Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Methyl- N^{\prime}-(2,2,2-trichloroethan-imidoyl)benzene-1-carboximidamide

Tracey L. Roemmele and René T. Boeré*

Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
Correspondence e-mail: boere@uleth.ca

Received 20 October 2011; accepted 26 October 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.029 ; w R$ factor $=0.077$; data-to-parameter ratio $=17.5$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3}$, features a delocalized unsaturated $\mathrm{N} \cdots \mathrm{C} \cdots \mathrm{N} \cdots \mathrm{C} \rightleftharpoons \mathrm{N}$ chain and strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding across the chelate ring and also intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts to a $\mathrm{CCl}_{3}-$ group Cl atom. The only intermolecular contacts in the lattice are non-classical hydrogen bonds between methyl and CCl_{3} groups. The pseudo-six-membered ring is distinctly non-planar by virtue of rotation about the $\mathrm{N}-\mathrm{C}$ bond between the carboximidamide and imine components $[\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{N}$ torsion angle $\left.=-23.6(2)^{\circ}\right]$.

Related literature

For crystal structures of closely related N^{\prime}-(trichloro/tri-fluoroethanimidoyl)aryl-1-carboximidamides, see: Boeré, Roemmele, Suduweli Kondage et al. (2011); Boeré, Roemmele \& Yu (2011). For a review of this less-common class of chelating ligands, see: Kopylovich \& Pombeiro (2011).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3} & b=9.0696(6) \AA \\
M_{r}=278.56 & c=11.5407(7) \AA \\
\text { Monoclinic, } P 2_{1} / c & \beta=109.661(1)^{\circ} \\
a=12.2952(7) \AA & V=1211.90(13) \AA^{3}
\end{array}
$$

$Z=4$

$T=173 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.73 \mathrm{~mm}^{-1}$
$0.43 \times 0.34 \times 0.25 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.747, T_{\text {max }}=0.838$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.077$ independent and constrained refinement
$S=1.08$
2762 reflections
158 parameters

16754 measured reflections 2762 independent reflections 2594 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.83(2)$	$2.07(2)$	$2.683(2)$	$130.8(18)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1$	$0.81(2)$	$2.49(2)$	$2.9993(15)$	$122.2(19)$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.98	2.93	$3.871(2)$	$162(1)$
$\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{Cl}^{\text {ii }}$	0.98	2.93	$3.581(2)$	$125(1)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The diffractometer at the University of Lethbridge X-ray Diffraction Facility was purchased with the help of the NSERC and the University of Lethbridge.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2466).

References

Boeré, R. T., Roemmele, T. L., Suduweli Kondage, S., Zhou, J. \& Parvez, M. (2011). Acta Cryst. C67, o273-o277.

Boeré, R. T., Roemmele, T. L. \& Yu, X. (2011). Inorg. Chem. 50, 5123-5136.
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.
Kopylovich, M. N. \& Pombeiro, A. J. L. (2011). Coord. Chem. Rev. 255, 339355.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o3137 [https://doi.org/10.1107/S1600536811044710]

4-Methyl- N^{\prime}-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide

Tracey L. Roemmele and René T. Boeré

S1. Comment

The title compound (Figure 1), commonly known as an imidoylamidine, was prepared as part of our continuing interest in C, N, S based heterocycles (Boeré, Roemmele \& Yu, 2011). The molecular structure is very similar to seven independent molecules from our prevous study (Boeré, Roemmele, Suduweli Kondage et al., 2011), with only a single tautomeric form being evidenced in the crystal lattice. The bond lengths and angles for the $\mathrm{N} \because \mathrm{C} \because \mathrm{N} \because \mathrm{C} \because \mathrm{N}$ core are nearly identical within the s.u. values to the comparison group. Intramolecular hydrogen bonding occurs between N1—H2 $\cdots \mathrm{N} 3$ at 2.683 (2) \AA to form a pseudo six membered ring. This hydrogen bond is slightly longer (just outside the s.u. values) than the previously reported average of 2.638 (14) \AA, which is likely due to a slight rotation of the core (C1—N2—C2— N 3 torsion angle $\left.=23.6(2)^{\circ}\right)$ which causes N3 to be twisted out of the plane of the other four atoms ($\mathrm{N} 1, \mathrm{C} 1, \mathrm{~N} 2, \mathrm{C} 2$) compared to a range of $4.2(5)$ to $16.0(2)^{\circ}$ for this torsion angle in the comparison group. Also noteworthy is a short intramolecular $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1$ contact at 2.9993 (15) \AA, which is within s.u. values of the other known trichloromethyl imidoylamidines. The most surprising feature is the complete lack of intermolecular hydrogen bonding involving the NH or NH_{2} groups, which was previously observed only in the structure of 4-trifluormethyl- N^{\prime}-(2,2,2-trichloroethanimidoyl)-benzene-1-carboximidamide. In fact, the only short contacts are non-classical hydrogen bonds between the methyl and CCl_{3} groups, specifically from H 10 A to $\mathrm{Cl} 2^{\mathrm{i}}$ and H 10 C to $\mathrm{Cl}^{\mathrm{ii}}$ at 2.9272 (5) and 2.9245 (5) $\AA \AA$ (Figure 2).

S2. Experimental

The title compound was prepared as were those described in Boeré, Roemmele, Suduweli Kondage et al. (2011) by addition of trichloroacetonitrile to $N, N, N^{\prime}-4$-methylbenzamidine in acetonitrile. Crystals suitable for X-ray diffraction were grown by vacuum sublimation (m.p. 315-317 K).

S3. Refinement

C-bound H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl and $\mathrm{C}-\mathrm{H}=0.95-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms. The three N -bound H -atom positions were refined using a distance restraint of $0.88 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figure 1
Displacement ellipsoid plot (drawn at the 30\% probability level) of the title compound. Intramolecular N1 $\cdots \mathrm{N} 3$ and $\mathrm{N} 3 \cdots \mathrm{Cl} 1$ hydrogen bonds (dotted lines) occur in the molecular structure within the crystal lattice.

Figure 2
Crystal packing diagram showing the short intermolecular contacts as well as the intramolecular hydrogen bonds.

4-methyl- N^{\prime}-(2,2,2-trichloroethanimidoyl)benzene-1-carboximidamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{~N}_{3}$
$M_{r}=278.56$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.2952$ (7) \AA
$b=9.0696$ (6) \AA
$c=11.5407$ (7) \AA
$\beta=109.661$ (1) ${ }^{\circ}$
$V=1211.90(13) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=568 \\
& D_{\mathrm{x}}=1.527 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point: } 315 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9876 \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.73 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.43 \times 0.34 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: X-ray, Bruker D8
Graphite monochromator
Detector resolution: 0.015 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.747, T_{\text {max }}=0.838$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.077$
$S=1.08$
2762 reflections
158 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0354 P)^{2}+0.6197 P\right]\) where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{\AA^{-3}}\)
\(\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}\)
```


Special details

Experimental. A crystal coated in Paratone oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.60366(11)$	$0.08801(14)$	$0.75586(12)$	$0.0251(3)$

C2	$0.78479(12)$	$0.15175(16)$	$0.89254(13)$	$0.0296(3)$
C3	$0.89517(12)$	$0.22286(16)$	$0.88006(12)$	$0.0282(3)$
C4	$0.50862(11)$	$0.12222(14)$	$0.63920(12)$	$0.0247(3)$
C5	$0.39803(12)$	$0.06308(16)$	$0.61262(13)$	$0.0308(3)$
H5	0.3829	-0.0045	0.6682	0.037^{*}
C6	$0.31014(12)$	$0.10232(17)$	$0.50565(14)$	$0.0330(3)$
H6	0.2354	0.0609	0.4888	0.040^{*}
C7	$0.32937(12)$	$0.20122(16)$	$0.42266(13)$	$0.0299(3)$
C8	$0.44024(12)$	$0.25899(17)$	$0.44926(13)$	$0.0313(3)$
H8	0.4552	0.3263	0.3934	0.038^{*}
C9	$0.52899(12)$	$0.22015(16)$	$0.55551(13)$	$0.0283(3)$
H9	0.6040	0.2603	0.5715	0.034^{*}
C10	$0.23320(14)$	$0.2455(2)$	$0.30785(15)$	$0.0413(4)$
H10A	0.1764	0.1656	0.2828	0.062^{*}
H10B	0.2648	0.2651	0.2419	0.062^{*}
H10C	0.1957	0.3347	0.3240	0.062^{*}
N1	$0.59080(12)$	$-0.02814(15)$	$0.82081(13)$	$0.0339(3)$
N2	$0.69301(10)$	$0.17656(14)$	$0.78685(11)$	$0.0298(3)$
N3	$0.78334(13)$	$0.08069(19)$	$0.98683(13)$	$0.0434(3)$
C11	$1.01604(3)$	$0.20856(5)$	$1.01601(3)$	$0.04137(12)$
C12	$0.92765(3)$	$0.12843(5)$	$0.76109(4)$	$0.04211(12)$
C13	$0.87281(4)$	$0.41134(4)$	$0.84076(5)$	$0.04654(12)$
H1	$0.5360(18)$	$-0.087(2)$	$0.7925(18)$	$0.045(5)^{*}$
H2	$0.6389(17)$	$-0.041(2)$	$0.8902(18)$	$0.039(5)^{*}$
H3	$0.846(2)$	$0.083(3)$	$0.055(6)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0274(6)$	$0.0241(6)$	$0.0277(6)$	$0.0044(5)$	$0.0141(5)$	$0.0011(5)$
C2	$0.0292(7)$	$0.0314(7)$	$0.0289(7)$	$-0.0001(5)$	$0.0107(5)$	$0.0021(5)$
C3	$0.0278(6)$	$0.0279(7)$	$0.0279(6)$	$0.0003(5)$	$0.0080(5)$	$0.0000(5)$
C4	$0.0263(6)$	$0.0229(6)$	$0.0271(6)$	$0.0036(5)$	$0.0118(5)$	$-0.0007(5)$
C5	$0.0304(7)$	$0.0297(7)$	$0.0338(7)$	$-0.0013(5)$	$0.0130(6)$	$0.0035(6)$
C6	$0.0259(6)$	$0.0352(7)$	$0.0378(8)$	$-0.0007(6)$	$0.0105(6)$	$-0.0002(6)$
C7	$0.0291(7)$	$0.0315(7)$	$0.0292(6)$	$0.0074(5)$	$0.0100(5)$	$-0.0009(5)$
C8	$0.0332(7)$	$0.0330(7)$	$0.0300(7)$	$0.0036(6)$	$0.0137(6)$	$0.0054(6)$
C9	$0.0266(6)$	$0.0300(7)$	$0.0309(7)$	$0.0014(5)$	$0.0131(5)$	$0.0015(5)$
C10	$0.0324(8)$	$0.0489(9)$	$0.0384(8)$	$0.0086(7)$	$0.0066(6)$	$0.0064(7)$
N1	$0.0350(7)$	$0.0292(6)$	$0.0353(7)$	$-0.0021(5)$	$0.0090(5)$	$0.0079(5)$
N2	$0.0278(6)$	$0.0333(6)$	$0.0281(6)$	$-0.0013(5)$	$0.0091(5)$	$0.0061(5)$
N3	$0.0373(7)$	$0.0599(9)$	$0.0306(6)$	$-0.0050(7)$	$0.0080(6)$	$0.0124(6)$
C11	$0.0336(2)$	$0.0485(2)$	$0.0339(2)$	$-0.00458(15)$	$0.00062(15)$	$-0.00111(15)$
C12	$0.0371(2)$	$0.0550(3)$	$0.0387(2)$	$-0.00594(17)$	$0.01858(16)$	$-0.01338(17)$
C13	$0.0414(2)$	$0.02872(19)$	$0.0694(3)$	$0.00018(15)$	$0.01851(19)$	$0.00905(17)$

Geometric parameters ($A,{ }^{\circ}$)

C1-N2	1.3098 (18)	C6-C7	1.389 (2)
C1-N1	1.3328 (18)	C6-H6	0.9500
C1-C4	1.4885 (18)	C7-C8	1.395 (2)
C2-N3	1.270 (2)	C7-C10	1.504 (2)
C2-N2	1.3732 (18)	C8-C9	1.3849 (19)
C2-C3	1.5525 (19)	C8-H8	0.9500
C3-Cl1	1.7657 (14)	C9-H9	0.9500
C3-Cl3	1.7662 (15)	C10-H10A	0.9800
C3-C12	1.7739 (14)	C10-H10B	0.9800
C4-C9	1.3955 (19)	C10-H10C	0.9800
C4-C5	1.3964 (19)	N1-H1	0.84 (2)
C5-C6	1.386 (2)	N1-H2	0.83 (2)
C5-H5	0.9500	N3-H3	0.81 (2)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	125.34 (13)	C6-C7-C8	118.11 (13)
N2-C1-C4	116.76 (12)	C6-C7-C10	120.94 (14)
N1-C1-C4	117.90 (13)	C8-C7-C10	120.94 (14)
N3-C2-N2	126.87 (14)	C9-C8-C7	121.33 (13)
N3-C2-C3	123.71 (13)	C9-C8-H8	119.3
N2-C2-C3	109.41 (11)	C7- $\mathrm{C} 8-\mathrm{H} 8$	119.3
C2-C3-Cl1	112.81 (10)	C8-C9-C4	120.22 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 3$	111.13 (10)	C8-C9-H9	119.9
C11-C3-Cl3	108.12 (8)	C4-C9-H9	119.9
C2-C3-Cl2	107.62 (10)	C7-C10-H10A	109.5
C11-C3-Cl2	108.12 (8)	C7-C10-H10B	109.5
$\mathrm{Cl} 3-\mathrm{C} 3-\mathrm{Cl} 2$	108.94 (8)	H10A-C10-H10B	109.5
C9-C4-C5	118.73 (13)	C7-C10-H10C	109.5
C9-C4-C1	119.31 (12)	H10A-C10-H10C	109.5
C5-C4-C1	121.92 (12)	H10B-C10-H10C	109.5
C6-C5-C4	120.46 (13)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	121.3 (14)
C6-C5-H5	119.8	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	118.1 (14)
C4-C5-H5	119.8	$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	121 (2)
C5-C6-C7	121.15 (13)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	120.34 (12)
C5-C6-H6	119.4	C2-N3-H3	111.7 (16)
C7-C6-H6	119.4		
N3-C2-C3-C11	-5.2 (2)	C4-C5-C6-C7	-0.2 (2)
N2-C2-C3-C11	175.64 (10)	C5-C6-C7-C8	0.7 (2)
N3-C2-C3-Cl3	-126.84 (15)	C5-C6-C7-C10	-178.90 (14)
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 3$	54.02 (14)	C6-C7-C8-C9	-0.4 (2)
N3-C2-C3-Cl2	113.95 (16)	C10-C7-C8-C9	179.23 (14)
N2-C2-C3-Cl2	-65.19 (13)	C7-C8-C9-C4	-0.5 (2)
N2-C1-C4-C9	15.26 (18)	C5-C4-C9-C8	1.0 (2)
N1-C1-C4-C9	-165.53 (13)	C1-C4-C9-C8	-176.86 (12)
N2-C1-C4-C5	-162.49 (13)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	1.5 (2)
N1-C1-C4-C5	16.73 (19)	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	-179.38 (12)

$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(2)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	$-23.6(2)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$177.12(13)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$	$155.50(12)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.83(2)$	$2.07(2)$	$2.683(2)$	$130.8(18)$
$\mathrm{N} 3 — \mathrm{H} 3 \cdots \mathrm{Cl1}$	$0.81(2)$	$2.49(2)$	$2.9993(15)$	$122.2(19)$
$\mathrm{C} 10 — \mathrm{H} 10 A \cdots \mathrm{Cl2}^{\mathrm{i}}$	0.98	2.93	$3.871(2)$	$162(1)$
$\mathrm{C} 10 — \mathrm{H} 10 C \cdots \mathrm{Cl3}^{\mathrm{ii}}$	0.98	2.93	$3.581(2)$	$125(1)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$.

