$)nickel(II) naphthalene-2,7-disulfonate

Crystal data

[Ni(C₂H₈N₂)₃](C₁₀H₆O₆S₂) $M_r = 525.59$ Monoclinic, C2/c Hall symbol: -C 2yc a = 23.624 (8) Å b = 14.203 (6) Å c = 14.715 (4) Å $\beta = 115.152$ (12)° V = 4469 (3) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID IP diffractometer	21605 measured reflections 5107 independent reflections
Radiation source: fine-focus sealed tube	4533 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.015$
ω scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 30$
(ABSCOR; Higashi, 1995)	$k = -18 \rightarrow 18$
$T_{\min} = 0.810, \ T_{\max} = 0.870$	$l = -19 \rightarrow 17$
Refinement	

F(000) = 2208

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 1.10 \text{ mm}^{-1}$ T = 293 K

Prism. red

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

 $0.20 \times 0.16 \times 0.13 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 18982 reflections

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.031$ Hydrogen site location: inferred from $wR(F^2) = 0.084$ neighbouring sites S = 1.05H atoms treated by a mixture of independent 5107 reflections and constrained refinement 337 parameters $w = 1/[\sigma^2(F_0^2) + (0.0494P)^2 + 3.411P]$ 36 restraints where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.323671 (9)	0.546855 (14)	0.654094 (14)	0.02520 (8)	
S1	0.45513 (2)	0.33944 (3)	0.52210 (3)	0.03989 (13)	
S2	0.672875 (18)	-0.08335 (3)	0.81143 (3)	0.02922 (10)	
01	0.4030 (3)	0.3752 (9)	0.5376 (6)	0.0735 (17)	0.50
O2	0.5155 (2)	0.3831 (7)	0.5842 (5)	0.0750 (18)	0.50
03	0.4427 (3)	0.3397 (11)	0.4172 (4)	0.0563 (13)	0.50
01′	0.3896 (2)	0.3602 (9)	0.5021 (6)	0.0735 (17)	0.50
O2′	0.4995 (3)	0.3925 (7)	0.6050 (5)	0.0750 (18)	0.50
O3′	0.4620 (3)	0.3435 (11)	0.4303 (4)	0.0563 (13)	0.50
O4	0.66316 (7)	-0.16194 (11)	0.86591 (12)	0.0504 (4)	
05	0.70273 (8)	-0.11148 (13)	0.74792 (12)	0.0570 (4)	
O6	0.70517 (7)	-0.00567 (11)	0.87655 (11)	0.0523 (4)	

N1	0.38181 (8)	0.42594 (13)	0.70904 (14)	0.0435 (4)
H11	0.4042 (10)	0.4165 (18)	0.6747 (16)	0.049 (7)*
H12	0.4088 (11)	0.428 (2)	0.7715 (9)	0.067 (8)*
N2	0.25305 (7)	0.44232 (11)	0.59354 (12)	0.0337 (3)
H21	0.2294 (9)	0.4393 (16)	0.6260 (15)	0.041 (6)*
H22	0.2278 (10)	0.4548 (17)	0.5311 (9)	0.056 (7)*
N3	0.25470 (7)	0.65642 (11)	0.60117 (12)	0.0332 (3)
H31	0.2714 (11)	0.7125 (10)	0.6054 (18)	0.047 (6)*
H32	0.2277 (9)	0.6498 (17)	0.5379 (9)	0.048 (6)*
N4	0.30898 (9)	0.56411 (13)	0.78573 (12)	0.0409 (4)
H41	0.2898 (10)	0.5151 (11)	0.7960 (17)	0.045 (6)*
H42	0.3436 (8)	0.5686 (18)	0.8409 (13)	0.056 (7)*
N5	0.39861 (8)	0.64335 (13)	0.70433 (12)	0.0390 (4)
H51	0.3845 (11)	0.7013 (9)	0.7016 (19)	0.053 (7)*
H52	0.4259 (9)	0.6361 (17)	0.7672 (9)	0.051 (7)*
N6	0.33957 (7)	0.55196 (11)	0.52267 (11)	0.0327 (3)
H61	0.3570 (10)	0.4988 (10)	0.5174 (17)	0.044 (6)*
H62	0.3041 (7)	0.5556 (16)	0.4689 (12)	0.047 (7)*
C1	0.34060 (12)	0.34445 (16)	0.6965 (2)	0.0574 (6)
H1A	0.3276	0.3429	0.7508	0.069*
H1B	0.3630	0.2867	0.6987	0.069*
C2	0.28382 (10)	0.35180 (14)	0.59713 (17)	0.0448 (5)
H2A	0.2963	0.3478	0.5424	0.054*
H2B	0.2552	0.3005	0.5903	0.054*
C3	0.22305 (11)	0.65778 (16)	0.66824 (17)	0.0459 (5)
H3A	0.1939	0.6057	0.6524	0.055*
H3B	0.1998	0.7160	0.6594	0.055*
C4	0.27174 (12)	0.64973 (16)	0.77527 (16)	0.0515 (6)
H4A	0.2988	0.7046	0.7927	0.062*
H4B	0.2515	0.6468	0.8204	0.062*
C5	0.42990 (9)	0.63874 (17)	0.63685 (16)	0.0474 (5)
H5A	0.4568	0.5838	0.6524	0.057*
H5B	0.4555	0.6944	0.6452	0.057*
C6	0.38004 (10)	0.63295 (17)	0.53008 (15)	0.0454 (5)
H6A	0.3555	0.6904	0.5126	0.054*
H6B	0.3993	0.6252	0.4840	0.054*
C7	0.52052 (9)	0.18670 (14)	0.62530 (14)	0.0380 (4)
H7	0.5533	0.2288	0.6565	0.046*
C8	0.46370 (9)	0.21874 (14)	0.55760 (14)	0.0377 (4)
C9	0.41316 (9)	0.15619 (16)	0.51095 (16)	0.0464 (5)
H9	0.3745	0.1791	0.4660	0.056*
C10	0.42092 (9)	0.06234 (16)	0.53159 (17)	0.0479 (5)
H10	0.3872	0.0217	0.5008	0.057*
C11	0.47987 (8)	0.02544 (14)	0.59972 (14)	0.0363 (4)
C12	0.52960 (8)	0.08928 (13)	0.64802 (13)	0.0335 (4)
C13	0.58896 (8)	0.05348 (12)	0.71579 (13)	0.0328 (4)
H13	0.6219	0.0946	0.7497	0.039*
C14	0.59740 (8)	-0.04064 (12)	0.73078 (13)	0.0302 (3)

C15	0.54825 (9)	-0.10479 (14)	0.68024 (15)	0.0397 (4)
H15	0.5552	-0.1692	0.6899	0.048*
C16	0.49068 (9)	-0.07183 (15)	0.61726 (16)	0.0431 (5)
H16	0.4581	-0.1141	0.5855	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ni1	0.02437 (12)	0.02816 (12)	0.01999 (12)	-0.00189 (8)	0.00647 (8)	-0.00058 (7)
S 1	0.0457 (3)	0.0396 (3)	0.0287 (2)	0.0178 (2)	0.01033 (19)	0.00466 (17)
S2	0.02485 (19)	0.0306 (2)	0.0274 (2)	0.00450 (16)	0.00644 (15)	0.00552 (15)
01	0.084 (2)	0.062 (3)	0.098 (5)	0.038 (3)	0.061 (3)	0.016 (4)
O2	0.098 (3)	0.0375 (18)	0.045 (3)	0.012 (2)	-0.012 (2)	-0.0056 (16)
O3	0.063 (4)	0.0654 (16)	0.0404 (14)	0.001 (4)	0.022 (2)	0.0078 (18)
O1′	0.084 (2)	0.062 (3)	0.098 (5)	0.038 (3)	0.061 (3)	0.016 (4)
O2′	0.098 (3)	0.0375 (18)	0.045 (3)	0.012 (2)	-0.012 (2)	-0.0056 (16)
O3′	0.063 (4)	0.0654 (16)	0.0404 (14)	0.001 (4)	0.022 (2)	0.0078 (18)
O4	0.0445 (8)	0.0465 (9)	0.0551 (9)	0.0062 (6)	0.0162 (7)	0.0245 (7)
05	0.0484 (9)	0.0748 (12)	0.0563 (10)	0.0202 (8)	0.0303 (8)	0.0078 (8)
O6	0.0402 (7)	0.0441 (8)	0.0463 (8)	0.0031 (6)	-0.0068 (6)	-0.0035 (6)
N1	0.0370 (9)	0.0459 (10)	0.0372 (9)	0.0073 (7)	0.0057 (7)	0.0097 (7)
N2	0.0318 (8)	0.0357 (8)	0.0309 (8)	-0.0049 (6)	0.0107 (6)	-0.0023 (6)
N3	0.0350 (8)	0.0330 (8)	0.0323 (8)	0.0006 (6)	0.0149 (6)	-0.0003 (6)
N4	0.0529 (10)	0.0448 (9)	0.0250 (8)	-0.0103 (8)	0.0166 (7)	-0.0026 (6)
N5	0.0314 (8)	0.0458 (10)	0.0324 (8)	-0.0097 (7)	0.0066 (6)	-0.0051 (7)
N6	0.0291 (7)	0.0410 (9)	0.0254 (7)	0.0042 (6)	0.0091 (6)	-0.0015 (6)
C1	0.0611 (14)	0.0381 (12)	0.0638 (15)	0.0082 (10)	0.0177 (12)	0.0202 (10)
C2	0.0517 (12)	0.0285 (9)	0.0530 (12)	-0.0058 (8)	0.0210 (10)	-0.0038 (8)
C3	0.0516 (12)	0.0439 (11)	0.0555 (13)	0.0064 (9)	0.0356 (10)	-0.0023 (9)
C4	0.0795 (16)	0.0455 (12)	0.0449 (12)	-0.0080 (11)	0.0412 (12)	-0.0122 (9)
C5	0.0323 (9)	0.0603 (13)	0.0495 (12)	-0.0126 (9)	0.0173 (9)	-0.0034 (10)
C6	0.0452 (11)	0.0566 (13)	0.0386 (11)	-0.0042 (9)	0.0219 (9)	0.0061 (9)
C7	0.0341 (9)	0.0348 (9)	0.0341 (9)	0.0053 (7)	0.0039 (7)	-0.0016 (7)
C8	0.0406 (10)	0.0390 (10)	0.0307 (9)	0.0128 (8)	0.0125 (8)	0.0041 (7)
C9	0.0274 (9)	0.0583 (13)	0.0431 (11)	0.0108 (8)	0.0050 (8)	0.0081 (9)
C10	0.0254 (9)	0.0552 (13)	0.0515 (12)	0.0008 (8)	0.0054 (8)	0.0072 (10)
C11	0.0257 (8)	0.0446 (10)	0.0350 (9)	0.0021 (7)	0.0094 (7)	0.0048 (7)
C12	0.0295 (8)	0.0356 (9)	0.0292 (8)	0.0050 (7)	0.0065 (7)	0.0016 (7)
C13	0.0271 (8)	0.0318 (9)	0.0301 (9)	0.0009 (6)	0.0032 (7)	-0.0001 (6)
C14	0.0260 (8)	0.0352 (9)	0.0260 (8)	0.0037 (6)	0.0078 (6)	0.0033 (6)
C15	0.0363 (9)	0.0325 (9)	0.0434 (10)	-0.0007 (7)	0.0104 (8)	0.0058 (7)
C16	0.0316 (9)	0.0418 (10)	0.0456 (11)	-0.0076 (8)	0.0065 (8)	0.0038 (8)

Geometric parameters (Å, °)

Ni1—N5	2.1086 (17)	N6—H62	0.876 (10)
Ni1—N6	2.1222 (16)	C1—C2	1.510 (3)
Nil—N4	2.1223 (17)	C1—H1A	0.9700

Ni1—N2	2.1255 (16)	C1—H1B	0.9700
Ni1—N1	2.1320 (19)	C2—H2A	0.9700
Ni1—N3	2.1457 (17)	C2—H2B	0.9700
S1—O3'	1.429 (5)	C3—C4	1.509 (3)
S1—O1	1.436 (5)	С3—НЗА	0.9700
S1-02'	1 438 (4)	C3—H3B	0 9700
S1-03	1.444(5)	C4—H4A	0.9700
S1_02	1.465(5)	C4—H4B	0.9700
S1_01′	1.403(5) 1.477(5)	C5-C6	1.513(3)
S1_C8	1.779(2)	C5 H5A	0.9700
S1C8 S2	1.779(2) 1.4450(16)	C5 H5P	0.9700
S2-05	1.4439 (10)		0.9700
S2-06	1.44/8(10)		0.9700
S2-04	1.4484 (15)	С6—Н6В	0.9700
S2—C14	1.7767 (18)	C/—C8	1.365 (3)
NI-CI	1.473 (3)	C7-C12	1.418 (3)
N1—H11	0.883 (10)	С7—Н7	0.9300
N1—H12	0.869 (10)	C8—C9	1.410 (3)
N2—C2	1.467 (3)	C9—C10	1.362 (3)
N2—H21	0.877 (10)	С9—Н9	0.9300
N2—H22	0.875 (10)	C10—C11	1.426 (3)
N3—C3	1.470 (2)	C10—H10	0.9300
N3—H31	0.879 (10)	C11—C16	1.409 (3)
N3—H32	0.882 (10)	C11—C12	1.413 (3)
N4—C4	1.470 (3)	C12—C13	1.425 (2)
N4—H41	0.878 (10)	C13—C14	1.356 (2)
N4—H42	0.876 (10)	C13—H13	0.9300
N5—C5	1.470 (3)	C14—C15	1.413 (3)
N5—H51	0.882(10)	C15—C16	1.362 (3)
N5—H52	0.880(10)	C15—H15	0.9300
N6-C6	1470(3)	C16—H16	0.9300
N6H61	0.879(10)		0.9500
1101	0.079 (10)		
N5—Ni1—N6	81.36 (7)	H61—N6—H62	106 (2)
N5—Ni1—N4	92.50 (7)	N1—C1—C2	109.55 (17)
N6—Ni1—N4	171.38 (7)	N1—C1—H1A	109.8
N5—Ni1—N2	173.40 (7)	C2—C1—H1A	109.8
N6—Ni1—N2	93.05 (6)	N1—C1—H1B	109.8
N4—Ni1—N2	93 42 (7)	$C^2 - C^1 - H^1B$	109.8
N5Ni1N1	94 65 (8)	$H_1A - C_1 - H_1B$	109.0
N6_Ni1_N1	92 18 (7)	N2 - C2 - C1	100.2 108.54(17)
NA NEL NI	92.10(7)	$N_2 = C_2 = C_1$	110.0
	94.33 (7) 81.00 (7)	$N_2 = C_2 = H_2 \Lambda$	110.0
INZ-INII-INI N5 Nii N2	01.99(7)	C1 - C2 - H2R	110.0
INJ-INII-INJ NG NG1 NI2	92.91(/)	$M_2 = C_2 = M_2 B$	110.0
1NU - 1NII - INS	92.02 (0)	$U_1 - U_2 - H_2 B$	110.0
N4 - N11 - N3	81.0U (/)	$H_2A - C_2 - H_2B$	108.4
$N_2 - N_1 - N_3$	90.85 (7)	$N_3 - C_3 - C_4$	108.66 (18)
NI—N1I—N3	1/1.58 (7)	N3—C3—H3A	110.0
O3'—S1—O2'	116.5 (5)	C4—C3—H3A	110.0

01-\$1-03	111 7 (4)	N3—C3—H3B	110.0
01 - 1 - 02	115.1 (4)	C4-C3-H3B	110.0
$O_3 S_1 O_2$	111.6 (4)	$H_{3A} = C_3 = H_{3B}$	108.3
03 - 51 - 02	100.5(4)	NA CA C3	100.5
03 - 31 - 01	109.3(4) 112.0(4)	N4 C4 H4A	109.20 (10)
02 - 51 - 01	112.9 (4)	C_{2} C_{4} H_{4A}	109.8
03 - 31 - 08	103.0(0) 107.0(5)	C_{3} C_{4} H_{4} H_{4}	109.8
01 - 51 - 68	107.0(3)	N4 - C4 - H4D	109.8
02 - S1 - C8	107.8 (4)	$C_3 - C_4 - H_4 B$	109.8
03-51-68	105.2 (6)	H4A—C4—H4B	108.3
02—\$1—C8	105.4 (4)	N5—C5—C6	108.11 (16)
O1′—S1—C8	103.3 (5)	N5—C5—H5A	110.1
O5—S2—O6	111.95 (11)	С6—С5—Н5А	110.1
O5—S2—O4	112.36 (11)	N5—C5—H5B	110.1
O6—S2—O4	112.57 (10)	C6—C5—H5B	110.1
O5—S2—C14	106.82 (9)	H5A—C5—H5B	108.4
O6—S2—C14	106.19 (9)	N6—C6—C5	108.32 (16)
O4—S2—C14	106.42 (9)	N6—C6—H6A	110.0
C1—N1—Ni1	107.49 (13)	С5—С6—Н6А	110.0
C1—N1—H11	109.5 (17)	N6—C6—H6B	110.0
Ni1—N1—H11	110.6 (17)	С5—С6—Н6В	110.0
C1—N1—H12	108 (2)	H6A—C6—H6B	108.4
Ni1—N1—H12	116 (2)	C8—C7—C12	120.03 (18)
H11—N1—H12	105 (2)	C8—C7—H7	120.0
C2-N2-Ni1	107.97(12)	C12—C7—H7	120.0
$C_2 = N_2 = H_2 I$	111.0 (15)	C7 - C8 - C9	120.76 (18)
Ni1N2H21	111.9 (15)	C7 - C8 - S1	119 30 (16)
$C_2 N_2 H_2^2$	108.7(17)	$C_{9} - C_{8} - S_{1}$	119.81 (14)
Ni1 N2 H22	100.7(17)	$C_{10} C_{9} C_{8}$	119.01(14) 120.13(18)
1122 1122 1122 1121 1122 1122 1121 1121 1122 1122	111.2(17) 106(2)	$C_{10} = C_{20} = C_{20}$	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100(2) 106.98(12)	$C_{10} C_{20} H_{10}$	119.9
$C_2 = N_2 = U_2 I_1$	100.00(12)	$C_0 = C_1 = C_1 = C_1$	119.9
C3—N3—H31	100.3 (10)		121.0 (2)
N11 - N3 - H31	112.5 (16)	C9-C10-H10	119.5
C3—N3—H32	111.3 (15)	C11—C10—H10	119.5
N11—N3—H32	113.8 (16)	C16—C11—C12	119.33 (17)
H31—N3—H32	106 (2)	C16—C11—C10	122.43 (18)
C4—N4—Nil	108.82 (12)	C12—C11—C10	118.20 (19)
C4—N4—H41	110.1 (16)	C11—C12—C7	119.82 (16)
Ni1—N4—H41	111.3 (15)	C11—C12—C13	118.91 (17)
C4—N4—H42	108.5 (18)	C7—C12—C13	121.22 (17)
Ni1—N4—H42	113.8 (18)	C14—C13—C12	119.90 (17)
H41—N4—H42	104 (2)	C14—C13—H13	120.0
C5—N5—Ni1	108.82 (12)	C12—C13—H13	120.0
C5—N5—H51	107.5 (17)	C13—C14—C15	121.26 (16)
Ni1—N5—H51	110.2 (17)	C13—C14—S2	118.80 (14)
C5—N5—H52	110.6 (16)	C15—C14—S2	119.88 (14)
Ni1—N5—H52	115.0 (16)	C16—C15—C14	119.72 (18)
H51—N5—H52	104 (2)	C16—C15—H15	120.1
C6—N6—Ni1	108.70 (12)	C14—C15—H15	120.1

C6—N6—H61	111.4 (15)	C15—C16—C11	120.82 (18)
Ni1—N6—H61	108.8 (15)	C15—C16—H16	119.6
C6—N6—H62	111.4 (15)	C11—C16—H16	119.6
Ni1—N6—H62	110.6 (16)		
N5—Ni1—N1—C1	172.34 (16)	O2′—S1—C8—C7	-28.5 (3)
N6—Ni1—N1—C1	-106.15 (16)	O3—S1—C8—C7	114.1 (3)
N4—Ni1—N1—C1	79.47 (16)	O2—S1—C8—C7	-4.0 (3)
N2—Ni1—N1—C1	-13.37 (15)	O1′—S1—C8—C7	-148.2(3)
N6—Ni1—N2—C2	75.95 (13)	O3′—S1—C8—C9	-79.1 (3)
N4—Ni1—N2—C2	-109.74 (13)	O1—S1—C8—C9	57.1 (4)
N1—Ni1—N2—C2	-15.83 (13)	O2′—S1—C8—C9	155.6 (3)
N3—Ni1—N2—C2	168.62 (13)	O3—S1—C8—C9	-61.8(3)
N5—Ni1—N3—C3	-110.34 (13)	O2—S1—C8—C9	-179.9 (3)
N6—Ni1—N3—C3	168.18 (13)	O1′—S1—C8—C9	35.9 (3)
N4—Ni1—N3—C3	-18.25 (13)	C7—C8—C9—C10	-1.3(3)
N2—Ni1—N3—C3	75.08 (13)	S1-C8-C9-C10	174.52 (18)
N5—Ni1—N4—C4	81.54 (15)	C8—C9—C10—C11	-0.4 (4)
N2—Ni1—N4—C4	-101.39 (15)	C9—C10—C11—C16	-175.4 (2)
N1—Ni1—N4—C4	176.40 (14)	C9—C10—C11—C12	2.1 (3)
N3—Ni1—N4—C4	-11.03 (14)	C16—C11—C12—C7	175.37 (19)
N6—Ni1—N5—C5	-15.85 (14)	C10-C11-C12-C7	-2.2 (3)
N4—Ni1—N5—C5	170.23 (15)	C16—C11—C12—C13	-2.0(3)
N1—Ni1—N5—C5	75.66 (15)	C10-C11-C12-C13	-179.54 (19)
N3—Ni1—N5—C5	-108.06 (14)	C8—C7—C12—C11	0.6 (3)
N5—Ni1—N6—C6	-13.86 (13)	C8—C7—C12—C13	177.86 (18)
N2—Ni1—N6—C6	169.68 (13)	C11—C12—C13—C14	1.8 (3)
N1—Ni1—N6—C6	-108.23 (14)	C7—C12—C13—C14	-175.46 (18)
N3—Ni1—N6—C6	78.68 (13)	C12—C13—C14—C15	0.1 (3)
Ni1—N1—C1—C2	40.1 (2)	C12—C13—C14—S2	177.22 (14)
Ni1—N2—C2—C1	41.9 (2)	O5—S2—C14—C13	-97.28 (17)
N1-C1-C2-N2	-56.0 (3)	O6—S2—C14—C13	22.35 (18)
Ni1—N3—C3—C4	44.09 (18)	O4—S2—C14—C13	142.50 (16)
Ni1—N4—C4—C3	38.2 (2)	O5—S2—C14—C15	79.92 (17)
N3—C3—C4—N4	-56.2 (2)	O6—S2—C14—C15	-160.44 (16)
Ni1—N5—C5—C6	42.2 (2)	O4—S2—C14—C15	-40.30 (18)
Ni1—N6—C6—C5	40.48 (19)	C13—C14—C15—C16	-1.9 (3)
N5-C5-C6-N6	-55.5 (2)	S2-C14-C15-C16	-179.00 (16)
C12—C7—C8—C9	1.2 (3)	C14—C15—C16—C11	1.7 (3)
C12—C7—C8—S1	-174.65 (15)	C12-C11-C16-C15	0.2 (3)
O3′—S1—C8—C7	96.8 (3)	C10-C11-C16-C15	177.7 (2)
O1—S1—C8—C7	-127.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H11…O1	0.88 (1)	2.09 (2)	2.866 (7)	146 (2)
N1—H12····O2 ⁱ	0.87 (1)	2.21 (2)	3.040 (5)	160 (3)

N1—H12···O2′ ⁱ	0.87(1)	2.21 (2)	3.009 (5)	152 (3)	
N2—H21…O5 ⁱⁱ	0.88(1)	2.26(1)	3.075 (2)	155 (2)	
N2—H22…O6 ⁱⁱⁱ	0.88(1)	2.22 (2)	3.035 (2)	154 (2)	
N3—H31…O4 ^{iv}	0.88(1)	2.28 (1)	3.140 (2)	166 (2)	
N3—H32…O4 ⁱⁱⁱ	0.88(1)	2.34 (1)	3.210 (2)	169 (2)	
N5—H51…O4 ^{iv}	0.88 (1)	2.25 (1)	3.093 (3)	159 (2)	
N5—H52···O3 ^v	0.88(1)	2.10 (2)	2.860 (6)	144 (2)	
N5—H52···O3′ ^v	0.88(1)	2.20 (2)	3.016 (6)	155 (2)	
N6—H61…O1	0.88 (1)	2.02 (2)	2.88(1)	168 (2)	
N6—H62···O6 ⁱⁱⁱ	0.88(1)	2.26 (2)	3.055 (2)	151 (2)	

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x-1/2, y+1/2, z; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1, y+1, -z+3/2; (v) x, -y+1, z+1/2.