Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$ zinc]- μ -4-sulfonatobenzotriazolido- $\kappa^3 N^3$, O: N^1]

Xiao-Chun Cheng

Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003 People's Republic of China Correspondence e-mail: shxycheng@163.com

Received 7 November 2011; accepted 9 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.045; wR factor = 0.147; data-to-parameter ratio = 15.1.

In the title complex, $[Zn(C_6H_3N_3O_3S)(C_{12}H_8N_2)]_n$, the Zn^{2+} cation is coordinated by two N atoms from two 4-sulfonatobenzotriazolide dianions, two N atoms from a 1,10-phenanthroline molecule and a sulfonate O atom from a 4sulfonatobenzotriazolide anion, displaying a distorted ZnN₄O trigonal-bipyramidal geometry. Each 1,10-phenanthroline ligand displays a bidentate chelating coordinating mode and the 4-sulfonatobenzotriazolide ions act as μ_2 -bridges, linking different Zn^{2+} cations into a chain along the *b* axis. The crystal structure is consolidated by C-H···O hydrogen-bonding interactions.

Related literature

For related structures, see: Xia et al. (2010).

Crystal data

[Zn(C₆H₃N₃O₃S)(C₁₂H₈N₂)] $M_r = 442.75$ Orthorhombic, Pccn a = 14.5562 (19) Åb = 25.903 (3) Å c = 8.9239 (12) Å

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.738, \ T_{\rm max} = 0.738$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	253 parameters
$wR(F^2) = 0.147$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$
3819 reflections	$\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$

V = 3364.8 (8) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

19596 measured reflections

3819 independent reflections

2895 reflections with $I > 2\sigma(I)$

 $\mu = 1.62 \text{ mm}^-$

T = 293 K

 $R_{\rm int}=0.092$

Z = 8

Table 1

Hydrogen-bond geometry (Å, °).

	$D = \Pi$	$\Pi \cdots A$	$D \cdots A$	$D - H \cdots A$
$C9-H9\cdots O2^{i}$	0.93	2.49	3.351 (5)	154
$C12 - H12 \cdots O2^{ii}$	0.93	2.55	3.369 (5)	148

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) $-x + \frac{3}{2}$, $y, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2482).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xia, M.-Z., Lei, W., Wang, F.-Y., Jin, Z.-W. & Yang, T.-H. (2010). Asian J. Chem. 22, 3741-3744.

supporting information

Acta Cryst. (2011). E67, m1758 [https://doi.org/10.1107/S160053681104743X]

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)zinc]- μ -4-sulfonatobenzotriazolido- $\kappa^3 N^3, O:N^1$]

Xiao-Chun Cheng

S1. Comment

Benzotriazole-4-sulfonic acid is often used as a ligand to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex. The asymmetric unit consists of one zinc ion, one 1,10phenanthroline molecule, and one 4-sulfonatobenzotriazolide anion. each Zn ion is coordinated by two N atoms from two different 4-sulfonatobenzotriazolide anions, two N atoms from one 1,10-phenanthroline molecule, and one sulfonate O atoms from one 4-sulfonatobenzotriazolide anions, displaying a distorted ZnN₄O trigonal bipyramidal geometry (Fig. 1). Each 1,10-phenanthroline displays a bidentate coordinating mode. And every 4-sulfonatobenzotriazolide acts as a μ_2 bridge, linking different zinc ions to form a one-dimensional chain along the *b* axis direction. The crystal structure is consolidated by hydrogen bonding interactions of the type C—H···O (Table 1).

S2. Experimental

A mixture of zinc nitrate hexahydrate (59.4 mg, 0.2 mmol), benzotriazole-4-sulfonic acid (39.8 mg, 0.2 mmol), 1,10phenanthroline (36.0 mg, 0.2 mmol) and potassium hydroxide (22.4 mg, 0.4 mmol) in 12 ml H_2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 413 K for 3 days. After cooling the container to the room temperature, colorless block crystals of the title complex were obtained.

S3. Refinement

The hydrogen atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The coordination environment of zinc ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms are omitted for clarity. Symmetry codes: A = x, -y + 1/2, z + 1/2; B = x, -y + 1/2, z - 1/2.

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)zinc]- μ - 4-sulfonatobenzotriazolido- $\kappa^3 N^3, O: N^1$]

Crystal data

 $[Zn(C_6H_3N_3O_3S)(C_{12}H_8N_2)]$ $M_r = 442.75$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 14.5562 (19) Å b = 25.903 (3) Å c = 8.9239 (12) Å V = 3364.8 (8) Å³ Z = 8

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.738$, $T_{\max} = 0.738$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.147$ F(000) = 1792 $D_x = 1.748 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2885 reflections $\theta = 2.7-25.0^{\circ}$ $\mu = 1.62 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.20 \times 0.20 \times 0.20 \text{ mm}$

19596 measured reflections 3819 independent reflections 2895 reflections with $I > 2\sigma(I)$ $R_{int} = 0.092$ $\theta_{max} = 27.4^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -18 \rightarrow 18$ $k = -33 \rightarrow 33$ $l = -7 \rightarrow 11$

S = 1.103819 reflections 253 parameters 0 restraints

	TT / / 1
Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.0628P)^2 + 1.2933P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.97927 (3)	0.330127 (13)	0.19495 (5)	0.02895 (17)
N5	0.8384 (2)	0.34450 (11)	0.1826 (3)	0.0334 (7)
C17	0.8148 (2)	0.38273 (12)	0.0857 (4)	0.0333 (8)
C9	0.9411 (4)	0.47031 (16)	-0.1724 (5)	0.0581 (13)
Н9	0.9313	0.4973	-0.2392	0.070*
C10	0.8673 (3)	0.44934 (14)	-0.0912 (5)	0.0454 (10)
C13	0.7232 (3)	0.39803 (14)	0.0600 (5)	0.0421 (9)
C14	0.6559 (3)	0.36901 (16)	0.1331 (5)	0.0497 (11)
H14	0.5942	0.3767	0.1170	0.060*
C7	1.0419 (3)	0.41028 (15)	-0.0526 (5)	0.0459 (10)
H7	1.1012	0.3977	-0.0398	0.055*
C18	0.8878 (3)	0.40801 (12)	0.0054 (4)	0.0337 (8)
C16	0.7712 (3)	0.31927 (15)	0.2529 (5)	0.0420 (9)
H16	0.7865	0.2937	0.3216	0.050*
C15	0.6784 (3)	0.32995 (16)	0.2270 (6)	0.0508 (12)
H15	0.6328	0.3105	0.2735	0.061*
N4	0.9732 (2)	0.38901 (11)	0.0256 (4)	0.0356 (7)
S 1	1.10686 (6)	0.40039 (3)	0.37277 (12)	0.0366 (2)
N1	0.99027 (19)	0.29840 (10)	0.4183 (3)	0.0279 (6)
N2	0.9579 (2)	0.25262 (10)	0.4630 (3)	0.0312 (6)
C1	1.1157 (2)	0.35655 (11)	0.5213 (4)	0.0293 (7)
C2	1.1777 (3)	0.35925 (14)	0.6343 (5)	0.0392 (9)
H2	1.2171	0.3875	0.6391	0.047*
C3	1.1841 (3)	0.32053 (16)	0.7447 (5)	0.0441 (10)
H3	1.2267	0.3242	0.8217	0.053*
01	1.10445 (18)	0.36563 (10)	0.2416 (3)	0.0391 (6)
O3	1.1878 (2)	0.43226 (10)	0.3728 (4)	0.0511 (8)
O2	1.0199 (2)	0.42648 (11)	0.3896 (4)	0.0628 (10)
N3	1.0018 (2)	0.23706 (11)	0.5874 (3)	0.0307 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	1.0567 (2)	0.31302 (11)	0.5174 (4)	0.0257 (7)
C5	1.0640 (2)	0.27433 (12)	0.6254 (4)	0.0294 (7)
C4	1.1290 (3)	0.27760 (15)	0.7414 (4)	0.0375 (8)
H4	1.1344	0.2517	0.8130	0.045*
C12	0.7058 (3)	0.44058 (16)	-0.0377 (6)	0.0551 (12)
H12	0.6456	0.4514	-0.0526	0.066*
C11	0.7738 (3)	0.46542 (16)	-0.1083 (6)	0.0581 (13)
H11	0.7602	0.4935	-0.1692	0.070*
C8	1.0273 (3)	0.45068 (18)	-0.1525 (6)	0.0553 (12)
H8	1.0764	0.4644	-0.2059	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0395 (3)	0.0203 (2)	0.0271 (3)	0.00316 (14)	-0.00219 (17)	-0.00023 (15)
N5	0.0423 (17)	0.0270 (14)	0.0309 (17)	-0.0015 (12)	-0.0001 (13)	-0.0032 (12)
C17	0.0427 (19)	0.0239 (16)	0.033 (2)	0.0031 (13)	-0.0079 (16)	-0.0106 (14)
C9	0.100 (4)	0.032 (2)	0.043 (3)	-0.005 (2)	-0.005 (3)	0.0132 (18)
C10	0.074 (3)	0.0236 (17)	0.038 (2)	0.0022 (17)	-0.016 (2)	0.0010 (16)
C13	0.045 (2)	0.041 (2)	0.041 (2)	0.0082 (17)	-0.0131 (19)	-0.0133 (17)
C14	0.041 (2)	0.052 (2)	0.055 (3)	0.0053 (18)	-0.006(2)	-0.022 (2)
C7	0.054 (2)	0.036 (2)	0.048 (3)	-0.0056 (17)	0.007 (2)	0.0085 (18)
C18	0.048 (2)	0.0231 (16)	0.0296 (19)	0.0012 (14)	-0.0052 (16)	-0.0027 (14)
C16	0.051 (2)	0.0347 (19)	0.041 (2)	-0.0063 (17)	0.007 (2)	-0.0041 (17)
C15	0.046 (2)	0.047 (3)	0.059 (3)	-0.0087 (18)	0.008 (2)	-0.018 (2)
N4	0.0468 (18)	0.0287 (15)	0.0312 (17)	0.0009 (12)	-0.0005 (14)	0.0031 (13)
S 1	0.0427 (5)	0.0234 (4)	0.0437 (6)	-0.0010 (3)	0.0040 (4)	0.0088 (4)
N1	0.0386 (15)	0.0217 (13)	0.0232 (14)	0.0007 (11)	-0.0012 (12)	0.0012 (11)
N2	0.0422 (16)	0.0241 (14)	0.0273 (15)	-0.0041 (11)	-0.0026 (13)	0.0017 (12)
C1	0.0381 (18)	0.0188 (15)	0.0311 (18)	-0.0014 (12)	0.0053 (15)	-0.0012 (13)
C2	0.045 (2)	0.0339 (19)	0.038 (2)	-0.0103 (15)	-0.0016 (18)	-0.0019 (16)
C3	0.045 (2)	0.051 (2)	0.036 (2)	-0.0136 (18)	-0.016 (2)	0.0041 (19)
01	0.0430 (14)	0.0394 (15)	0.0350 (14)	-0.0068 (11)	0.0000 (12)	0.0070 (12)
O3	0.0644 (18)	0.0334 (14)	0.0557 (19)	-0.0201 (13)	0.0057 (15)	0.0051 (13)
O2	0.060 (2)	0.0438 (17)	0.084 (3)	0.0201 (14)	0.0185 (17)	0.0227 (17)
N3	0.0406 (16)	0.0248 (14)	0.0267 (16)	-0.0011 (11)	-0.0032 (13)	0.0029 (12)
C6	0.0327 (17)	0.0222 (14)	0.0221 (16)	-0.0027 (12)	0.0009 (14)	-0.0006 (12)
C5	0.0370 (18)	0.0223 (15)	0.0288 (18)	-0.0012 (13)	-0.0008 (15)	0.0001 (13)
C4	0.042 (2)	0.038 (2)	0.032 (2)	-0.0055 (15)	-0.0067 (17)	0.0088 (16)
C12	0.059 (3)	0.051 (3)	0.056 (3)	0.021 (2)	-0.025 (2)	-0.011 (2)
C11	0.078 (3)	0.035 (2)	0.061 (3)	0.015 (2)	-0.028 (3)	0.006 (2)
C8	0.073 (3)	0.046 (2)	0.048 (3)	-0.014 (2)	0.006 (2)	0.010 (2)

Geometric parameters (Å, °)

Zn1—N3 ⁱ	2.014 (3)	С15—Н15	0.9300
Zn1—O1	2.083 (3)	S1—O3	1.439 (3)
Zn1—N5	2.086 (3)	S1—O2	1.443 (3)

supporting information

Zn1—N4	2.149 (3)	S1—O1	1.477 (3)
Zn1—N1	2.162 (3)	S1—C1	1.750 (4)
N5—C16	1.334 (5)	N1—N2	1.337 (4)
N5—C17	1.359 (5)	N1—C6	1.364 (4)
C17—C13	1.410 (5)	N2—N3	1.343 (4)
C17—C18	1.440 (5)	C1—C2	1.355 (5)
С9—С8	1.365 (7)	C1—C6	1.418 (4)
C9—C10	1.405 (7)	С2—С3	1.409 (6)
С9—Н9	0.9300	С2—Н2	0.9300
C10-C18	1 407 (5)	C3—C4	1 372 (5)
C10-C11	1.431(6)	C3—H3	0.9300
C_{13} C_{14}	1.497 (6)	N3-C5	1 366 (4)
C_{13} C_{12}	1.377(0) 1.427(6)	$N_3 = C_3$	1.300(4)
$C_{13} - C_{12}$	1.427(0) 1.354(7)	103-2111	2.014(3)
C14_U14	1.554 (7)	$C_0 = C_3$	1.393 (4)
C14—H14	0.9300	C3—C4	1.405 (5)
C/—N4	1.338 (5)	C4—H4	0.9300
C7—C8	1.391 (6)	C12—C11	1.338 (7)
С7—Н7	0.9300	C12—H12	0.9300
C18—N4	1.349 (5)	C11—H11	0.9300
C16—C15	1.398 (6)	C8—H8	0.9300
C16—H16	0.9300		
$N3^{i}$ —Zn1—O1	109.52 (12)	C18—N4—Zn1	113.0 (2)
$N3^{i}$ $Zn1$ $N5$	106.80(12)	03-81-02	116 73 (18)
$\Omega_1 - Z_n = N_5$	142 30 (11)	03 - 81 - 01	111 69 (17)
$N3^{i}$ $7n1$ $N4$	10653(12)	02 - 81 - 01	110.3(2)
O1 7n1 N4	82.14(11)	O_2 S1 C1	100.3(2) 108.17(18)
$N_{1} = Z_{n1} = N_{4}$	32.14(11)	03 = 31 = 01	106.17(18) 106.83(18)
$N_2 = Z_m 1 = N_1$	76.21(11)	02 - 31 - C1	100.03(18) 101.01(15)
$N_{3} = Z_{11} = N_{1}$	95.07 (11)	01 - 31 - C1	101.91(13) 107.6(2)
VI—ZnI—NI	85.54 (11)	$N_2 = N_1 = C_0$	107.6 (3)
N5—Zn1—N1	100.92 (11)	N2—NI—ZnI	125.9 (2)
N4—Zn1—N1	157.12 (11)	C6—N1—Zn1	123.0 (2)
C16—N5—C17	118.1 (3)	N1—N2—N3	110.2 (3)
C16—N5—Zn1	127.5 (3)	C2—C1—C6	117.6 (3)
C17—N5—Zn1	114.4 (2)	C2—C1—S1	125.4 (3)
N5—C17—C13	123.2 (4)	C6—C1—S1	116.9 (3)
N5-C17-C18	117.5 (3)	C1—C2—C3	121.9 (3)
C13—C17—C18	119.3 (3)	C1—C2—H2	119.1
C8—C9—C10	119.4 (4)	С3—С2—Н2	119.1
С8—С9—Н9	120.3	C4—C3—C2	121.5 (4)
С10—С9—Н9	120.3	C4—C3—H3	119.2
C9—C10—C18	116.6 (4)	С2—С3—Н3	119.2
C9-C10-C11	124.0 (4)	S1 - O1 - Zn1	116.64 (16)
C_{18} $-C_{10}$ $-C_{11}$	119 3 (4)	$N^2 - N^3 - C^5$	108.0(3)
C_{14} C_{13} C_{17}	115.8 (4)	$N2 - N3 - 7n1^{ii}$	125.1(2)
C14-C13-C12	125 3 (4)	$C5-N3-7n1^{ii}$	125.1(2) 126.9(2)
C17 C13 C12	123.5(7) 118 0 (1)	N1 - C6 - C5	120.9(2) 107.6(3)
$C_{17} - C_{13} - C_{12}$	10.7 (4)	$\frac{1}{1} \frac{1}{1} \frac{1}$	107.0(3) 121.9(2)
013-014-013	121.4 (4)	NI-CO-CI	131.8(3)

C15—C14—H14	119.3	C5—C6—C1	120.5 (3)
C13—C14—H14	119.3	N3—C5—C6	106.6 (3)
N4—C7—C8	122.0 (4)	N3—C5—C4	132.2 (3)
N4—C7—H7	119.0	C6—C5—C4	121.1 (3)
С8—С7—Н7	119.0	C3—C4—C5	117.3 (3)
N4	123.7 (4)	C3—C4—H4	121.3
N4	116.6 (3)	C5—C4—H4	121.3
C10-C18-C17	119.6 (3)	C11—C12—C13	121.9 (4)
N5-C16-C15	122.3 (4)	C11—C12—H12	119.1
N5-C16-H16	118.9	C13—C12—H12	119.1
C15—C16—H16	118.9	C12-C11-C10	120.9 (4)
C14—C15—C16	119.0 (4)	C12—C11—H11	119.6
C14—C15—H15	120.5	C10—C11—H11	119.6
C16—C15—H15	120.5	C9—C8—C7	120.3 (4)
C7—N4—C18	117.9 (3)	С9—С8—Н8	119.9
C7—N4—Zn1	128.9 (3)	С7—С8—Н8	119.9
N3 ⁱ —Zn1—N5—C16	70.4 (3)	N3 ⁱ —Zn1—N1—C6	117.1 (3)
O1—Zn1—N5—C16	-125.6(3)	O1—Zn1—N1—C6	7.9 (3)
N4—Zn1—N5—C16	174.3 (3)	N5—Zn1—N1—C6	-134.6 (3)
N1—Zn1—N5—C16	-29.0(3)	N4—Zn1—N1—C6	-49.0 (4)
$N3^{i}$ —Zn1—N5—C17	-106.6(2)	C6—N1—N2—N3	-0.4(4)
O1—Zn1—N5—C17	57.5 (3)	Zn1—N1—N2—N3	158.8 (2)
N4—Zn1—N5—C17	-2.6(2)	03 - 81 - C1 - C2	12.6 (4)
N1— $Zn1$ — $N5$ — $C17$	154.0(2)	02-S1-C1-C2	-113.8(4)
C16—N5—C17—C13	2.1 (5)	01—S1—C1—C2	130.4 (3)
Zn1—N5—C17—C13	179.4 (3)	03 - S1 - C1 - C6	-163.3(3)
C16—N5—C17—C18	-177.2(3)	02 - 81 - C1 - C6	70.3 (3)
Zn1—N5—C17—C18	0.0(4)	01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-45.5(3)
C8-C9-C10-C18	-1.1(6)	C6-C1-C2-C3	0.0 (6)
C8-C9-C10-C11	-177.1(4)	S1-C1-C2-C3	-175.9(3)
N5-C17-C13-C14	-42(5)	C1 - C2 - C3 - C4	13(7)
C_{18} C_{17} C_{13} C_{14}	1752(3)	03 - 81 - 01 - 7n1	-16549(16)
N_{5} C_{17} C_{13} C_{12}	176.5 (3)	02 - 81 - 01 - Zn1	-339(2)
C_{18} $-C_{17}$ $-C_{13}$ $-C_{12}$	-42(5)	C1 = S1 = O1 = Zn1	79 25 (19)
C17-C13-C14-C15	2.3(6)	$N3^{i}$ $Zn1$ $O1$ $S1$	-152.98(16)
C12-C13-C14-C15	-1783(4)	N5 = Zn1 = 01 = S1	43 2 (3)
C9-C10-C18-N4	16(6)	N4 - 7n1 - 01 - S1	102(0)
$C_{11} - C_{10} - C_{18} - N_4$	177 9 (4)	N1 - Zn1 - 01 - S1	-58.61(17)
C9-C10-C18-C17	-1765(3)	N1 - N2 - N3 - C5	0.7(4)
$C_{11} - C_{10} - C_{18} - C_{17}$	-0.2(5)	$N1 - N2 - N3 - 7n1^{ii}$	-1787(2)
N5-C17-C18-N4	45(5)	$N_{2} N_{1} C_{6} C_{5}$	0.0(4)
C_{13} C_{17} C_{18} N_4	-1748(3)	Z_{n1} N1-C6-C5	-160.0(2)
N_{5} C_{17} C_{18} C_{10}	-1772(3)	N2-N1-C6-C1	177 1 (3)
C_{13} C_{17} C_{18} C_{10}	34(5)	Z_{n1} N1 C6 C1	17.1 (5)
C17 N5 C16 C15	18(6)	C^{2} C^{1} C^{6} N^{1}	$-177 \ 8 \ (4)$
Z_{n1} N5 C16 C15	-1750(3)	S1-C1-C6-N1	-16(5)
C_{13} C_{14} C_{15} C_{16}	1 2 (7)	$C^{2}-C^{1}-C^{6}-C^{5}$	-10(5)
	1.4 (1)		1.0 (2)

N5-C16-C15-C14	-3.5 (7)	S1—C1—C6—C5	175.3 (3)
C8—C7—N4—C18	-0.2 (6)	N2—N3—C5—C6	-0.7 (4)
C8—C7—N4—Zn1	-175.8 (3)	Zn1 ⁱⁱ —N3—C5—C6	178.7 (2)
C10-C18-N4-C7	-1.0 (5)	N2—N3—C5—C4	-178.1 (4)
C17—C18—N4—C7	177.2 (3)	Zn1 ⁱⁱ —N3—C5—C4	1.3 (6)
C10-C18-N4-Zn1	175.3 (3)	N1-C6-C5-N3	0.5 (4)
C17—C18—N4—Zn1	-6.6 (4)	C1-C6-C5-N3	-177.1 (3)
N3 ⁱ —Zn1—N4—C7	-75.0 (3)	N1—C6—C5—C4	178.2 (3)
O1—Zn1—N4—C7	33.1 (3)	C1—C6—C5—C4	0.6 (5)
N5—Zn1—N4—C7	-179.2 (4)	C2—C3—C4—C5	-1.6 (6)
N1—Zn1—N4—C7	90.6 (4)	N3—C5—C4—C3	177.7 (4)
N3 ⁱ —Zn1—N4—C18	109.2 (3)	C6—C5—C4—C3	0.7 (6)
O1—Zn1—N4—C18	-142.6 (3)	C14—C13—C12—C11	-177.5 (4)
N5—Zn1—N4—C18	5.0 (2)	C17—C13—C12—C11	1.8 (6)
N1—Zn1—N4—C18	-85.2 (4)	C13—C12—C11—C10	1.5 (7)
N3 ⁱ —Zn1—N1—N2	-39.2 (3)	C9-C10-C11-C12	173.7 (5)
O1—Zn1—N1—N2	-148.4 (3)	C18—C10—C11—C12	-2.3 (6)
N5—Zn1—N1—N2	69.1 (3)	C10—C9—C8—C7	0.0 (7)
N4—Zn1—N1—N2	154.7 (3)	N4—C7—C8—C9	0.7 (7)

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*+1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A	
С9—Н9…О2 ^{ііі}	0.93	2.49	3.351 (5)	154	
C12—H12····O2 ^{iv}	0.93	2.55	3.369 (5)	148	

Symmetry codes: (iii) -x+2, -y+1, -z; (iv) -x+3/2, y, z-1/2.