metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$,O⁴)cadmium *N*,*N*-dimethylformamide disolvate

Shao-Wei Tong,^a Shi-Jie Li,^b Wen-Dong Song,^c* Dong-Liang Miao^a and Jing-Bo An^a

^aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ^bSchool of Enviroment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, and ^cCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China

Correspondence e-mail: songwd60@163.com

Received 21 November 2011; accepted 23 November 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.035; wR factor = 0.079; data-to-parameter ratio = 10.0.

In the title complex, $[Cd(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 2C_3H_7NO$, the six-coordinate Cd^{II} ion is in a slightly distorted octahedral environment, defined by two O atoms from two coordinated water molecules and two carboxylate O atoms and two N atoms from two *N*,*O*-bidentate 5-carboxy-2-propyl-1*H*-imida-zole-4-carboxylate ligands. In the crystal, complex molecules and dimethylformamide solvent molecules are linked by O– $H \cdots O$ and N– $H \cdots O$ hydrogen bonds into a two-dimensional supramolecular structure. The propyl groups of the ligands are disordered over two conformations with refined occupancies of 0.680 (7) and 0.320 (7).

Related literature

For our past work based on the H₃PIDC (2-propyl-imidazol-4,5-dicarboxylic acid) ligand, see: Fan *et al.* (2010); Li, Song, Miao, Tong *et al.* (2011); Li, Miao *et al.* (2010); Li, Yan *et al.* (2010); Song *et al.* (2010); He *et al.* (2010); Yan *et al.* (2010). For our past work based on the H₃EIDC (2-ethyl-1*H*-imidazol-4,5dicarboxylic acid) ligand, see: Li, Ma *et al.* (2011); Li, Song, Miao, Hu *et al.* (2011).

Experimental

Crystal data $[Cd(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$ V = 3012.3 (4) Å³ $M_r = 688.97$ Z = 4 Orthorhombic, $Pna2_1$ Mo K α radiation a = 16.6040 (14) Å $\mu = 0.79 \text{ mm}^{-1}$ b = 9.8516 (8) Å T = 295 K c = 18.4154 (16) Å $0.27 \times 0.24 \times 0.21 \text{ mm}$

Data collection

Rigaku/MSC Mercury CCD diffractometer

```
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
T_{\min} = 0.815, T_{\max} = 0.851
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	
$wR(F^2) = 0.079$	
S = 1.00	
4421 reflections	
444 parameters	
233 restraints	

16187 measured reflections 4421 independent reflections 3111 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.046$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1285 Friedel pairs
Flack parameter: $-0.04(4)$

Table 1

Selected bond lengths (Å).

Cd1-N4	2.262 (4)	Cd1 - O1W	2.322 (5)
Cd1-N2	2.262 (4)	Cd1-O4	2.356 (5)
Cd1 - O2W	2.325 (6)	Cd1-O8	2.357 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O3	0.82	1.69	2.460 (6)	155
$O6-H6\cdots O7$	0.82	1.64	2.453 (6)	174
$O1W - H1W \cdots O10$	0.83 (2)	1.94 (2)	2.763 (6)	175 (9)
$O1W - H2W \cdots O5^{i}$	0.82(2)	2.00 (4)	2.771 (6)	158 (9)
$O2W - H3W \cdot \cdot \cdot O1^{ii}$	0.80(2)	2.02 (3)	2.787 (6)	161 (7)
$O2W - H4W \cdots O9$	0.80(2)	2.02 (3)	2.791 (6)	162 (8)
$N1 - H1A \cdots O10^{iii}$	0.86	1.91	2.761 (6)	170
N3-H3 A ···O9 ^{iv}	0.86	1.94	2.792 (6)	171
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z.$	x, y + 1, z;	(ii) $x, y - 1, z;$	(iii) $x - \frac{1}{2}, -\frac{1}{2}$	$-y + \frac{3}{2}, z;$ (iv)

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development (grant No. A2009011–007(c)), the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2369).

References

- Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
- Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. & Liu, J.-H. (2011). Acta Cryst. E67, m295–m296.
- Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.
- Li, S. J., Song, W. D., Miao, D. L., Hu, S. W., Ji, L. L. & Ma, D. Y. (2011). Z. Anorg. Allg. Chem. 637, 1246–1252.
- Li, S. J., Song, W. D., Miao, D. L., Tong, S. W., Yan, J. B. & &Ji, L. L. (2011). Chin. J. Inorg. Chem. 27, 2088–2094.
- Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m280.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.
- Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.

supporting information

Acta Cryst. (2011). E67, m1870-m1871 [https://doi.org/10.1107/S1600536811050264]

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) cadmium *N*, *N*-dimethylformamide disolvate

Shao-Wei Tong, Shi-Jie Li, Wen-Dong Song, Dong-Liang Miao and Jing-Bo An

S1. Comment

In recent years, structures containing metals and N-heterocyclic carboxylic acids have drawn increasing attention due to their fascinating structures and potential applications in many fields. For instance, N-heterocyclic carboxylic acids H₃IDC (imidazole-4,5-dicarboxylic acid) which can be deprotonated to form H₂IDC⁻, HIDC²⁻ and IDC³⁻ anions under various pH conditions, have been broadly used to obtain a variety of metal-organic frameworks with novel structures and exceptional properties. In our previous research, efforts have been focused on the design and synthesis of interesting metal organic complexes with derivatives of H₃IDC, such as H₃PIDC (2-propyl-imidazole-4,5-dicarboxylic acid) (Fan *et al.*, 2010; Li, Miao *et al.*, 2010; Li, Yan *et al.*, 2010; Li, Song, Miao, Tong *et al.*, 2011; He *et al.*, 2010; Song *et al.*, 2010; Yan *et al.*, 2010) and H₃EIDC (2-ethyl-1*H*-imidazole-4,5-dicarboxylic acid) (Li, Song, Miao, Hu *et al.*, 2011; Li, Ma *et al.*, 2011). To continue our studies, we report the synthesis and structure of a new Cd(II) complex obtained from the H₃PIDC ligand and cadmiun nitrate under hydrothermal conditions.

As shown in the Fig. 1, the title complex consists of one Cd^{II} ion, two mono-deprotonated H₂PIDC ligands, two coordinated water molecules and two dimethylformamide solvent molecules. The Cd^{II} atom is six-coordinate in a slightly distorted octahedral geometry, connected with two N,O-bidentate ligands [Cd—O = 2.321 (5) Å and Cd—N = 2.262 (4) Å] and two coordinated water molecules [Cd—O = 2.356 (5) Å]. It is noted that the two imidazole rings are nearly coplanar. In the crystal structure, the complex molecules and dimethylformamide solvent molecules are connected *via* hydrogen bonds (Table 1) into a two-dimensional supramolecular structure. The propyl groups of H₂PIDC⁻ are disordered over conformations with refined occupancies of 0.679 (7):0.321 (7).

S2. Experimental

A mixture of $Cd(CH_3COO)_2$ (0.2 mmol, 0.046 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid (0.2 mmol, 0.39 g) in 15 ml DMF was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

H atoms of the water molecule were located in a difference Fourier map and refined subject to O—H distance restraints of 0.82 (1) Å, and $U_{iso}(H) = 1.5 U_{eq}$. The H···H distances within the water molecules were restraint to 1.30 (1) Å. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C, N)$. The propyl groups of H₂PIDC⁻ are split over two sites with refined occupancies of 0.679 (7):0.321 (7).

The structure of the title compound, non-H atoms are shown with 30% probability displacement ellipsoids.

Diaguabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) cadmium N, N-dimethylformamide disolvate

```
Crystal data
```

$[Cd(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$
$M_r = 688.97$
Orthorhombic, <i>Pna</i> 2 ₁
Hall symbol: P 2c -2n
a = 16.6040 (14) Å
b = 9.8516 (8) Å
c = 18.4154 (16) Å
$V = 3012.3 (4) Å^3$
Z = 4

Data collection

Rigaku/MSC Mercury CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.046$ $\theta_{\rm max} = 26.3^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ ω scans $h = -20 \rightarrow 20$ Absorption correction: multi-scan $k = -11 \rightarrow 12$ (REQAB; Jacobson, 1998) $l = -22 \rightarrow 11$ $T_{\min} = 0.815, \ T_{\max} = 0.851$

F(000) = 1416 $D_{\rm x} = 1.519 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3600 reflections $\theta = 1.4 - 28^{\circ}$ $\mu = 0.79 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.27\times0.24\times0.21~mm$

16187 measured reflections 4421 independent reflections 3111 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent
$wR(F^2) = 0.079$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 3.2P]$
4421 reflections	where $P = (F_o^2 + 2F_c^2)/3$
444 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
233 restraints	$\Delta ho_{ m max} = 0.41 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1285 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: $-0.04(4)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.61035 (2)	0.49830 (5)	0.52305 (9)	0.04966 (12)	
01	0.4830 (3)	1.1346 (4)	0.5670 (3)	0.0656 (16)	
O2	0.5807 (3)	1.0620 (5)	0.6382 (3)	0.0668 (14)	
H2	0.5962	0.9882	0.6534	0.080*	
03	0.6581 (3)	0.8521 (5)	0.6574 (3)	0.0677 (14)	
O4	0.6630(3)	0.6406 (4)	0.6142 (3)	0.0614 (13)	
05	0.7407 (3)	-0.1351 (4)	0.4749 (3)	0.0665 (16)	
06	0.6439 (3)	-0.0594 (5)	0.4016 (3)	0.0674 (14)	
H6	0.6161	0.0092	0.3987	0.081*	
07	0.5653 (3)	0.1490 (4)	0.3846 (3)	0.0614 (13)	
08	0.5579 (2)	0.3569 (4)	0.4313 (3)	0.0572 (13)	
O1W	0.7047 (3)	0.5956 (4)	0.4459 (4)	0.0730 (16)	
H1W	0.748 (3)	0.554 (6)	0.440 (5)	0.110*	
H2W	0.718 (4)	0.675 (3)	0.442 (5)	0.110*	
O2W	0.5174 (3)	0.4033 (4)	0.6026 (3)	0.0662 (15)	
H3W	0.519 (4)	0.325 (3)	0.590 (4)	0.099*	
H4W	0.473 (2)	0.434 (6)	0.596 (5)	0.099*	
N1	0.4706 (3)	0.8811 (4)	0.4998 (3)	0.0429 (15)	
H1A	0.4358	0.9371	0.4826	0.051*	
N2	0.5401 (2)	0.6945 (4)	0.5161 (4)	0.0391 (11)	
N3	0.7518 (3)	0.1189 (5)	0.5425 (3)	0.0483 (17)	
H3A	0.7873	0.0636	0.5592	0.058*	
N4	0.6815 (2)	0.3026 (4)	0.5273 (4)	0.0418 (11)	

C1	0.5241 (3)	0.9076 (5)	0.5542 (3)	0.0398 (14)	
C2	0.5677 (3)	0.7909 (5)	0.5641 (3)	0.0396 (14)	
C3	0.5277 (4)	1.0437 (6)	0.5882 (4)	0.0517 (18)	
C4	0.6343 (4)	0.7584 (6)	0.6152 (4)	0.0527 (17)	
C5	0.4819 (3)	0.7508 (5)	0.4775 (3)	0.0414 (14)	
C6A	0.4334 (10)	0.686 (2)	0.4188 (5)	0.059 (3)	0.680(7)
H6A	0.3842	0.7379	0.4119	0.071*	0.680 (7)
H6B	0.4183	0.5953	0.4338	0.071*	0.680(7)
C7A	0.4787(7)	0.6779 (11)	0.3461 (6)	0.076 (3)	0.680(7)
H7A	0.5335	0.6477	0.3544	0.091*	0.680(7)
H7B	0.4525	0.6126	0 3145	0.091*	0.680(7)
C8A	0.1323 0.4793 (9)	0.8120 0.8133 (12)	0.3110(7)	0.091 0.105 (4)	0.680(7)
H8A	0.4993	0.8050	0.2623	0.158*	0.680(7)
H8B	0.5134	0.8735	0.3380	0.158*	0.680(7)
H8C	0.4255	0.8491	0.3098	0.158*	0.680(7)
C6B	0.1299 0.439(2)	0.676(4)	0.4189(8)	0.065(4)	0.000(7) 0.320(7)
H6C	0.3824	0.6690	0.4324	0.003 (1)	0.320(7)
H6D	0.4603	0.5846	0.4167	0.077*	0.320(7)
C7B	0.4005 0.4436 (13)	0.738(3)	0.3427(13)	0.077	0.320(7)
U7D H7C	0.4013	0.7008	0.3427(13) 0.3124	0.000 (5)	0.320(7)
H7D	0.4354	0.8358	0.3458	0.096*	0.320(7)
C8B	0.4334 0.5227 (14)	0.0000	0.3456	0.090	0.320(7)
HSD	0.5154	0.6838	0.2598	0.157*	0.320(7)
HSE	0.5487	0.6379	0.3357	0.157*	0.320(7)
LISE	0.5556	0.0379	0.3357	0.157*	0.320(7)
C0	0.5550	0.7902	0.3110 0.4870(3)	0.137°	0.320(7)
C9	0.0991(3)	0.0907(3)	0.4879(3)	0.0409(13)	
C10 C11	0.0347(3)	0.2079(3)	0.4781(3)	0.0399(14)	
C12	0.7400(3)	-0.0440(5)	0.3001(3)	0.0434(13)	
C12 C12	0.0935(4)	-0.0449(0)	0.4324(4) 0.4287(4)	0.0301(17)	
C13	0.3881(4)	0.2408(0)	0.4287(4)	0.0407(10)	0(90(7))
UI4A	0.7785 (8)	0.3070 (14)	0.0317(5)	0.075 (3)	0.080(7)
HI4A	0.7634	0.4018	0.6353	0.091*	0.680(7)
HI4B	0.8367	0.3017	0.6276	0.091*	0.680(7)
	0.7501 (10)	0.2293 (14)	0.7006(7)	0.108 (3)	0.680(7)
HIJA	0.6917	0.2293	0.7027	0.129*	0.680(7)
HISB	0.7682	0.1358	0.6982	0.129*	0.680(7)
CI6A	0.7827(10)	0.2939 (17)	0.7661 (6)	0.132 (4)	0.680(7)
HI6A	0.7636	0.2465	0.8083	0.199*	0.680(7)
HI6B	0.7653	0.3867	0.7681	0.199*	0.680 (7)
HI6C	0.8404	0.2906	0.7648	0.199*	0.680 (7)
CI4B	0.7994 (14)	0.320 (3)	0.6113 (10)	0.068 (4)	0.320 (7)
HI4C	0.7917	0.4168	0.6047	0.081*	0.320 (7)
HI4D	0.8536	0.2976	0.5955	0.081*	0.320 (7)
C15B	0.7901 (14)	0.284 (3)	0.6922 (12)	0.093 (4)	0.320 (7)
H15C	0.7966	0.1874	0.6990	0.112*	0.320 (7)
H15D	0.8312	0.3305	0.7203	0.112*	0.320 (7)
C16B	0.7095 (15)	0.327 (3)	0.7171 (14)	0.113 (6)	0.320 (7)
H16D	0.7064	0.3180	0.7689	0.169*	0.320(7)

H16E	0.6693	0.2702	0.6949	0.169*	0.320 (7)
H16F	0.7003	0.4196	0.7037	0.169*	0.320 (7)
09	0.3702 (2)	0.5396 (4)	0.6089 (3)	0.0675 (14)	
N5	0.3911 (3)	0.7234 (5)	0.6798 (3)	0.0514 (13)	
C17	0.3557 (3)	0.6572 (5)	0.6270 (3)	0.0559 (19)	
H17A	0.3162	0.7031	0.6009	0.067*	
C18	0.3685 (3)	0.8631 (5)	0.6949 (3)	0.080(2)	
H18A	0.3248	0.8892	0.6637	0.119*	
H18B	0.4138	0.9215	0.6864	0.119*	
H18C	0.3519	0.8709	0.7447	0.119*	
C19	0.4499 (5)	0.6607 (9)	0.7254 (5)	0.087 (3)	
H19A	0.4500	0.5645	0.7170	0.131*	
H19B	0.4371	0.6784	0.7753	0.131*	
H19C	0.5022	0.6971	0.7145	0.131*	
O10	0.8514 (2)	0.4647 (4)	0.4356 (3)	0.0676 (15)	
N6	0.8302 (3)	0.2882 (5)	0.3600 (3)	0.0548 (14)	
C20	0.8676 (4)	0.3505 (7)	0.4120 (4)	0.060 (2)	
H20A	0.9104	0.3050	0.4336	0.072*	
C21	0.7640 (4)	0.3522 (8)	0.3232 (5)	0.075 (2)	
H21A	0.7836	0.4272	0.2951	0.112*	
H21B	0.7258	0.3843	0.3583	0.112*	
H21C	0.7384	0.2876	0.2917	0.112*	
C22	0.8521 (5)	0.1525 (7)	0.3359 (5)	0.084 (3)	
H22A	0.8067	0.0929	0.3416	0.126*	
H22B	0.8962	0.1196	0.3646	0.126*	
H22C	0.8676	0.1553	0.2857	0.126*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04830 (18)	0.02748 (15)	0.0732 (3)	0.00652 (16)	-0.0012 (3)	-0.0011 (2)
01	0.060 (3)	0.033 (2)	0.104 (5)	0.009 (2)	0.004 (3)	-0.005 (2)
O2	0.079 (4)	0.040 (3)	0.082 (4)	0.000 (3)	0.002 (3)	-0.019 (3)
03	0.080 (4)	0.054 (3)	0.069 (4)	0.003 (2)	-0.028 (3)	-0.015 (3)
O4	0.062 (3)	0.047 (3)	0.075 (4)	0.005 (2)	-0.024 (3)	0.003 (3)
05	0.063 (3)	0.031 (2)	0.105 (5)	0.011 (2)	0.008 (3)	-0.005 (3)
O6	0.075 (4)	0.039 (3)	0.088 (4)	0.004 (3)	-0.011 (3)	-0.019 (3)
O7	0.070 (3)	0.048 (3)	0.067 (3)	-0.003 (2)	-0.015 (3)	-0.008(2)
08	0.060 (3)	0.038 (2)	0.074 (4)	0.010 (2)	-0.015 (3)	0.002 (2)
O1W	0.066 (3)	0.040 (3)	0.113 (5)	-0.001 (2)	0.022 (4)	-0.002 (3)
O2W	0.064 (3)	0.037 (2)	0.098 (4)	0.001 (2)	0.017 (3)	-0.005 (3)
N1	0.038 (3)	0.033 (2)	0.059 (4)	0.008 (2)	-0.001 (3)	0.008 (2)
N2	0.040 (2)	0.030 (2)	0.047 (3)	0.0019 (17)	-0.008 (3)	-0.007 (3)
N3	0.037 (3)	0.036 (2)	0.072 (5)	0.007 (2)	-0.002 (3)	0.012 (3)
N4	0.038 (2)	0.0281 (19)	0.059 (3)	0.0001 (17)	0.003 (3)	0.008 (3)
C1	0.037 (3)	0.031 (3)	0.052 (4)	0.002 (2)	0.004 (3)	0.000 (3)
C2	0.043 (3)	0.031 (3)	0.045 (4)	0.001 (2)	0.002 (3)	0.004 (3)
C3	0.047 (4)	0.035 (3)	0.073 (5)	-0.005 (3)	0.016 (4)	-0.007 (3)

supporting information

C4	0.052 (4)	0.048 (4)	0.057 (5)	0.000 (3)	-0.010 (4)	0.008 (4)
C5	0.036 (3)	0.035 (3)	0.053 (4)	0.001 (3)	0.001 (3)	0.002 (3)
C6A	0.056 (4)	0.056 (4)	0.064 (5)	0.001 (4)	-0.011 (4)	-0.006 (4)
C7A	0.068 (5)	0.081 (5)	0.079 (5)	0.004 (4)	-0.009(4)	-0.006 (4)
C8A	0.112 (7)	0.109 (6)	0.095 (7)	-0.021 (6)	0.006 (6)	0.017 (6)
C6B	0.061 (6)	0.064 (6)	0.069 (6)	0.002 (5)	-0.010 (5)	-0.005 (5)
C7B	0.079 (6)	0.081 (6)	0.080 (6)	-0.002 (5)	-0.007(5)	-0.004 (5)
C8B	0.106 (9)	0.104 (9)	0.103 (9)	-0.006(7)	-0.006 (8)	0.001 (8)
C9	0.045 (3)	0.025 (3)	0.053 (4)	-0.004 (2)	0.012 (3)	0.003 (3)
C10	0.043 (3)	0.033 (3)	0.044 (4)	0.004 (2)	0.004 (3)	0.002 (3)
C11	0.045 (4)	0.036 (3)	0.050 (4)	-0.001 (3)	0.003 (3)	-0.002 (3)
C12	0.045 (4)	0.034 (3)	0.071 (5)	-0.007 (3)	0.018 (4)	-0.007 (3)
C13	0.053 (4)	0.033 (3)	0.054 (5)	-0.002 (3)	0.005 (4)	-0.003 (3)
C14A	0.075 (5)	0.070 (5)	0.082 (5)	-0.004 (4)	-0.018 (5)	-0.009 (5)
C15A	0.108 (6)	0.119 (6)	0.097 (5)	-0.025 (5)	-0.002(5)	-0.011 (5)
C16A	0.150 (8)	0.152 (8)	0.095 (5)	-0.016 (7)	-0.017 (6)	-0.010 (6)
C14B	0.068 (7)	0.067 (6)	0.067 (7)	-0.011 (6)	-0.012 (6)	-0.004 (6)
C15B	0.098 (6)	0.097 (6)	0.084 (6)	-0.022 (5)	-0.012 (6)	-0.008 (6)
C16B	0.122 (9)	0.114 (9)	0.102 (9)	-0.010 (8)	-0.011 (8)	-0.008 (8)
09	0.052 (3)	0.053 (3)	0.098 (4)	-0.003 (2)	-0.003 (3)	-0.012 (3)
N5	0.045 (3)	0.050 (3)	0.059 (4)	-0.002 (3)	0.005 (3)	-0.002 (3)
C17	0.043 (4)	0.045 (4)	0.080 (6)	0.004 (3)	0.002 (4)	-0.006 (4)
C18	0.108 (6)	0.046 (4)	0.084 (6)	0.000 (4)	0.012 (5)	-0.013 (4)
C19	0.090 (6)	0.092 (6)	0.080 (7)	0.018 (5)	-0.010 (6)	-0.008 (5)
O10	0.049 (3)	0.053 (3)	0.101 (4)	-0.002 (2)	-0.013 (3)	-0.026 (3)
N6	0.056 (3)	0.051 (3)	0.058 (4)	-0.006 (3)	0.005 (3)	-0.011 (3)
C20	0.039 (3)	0.058 (4)	0.082 (6)	-0.001 (3)	-0.006 (4)	0.001 (4)
C21	0.058 (5)	0.090 (6)	0.076 (6)	0.017 (4)	-0.007 (4)	-0.019 (5)
C22	0.110 (7)	0.051 (4)	0.092 (7)	0.001 (4)	0.029 (6)	-0.011 (4)

Geometric parameters (Å, °)

Cd1—N4	2.262 (4)	C7B—H7D	0.9700
Cd1—N2	2.262 (4)	C8B—H8D	0.9600
Cd1—O2W	2.325 (6)	C8B—H8E	0.9600
Cd1—O1W	2.322 (5)	C8B—H8F	0.9600
Cd1—O4	2.356 (5)	C9—C10	1.381 (7)
Cd108	2.357 (5)	C9—C12	1.489 (8)
O1—C3	1.227 (7)	C10—C13	1.468 (9)
O2—C3	1.287 (8)	C11—C14B	1.490 (9)
O2—H2	0.8200	C11—C14A	1.499 (8)
O3—C4	1.269 (8)	C14A—C15A	1.555 (11)
O4—C4	1.255 (7)	C14A—H14A	0.9700
O5—C12	1.236 (7)	C14A—H14B	0.9700
O6—C12	1.275 (8)	C15A—C16A	1.467 (11)
O6—H6	0.8200	C15A—H15A	0.9700
O7—C13	1.274 (7)	C15A—H15B	0.9700
O8—C13	1.251 (6)	C16A—H16A	0.9600

supporting information

O1W—H1W	0.83 (2)	C16A—H16B	0.9600
O1W—H2W	0.82 (2)	C16A—H16C	0.9600
O2W—H3W	0.80 (2)	C14B—C15B	1.537 (12)
O2W—H4W	0.80 (2)	C14B—H14C	0.9700
N1—C5	1.360 (7)	C14B—H14D	0.9700
N1—C1	1.363 (7)	C15B—C16B	1.475 (12)
N1—H1A	0.8600	C15B—H15C	0.9700
N2—C5	1.321 (7)	C15B—H15D	0.9700
N2—C2	1.376 (7)	C16B—H16D	0.9600
N3—C11	1.327 (7)	C16B—H16E	0.9600
N3—C9	1.363 (7)	C16B—H16F	0.9600
N3—H3A	0.8600	09—C17	1.229 (6)
N4—C11	1 334 (7)	N5-C17	1.223(3)
N4—C10	1 375 (8)	N5-C19	1.311(7) 1 429 (9)
C1-C2	1.372(7)	N5-C18	1.129(5) 1.454(6)
C1 - C3	1.372(7) 1 480(8)	C17—H17A	0.9300
$C_2 - C_4$	1.486 (9)	C18—H18A	0.9500
C5_C6B	1.480(9) 1.400(0)		0.9000
C5C6A	1.490(9) 1.402(7)		0.9000
C_{5}	1.492(7)		0.9000
C6A = U6A	1.557 (11)	C10 U10D	0.9600
	0.9700	С19—П19В	0.9600
	0.9700	C19—H19C	0.9600
C/A-C8A	1.483 (10)	010-020	1.235 (7)
C/A—H/A	0.9700	N6-C20	1.296 (8)
C/A—H/B	0.9700	N6-C21	1.436 (9)
C8A—H8A	0.9600	N6—C22	1.455 (8)
C8A—H8B	0.9600	C20—H20A	0.9300
C8A—H8C	0.9600	C21—H21A	0.9600
C6B—C7B	1.534 (12)	C21—H21B	0.9600
C6B—H6C	0.9700	C21—H21C	0.9600
C6B—H6D	0.9700	C22—H22A	0.9600
C7B—C8B	1.476 (12)	C22—H22B	0.9600
C7B—H7C	0.9700	C22—H22C	0.9600
N4—Cd1—N2	178.7 (3)	N3-C9-C10	105.6 (5)
N4—Cd1—O2W	88.96 (17)	N3—C9—C12	122.3 (5)
N2—Cd1—O2W	92.14 (18)	C10—C9—C12	132.1 (6)
N4—Cd1—O1W	91.17 (18)	N4—C10—C9	108.0 (5)
N2—Cd1—O1W	87.75 (17)	N4—C10—C13	120.1 (5)
O2W—Cd1—O1W	178.6 (2)	C9—C10—C13	131.8 (6)
N4—Cd1—O4	106.78 (19)	N3—C11—N4	109.4 (5)
N2—Cd1—O4	73.93 (18)	N3—C11—C14B	123.4 (14)
O2W—Cd1—O4	92.1 (2)	N4—C11—C14B	124.6 (14)
O1W—Cd1—O4	86.57 (18)	N3—C11—C14A	125.7 (8)
N4—Cd1—O8	73.39 (19)	N4—C11—C14A	124.5 (8)
N2—Cd1—O8	105.90 (17)	O5—C12—O6	125.0 (6)
O2W—Cd1—O8	88.21 (17)	O5—C12—C9	118.2 (7)
O1W—Cd1—O8	93.1 (2)	O6—C12—C9	116.8 (6)

O4—Cd1—O8	179.7 (2)	O8—C13—O7	123.6 (6)
С3—О2—Н2	109.5	O8—C13—C10	118.8 (6)
C4—O4—Cd1	114.8 (4)	O7—C13—C10	117.6 (5)
С12—О6—Н6	109.5	C11—C14A—C15A	109.1 (8)
C13—O8—Cd1	114.8 (4)	C11—C14A—H14A	109.9
Cd1—O1W—H1W	117 (6)	C15A—C14A—H14A	109.9
Cd1—O1W—H2W	129 (6)	C11—C14A—H14B	109.9
H1W—O1W—H2W	104 (4)	C15A—C14A—H14B	109.9
Cd1—O2W—H3W	101 (6)	H14A—C14A—H14B	108.3
Cd1—O2W—H4W	111 (6)	C16A—C15A—C14A	110.3 (10)
H3W—O2W—H4W	109 (4)	C16A—C15A—H15A	109.6
C5-N1-C1	108.2 (4)	C14A - C15A - H15A	109.6
C5—N1—H1A	125.9	C16A - C15A - H15B	109.6
C1—N1—H1A	125.9	C14A - C15A - H15B	109.6
C5-N2-C2	107 5 (4)	H15A - C15A - H15B	108.1
C5-N2-Cd1	1400(4)	C_{11} $-C_{14B}$ $-C_{15B}$	111.2 (16)
$C_2 = N_2 = C_d I$	110.0(1) 112.4(4)	C_{11} C_{14B} H_{14C}	109.4
C11 = N3 = C9	112.4(4) 109.7(5)	C15B-C14B-H14C	109.4
C11N3H3A	105.7 (5)	C_{11} C_{14B} H_{14D}	109.4
C9 - N3 - H3A	125.2	C15B-C14B-H14D	109.1
C_{11} N4 $-C_{10}$	123.2 107 3 (4)	$H_{14}C_{}C_{14}B_{}H_{14}D$	109.4
C_{11} N4 C_{10}	139.8 (5)	$C_{16B} - C_{15B} - C_{14B}$	100.0 109.2(11)
C10 N4 $Cd1$	139.8(3) 112 8(4)	$C_{16B} = C_{15B} = H_{15C}$	109.2 (11)
N1 - C1 - C2	106.3 (5)	C_{14B} C_{15B} H_{15C}	109.8
N1 - C1 - C3	100.5(5) 120.7(5)	$C_{16B} = C_{15B} = H_{15D}$	109.8
C_{2} C_{1} C_{3}	132.9 (6)	C_{14B} C_{15B} H_{15D}	109.8
C_{1} C_{2} N_{2}	108.4(5)	$H_{15}C_{15}B_{115}B_{115}D$	109.8
C1 - C2 - C4	1311(6)	C15B-C16B-H16D	108.5
$N_{2} - C_{2} - C_{4}$	131.1(0) 120 5 (5)	C15B-C16B-H16E	109.5
$01 - C_{3} - 0_{2}$	120.5 (5)	$H_{16}D - C_{16}B - H_{16}E$	109.5
$01 - C_3 - C_1$	122.0(0) 120.1(7)	C15B-C16B-H16F	109.5
$0^{2}-0^{3}-0^{1}$	120.1(7) 117.3(6)	$H_{16}D_{-C_{16}B_{-H_{16}}}$	109.5
02 - 03 - 01 04 - 03	124.2 (6)	H16F— $C16B$ — $H16F$	109.5
04 - C4 - C2	124.2(6) 118.2(6)	C17 - N5 - C19	121.9 (6)
03 - C4 - C2	110.2(0) 117.6(5)	C17 N5 $C18$	121.9(0) 1199(6)
N_{2} C_{5} N_{1}	109.5 (5)	C19 - N5 - C18	118.2 (6)
N2-C5-C6B	109.5(3) 122(2)	09-C17-N5	125.6(5)
N1 - C5 - C6B	122(2) 128(2)	09-C17-H17A	117.2
$N_2 - C_5 - C_6A$	120(2) 1273(10)	N5-C17-H17A	117.2
N1 - C5 - C6A	127.3(10) 123 2 (10)	N5-C18-H18A	109.5
C5-C6A-C7A	123.2(10) 113.0(9)	N5-C18-H18B	109.5
C_{5} C_{6A} H_{6A}	109.0	H18A - C18 - H18B	109.5
C7A - C6A - H6A	109.0	N5-C18-H18C	109.5
C_{5} C_{6A} H_{6B}	109.0	H18A - C18 - H18C	109.5
C7A—C6A—H6B	109.0	H18B-C18-H18C	109.5
H6A—C6A—H6B	107.8	N5-C19-H19A	109.5
C8A - C7A - C6A	109.6 (10)	N5-C19-H19B	109.5
С8А—С7А—Н7А	109.8	H19A—C19—H19B	109.5
			10/10

С6А—С7А—Н7А	109.8	N5—C19—H19C	109.5
C8A—C7A—H7B	109.8	H19A—C19—H19C	109.5
С6А—С7А—Н7В	109.8	H19B—C19—H19C	109.5
H7A—C7A—H7B	108.2	C20—N6—C21	120.5 (6)
C5—C6B—C7B	116 (2)	C20—N6—C22	122.7 (7)
С5—С6В—Н6С	108.3	C21—N6—C22	116.8 (6)
С7В—С6В—Н6С	108.3	O10-C20-N6	125.9 (6)
C5—C6B—H6D	108.3	O10—C20—H20A	117.0
C7B—C6B—H6D	108.3	N6-C20-H20A	117.0
H6C—C6B—H6D	107.4	N6-C21-H21A	109.5
C8B—C7B—C6B	110.4 (12)	N6-C21-H21B	109.5
C8B—C7B—H7C	109.6	H21A—C21—H21B	109.5
C6B—C7B—H7C	109.6	N6-C21-H21C	109.5
C8B—C7B—H7D	109.6	H21A—C21—H21C	109.5
C6B—C7B—H7D	109.6	H21B—C21—H21C	109.5
H7C—C7B—H7D	108.1	N6—C22—H22A	109.5
C7B—C8B—H8D	109.5	N6—C22—H22B	109.5
C7B—C8B—H8E	109.5	H22A—C22—H22B	109.5
H8D—C8B—H8E	109.5	N6—C22—H22C	109.5
C7B—C8B—H8F	109.5	H22A—C22—H22C	109.5
H8D—C8B—H8F	109.5	H22B—C22—H22C	109.5
H8E—C8B—H8F	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
02—H2…O3	0.82	1.69	2.460 (6)	155
O6—H6…O7	0.82	1.64	2.453 (6)	174
O1 <i>W</i> —H1 <i>W</i> ···O10	0.83 (2)	1.94 (2)	2.763 (6)	175 (9)
O1W—H2W···O5 ⁱ	0.82 (2)	2.00 (4)	2.771 (6)	158 (9)
O2 <i>W</i> —H3 <i>W</i> ···O1 ⁱⁱ	0.80 (2)	2.02 (3)	2.787 (6)	161 (7)
O2 <i>W</i> —H4 <i>W</i> ···O9	0.80(2)	2.02 (3)	2.791 (6)	162 (8)
N1—H1A···O10 ⁱⁱⁱ	0.86	1.91	2.761 (6)	170
N3—H3A····O9 ^{iv}	0.86	1.94	2.792 (6)	171

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1/2, -*y*+3/2, *z*; (iv) *x*+1/2, -*y*+1/2, *z*.