metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(Z)-1-({3-[(3-Aminopropyl)(2-nitrobenzyl)amino]propyl}iminomethyl)naphthalen-2-olato]copper(II) perchlorate

Reza Azadbakht,^a* Hadi Amiri Rudbari,^b Saeid Menati^c and Giuseppe Bruno^b

^aDepartment of Chemistry, Payame Noor University, Hamedan, Iran, ^bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di Messina 98166 Messina, Italy, and ^cDepartment of Chemistry, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran Correspondence e-mail: r_azadbakht@yahoo.com

Received 21 August 2011; accepted 31 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.117; data-to-parameter ratio = 15.7.

In the title compound, $[Cu(C_{24}H_{27}N_4O_3)]ClO_4$, the Cu^{II} atom has a distorted square-planar coordination geometry and is surrounded by an N₃O donor set composed of a secondary amine N, a primary amine H, an imino N and a naphthalen-2olate O atom. An intramolecular N-H···O hydrogen bond occurs. In the crystal, molecules are held together by intermolecular N-H···O hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For related structures, see: Atkins *et al.* (1993); Matsumoto *et al.* (1989); Plieger *et al.* (2004); Vigato *et al.* (2007).

Experimental

Crystal data [Cu(C₂₄H₂₇N₄O₃)]ClO₄

 $M_r=582.50$

a = 8.1062 (4) Å b = 19.2907 (8) Å c = 16.0959 (7) Å $\beta = 102.072 (2)^{\circ}$	Mo $K\alpha$ radiation $\mu = 1.05 \text{ mm}^{-1}$ T = 296 K $0.51 \times 0.49 \times 0.32 \text{ mm}$
V = 2461.32 (19) Å ³ Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.706, T_{max} = 0.747$	101979 measured reflections 5377 independent reflections 4605 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.061$

Refinement

Monoclinic, $P2_1/n$

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$vR(F^2) = 0.117$	independent and constrained
S = 1.02	refinement
377 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
42 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Z = 4

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO3$ $N1-H2\cdotsO4$ $N1-H2\cdotsO5$ $N1-H1\cdotsO2^{i}$	0.82 (4) 0.84 (3) 0.84 (3) 0.82 (4)	2.46 (3) 2.39 (4) 2.82 (3) 2.51 (3)	2.948 (4) 3.203 (5) 3.249 (4) 3.031 (3)	119 (3) 163 (3) 114 (3) 122 (3)

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XPW* (Siemens, 1996); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

We are grateful to Payame Noor University (PNU) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2297).

References

- Atkins, A. J., Blake, A. J. & Schröder, M. (1993). J. Chem. Soc. Chem. Commun. pp. 1662–1664.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Matsumoto, N., Inoue, K., Okawa, H. & Kida, S. (1989). Chem. Lett. pp. 1251– 1254.
- Plieger, P. G., Downard, A. J., Moubaraki, B., Murray, K. S. & Brooker, S. (2004). *Dalton Trans.* pp. 2157–2165.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311– 1492.

supporting information

Acta Cryst. (2011). E67, m1748 [https://doi.org/10.1107/S1600536811045752]

[(Z)-1-({3-[(3-Aminopropyl)(2-nitrobenzyl)amino]propyl}iminomethyl)naphthalen-2-olato]copper(II) perchlorate

Reza Azadbakht, Hadi Amiri Rudbari, Saeid Menati and Giuseppe Bruno

S1. Comment

Schiff bases have attracted increasing interest owing to their role in the understanding of molecular processes occurring in biochemistry, material science, catalysis, encapsulation, activation, transport and separation phenomena, hydrometallurgy, *etc.* (Vigato *et al.*, 2007). We report here the crystal structure of the title compound, $Cu(C_{24}H_{27}N_4O_3)$ ×ClO₄ consists of discrete [Cu(*L*)]⁺ cations and perchlorate anions. The closest distance between Cu and O5 of ClO₄ is 3.039 (1)Å that implies a weak coordination of oxygen to copper. The molecular structure of title compound is shown in Fig. 1. The organic ligand, *L*, coordinates in a tetradentate manner *via* three nitrogen atoms and one oxygen atom, providing a distorted square–planar arrangement about copper. The two *trans* angles at the Cu^{II} atom are about 151.48 (8)° and 158.55 (11)° and the other angles subtended at the Cu^{II} atom are close to 90°, varying from 86.12 (9)° to 99.07 (9)°. The sum of the angles subtended by the donor atoms at Cu is 369.75°.

S2. Experimental

A solution of NaOH (1.5 mmol) in methanol (10 cm³) was added to a suspension of the appropriate *N*-(2-nitrobenzyl)-*N*-(3-aminopropyl)-propane-1,3- diaminetrishydrochloride (0.5 mmol) in methanol (10 cm³). The mixture was stirred at room temperature for a few minutes then filtered, and the precipitate was washed well with methanol (10 cm³). The washings and the filtrate were combined and to this solution, copper perchlorate (0.5 mmol) and 2-hydroxy-1naphthaldehyde (0.5 mmol) in methanol (50 cm³), was added. The reaction was carried out for 6 h at room temperature. The solution volume was then reduced to 10 cm³ by roto–evaporation and a precipitate formed on addition of a small amount of diethyl ether, which was filtered off, washed with ether, and dried under vacuo.

S3. Refinement

The C-based H atoms were positioned geometrically (C—H = 0.93Å and 0.97Å for CH and CH₂ groups, respectively) and constrained to ride on their parent atoms; $U_{iso}(H) = 1.2U_{eq}(C)$. The N-based H atoms were found from difference Fourier map and refined isotropically.

Perspective view of the title molecule with numbering of the atoms. Displacement ellipsoids are drawn at 30% probability level. The H atoms are shown as small spheres of arbitrary radius. The H2 atom is overlapped by N1 ellipsoid.

[(*Z*)-1-({3-[(3-Aminopropyl)(2- nitrobenzyl)amino]propyl}iminomethyl)naphthalen-2-olato]copper(II) perchlorate

Crystal data	
$[Cu(C_{24}H_{27}N_4O_3)]ClO_4$	F(000) = 1204
$M_r = 582.50$	$D_{\rm x} = 1.572 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9603 reflections
a = 8.1062 (4) Å	$\theta = 2.6 - 29.2^{\circ}$
b = 19.2907 (8) Å	$\mu = 1.05 \text{ mm}^{-1}$
c = 16.0959 (7) Å	T = 296 K
$\beta = 102.072 \ (2)^{\circ}$	Block, black
$V = 2461.32 (19) Å^3$	$0.51 \times 0.49 \times 0.32 \text{ mm}$
Z = 4	
Data collection	
Bruker APEXII CCD	101979 measured reflections
diffractometer	5377 independent reflections
Radiation source: fine-focus sealed tube	4605 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.061$
φ and ω scans	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2007)	$k = -24 \rightarrow 24$
$T_{\min} = 0.706, \ T_{\max} = 0.747$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
5377 reflections	and constrained refinement
342 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0736P)^2 + 1.1383P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma F^2$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu	0.32009 (3)	0.856784 (13)	0.361933 (15)	0.03852 (11)	
N1	0.4800 (3)	0.84797 (14)	0.47232 (15)	0.0544 (5)	
C1	0.6353 (4)	0.80578 (18)	0.4829 (2)	0.0719 (8)	
H1A	0.6069	0.7573	0.4879	0.086*	
H1B	0.7120	0.8192	0.5351	0.086*	
C2	0.7232 (4)	0.81433 (19)	0.4092 (2)	0.0741 (8)	
H2A	0.7419	0.8633	0.4013	0.089*	
H2B	0.8327	0.7920	0.4236	0.089*	
C3	0.6275 (4)	0.78479 (16)	0.3269 (2)	0.0660 (7)	
H3A	0.7051	0.7797	0.2889	0.079*	
H3B	0.5894	0.7387	0.3380	0.079*	
N2	0.4785 (2)	0.82515 (10)	0.28176 (12)	0.0464 (4)	
C4	0.3820 (4)	0.78081 (14)	0.21083 (17)	0.0600 (6)	
H4A	0.3279	0.8106	0.1645	0.072*	
H4B	0.4607	0.7511	0.1897	0.072*	
C5	0.2511 (4)	0.73681 (13)	0.23789 (18)	0.0627 (7)	
H5A	0.2944	0.7203	0.2952	0.075*	
H5B	0.2288	0.6967	0.2009	0.075*	
C6	0.0886 (3)	0.77510 (13)	0.23556 (17)	0.0546 (6)	
H6A	0.0303	0.7812	0.1769	0.065*	
H6B	0.0167	0.7477	0.2640	0.065*	
N3	0.1174 (2)	0.84326 (9)	0.27678 (11)	0.0406 (4)	
C7	0.0059 (3)	0.89113 (11)	0.25349 (13)	0.0399 (4)	
H7	-0.0785	0.8818	0.2061	0.048*	

C8	-0.0007 (3)	0.95679 (11)	0.29327 (13)	0.0390 (4)
C17	-0.1169 (3)	1.00936 (11)	0.25241 (14)	0.0407 (4)
C16	-0.2083 (3)	1.00439 (14)	0.16799 (15)	0.0498 (5)
H16	-0.1943	0.9656	0.1358	0.060*
C15	-0.3186 (3)	1.05619 (15)	0.13210 (17)	0.0569 (6)
H15	-0.3781	1.0516	0.0764	0.068*
C14	-0.3413 (3)	1.11485 (15)	0.1783 (2)	0.0608 (7)
H14	-0.4162	1.1492	0.1537	0.073*
C13	-0.2539 (3)	1.12185 (14)	0.25950 (19)	0.0559 (6)
H13	-0.2695	1.1613	0.2902	0.067*
C12	-0.1396 (3)	1.07032 (12)	0.29802 (16)	0.0465 (5)
C11	-0.0439 (3)	1.07871 (13)	0.38245 (17)	0.0535 (6)
H11	-0.0606	1.1180	0.4131	0.064*
C10	0.0696 (3)	1.03129 (13)	0.41882 (15)	0.0514 (5)
H10	0.1313	1.0390	0.4736	0.062*
С9	0.0979 (3)	0.96920 (12)	0.37529 (14)	0.0422 (5)
01	0.2131 (2)	0.92738 (9)	0.41511 (10)	0.0530 (4)
C18	0.5462 (3)	0.88515 (14)	0.23958 (15)	0.0494 (5)
H18A	0.5944	0.8674	0.1935	0.059*
H18B	0.6367	0.9066	0.2805	0.059*
C19	0.4182 (3)	0.94026 (13)	0.20450 (14)	0.0457 (5)
C24	0.3379 (4)	0.93601 (15)	0.11856 (16)	0.0585 (6)
H24	0.3629	0.8988	0.0866	0.070*
C23	0.2235 (4)	0.98488 (18)	0.07963 (18)	0.0684 (8)
H23	0.1709	0.9796	0.0228	0.082*
C22	0.1872 (4)	1.04122 (17)	0.1245 (2)	0.0702 (8)
H22	0.1095	1.0741	0.0985	0.084*
C21	0.2654 (4)	1.04867 (14)	0.2073 (2)	0.0623 (7)
H21	0.2421	1.0871	0.2378	0.075*
C20	0.3800 (3)	0.99919 (12)	0.24637 (15)	0.0479 (5)
N4	0.4641 (3)	1.01508 (12)	0.33436 (14)	0.0576 (5)
03	0.5511 (3)	0.97071 (12)	0.37640 (13)	0.0770 (6)
O2	0.4446 (4)	1.07214 (12)	0.36190 (16)	0.0890 (7)
Cl	0.19969 (9)	0.70592 (4)	0.51751 (4)	0.06081 (18)
O4	0.2496 (4)	0.76098 (17)	0.57398 (17)	0.1104 (10)
05	0.2004 (5)	0.72505 (17)	0.43448 (15)	0.1153 (11)
06	0.0406 (7)	0.6830 (4)	0.5193 (3)	0.240 (4)
O7	0.3086 (9)	0.6533 (2)	0.5438 (3)	0.216 (3)
H1	0.517 (4)	0.8868 (19)	0.487 (2)	0.068 (10)*
H2	0.419 (4)	0.8333 (18)	0.504 (2)	0.064 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.04088 (16)	0.03732 (16)	0.03504 (15)	0.00157 (9)	0.00268 (11)	-0.00284 (9)
N1	0.0597 (13)	0.0547 (13)	0.0434 (11)	0.0018 (10)	-0.0021 (10)	0.0004 (10)
C1	0.0653 (17)	0.0725 (19)	0.0671 (17)	0.0133 (14)	-0.0109 (14)	0.0159 (14)
C2	0.0511 (15)	0.085 (2)	0.080 (2)	0.0195 (14)	-0.0004 (14)	0.0092 (17)

Acta Cryst. (2011). E**67**, m1748

supporting information

C3	0.0604 (16)	0.0568 (15)	0.0821 (19)	0.0214 (13)	0.0182 (14)	0.0061 (14)
N2	0.0489 (10)	0.0414 (10)	0.0487 (10)	0.0063 (8)	0.0097 (8)	-0.0082 (8)
C4	0.0767 (17)	0.0516 (14)	0.0525 (14)	0.0014 (12)	0.0156 (12)	-0.0157 (11)
C5	0.0880 (19)	0.0361 (12)	0.0606 (15)	-0.0022 (12)	0.0082 (14)	-0.0118 (11)
C6	0.0595 (14)	0.0393 (12)	0.0583 (14)	-0.0091 (10)	-0.0028 (11)	-0.0071 (10)
N3	0.0423 (9)	0.0380 (9)	0.0398 (9)	-0.0053 (7)	0.0051 (7)	-0.0034 (7)
C7	0.0350 (10)	0.0452 (11)	0.0384 (10)	-0.0032 (8)	0.0054 (8)	0.0007 (8)
C8	0.0372 (10)	0.0418 (11)	0.0399 (10)	-0.0015 (8)	0.0124 (8)	0.0008 (8)
C17	0.0364 (10)	0.0428 (11)	0.0456 (11)	-0.0014 (8)	0.0147 (8)	0.0067 (9)
C16	0.0475 (12)	0.0529 (13)	0.0498 (12)	0.0025 (10)	0.0120 (10)	0.0054 (10)
C15	0.0500 (13)	0.0642 (16)	0.0556 (14)	0.0036 (11)	0.0090 (11)	0.0163 (12)
C14	0.0560 (14)	0.0513 (14)	0.0769 (18)	0.0111 (11)	0.0180 (13)	0.0212 (13)
C13	0.0568 (14)	0.0421 (12)	0.0725 (17)	0.0059 (11)	0.0221 (13)	0.0081 (11)
C12	0.0455 (11)	0.0411 (11)	0.0572 (13)	0.0003 (9)	0.0205 (10)	0.0062 (10)
C11	0.0610 (14)	0.0434 (12)	0.0595 (14)	0.0028 (10)	0.0206 (11)	-0.0075 (10)
C10	0.0573 (13)	0.0536 (14)	0.0444 (12)	0.0003 (11)	0.0132 (10)	-0.0089 (10)
C9	0.0416 (11)	0.0454 (11)	0.0417 (11)	0.0015 (9)	0.0131 (8)	-0.0012 (9)
01	0.0584 (10)	0.0587 (10)	0.0380 (8)	0.0146 (8)	0.0013 (7)	-0.0091 (7)
C18	0.0466 (12)	0.0594 (14)	0.0459 (12)	0.0032 (10)	0.0183 (10)	-0.0025 (10)
C19	0.0483 (12)	0.0503 (12)	0.0419 (11)	-0.0017 (10)	0.0171 (9)	0.0020 (9)
C24	0.0666 (16)	0.0669 (16)	0.0443 (12)	0.0028 (13)	0.0168 (11)	0.0004 (11)
C23	0.0700 (17)	0.083 (2)	0.0499 (14)	0.0015 (15)	0.0079 (13)	0.0171 (14)
C22	0.0640 (17)	0.0654 (18)	0.083 (2)	0.0069 (13)	0.0186 (15)	0.0270 (16)
C21	0.0673 (16)	0.0453 (13)	0.0804 (19)	0.0004 (12)	0.0294 (14)	0.0091 (13)
C20	0.0533 (12)	0.0439 (12)	0.0516 (12)	-0.0081 (10)	0.0221 (10)	0.0020 (10)
N4	0.0713 (14)	0.0498 (12)	0.0566 (12)	-0.0154 (10)	0.0244 (11)	-0.0069 (10)
O3	0.1088 (17)	0.0651 (13)	0.0520 (11)	-0.0091 (12)	0.0052 (11)	-0.0036 (10)
O2	0.122 (2)	0.0594 (13)	0.0867 (16)	-0.0078 (13)	0.0250 (14)	-0.0305 (12)
Cl	0.0796 (4)	0.0619 (4)	0.0372 (3)	-0.0102 (3)	0.0036 (3)	0.0037 (2)
O4	0.142 (3)	0.103 (2)	0.0761 (16)	0.0126 (18)	-0.0001 (16)	-0.0345 (15)
05	0.172 (3)	0.122 (2)	0.0487 (12)	-0.050 (2)	0.0170 (15)	0.0102 (13)
O6	0.198 (5)	0.412 (9)	0.109 (3)	-0.198 (6)	0.029 (3)	0.016 (4)
O7	0.366 (8)	0.121 (3)	0.116 (3)	0.115 (4)	-0.054 (4)	-0.030 (2)

Geometric parameters (Å, °)

Cu—01	1.9104 (16)	C16—C15	1.384 (3)
Cu—N3	1.9245 (18)	C16—H16	0.9300
Cu—N1	1.976 (2)	C15—C14	1.387 (4)
Cu—N2	2.0925 (19)	C15—H15	0.9300
N1-C1	1.479 (4)	C14—C13	1.357 (4)
N1—H1	0.82 (4)	C14—H14	0.9300
N1—H2	0.84 (3)	C13—C12	1.411 (3)
C1—C2	1.515 (5)	С13—Н13	0.9300
C1—H1A	0.9700	C12—C11	1.426 (4)
C1—H1B	0.9700	C11—C10	1.342 (4)
C2—C3	1.500 (5)	C11—H11	0.9300
C2—H2A	0.9700	C10—C9	1.430 (3)

С2—Н2В	0.9700	C10—H10	0.9300
C3—N2	1.492 (3)	C9—O1	1.297 (3)
С3—НЗА	0.9700	C18—C19	1.510 (3)
С3—Н3В	0.9700	C18—H18A	0.9700
N2—C18	1.503 (3)	C18—H18B	0.9700
N2—C4	1.508 (3)	C19—C20	1.389 (3)
C4—C5	1.493 (4)	C19—C24	1.402 (3)
C4—H4A	0.9700	C24—C23	1.378 (4)
C4—H4B	0.9700	C24—H24	0.9300
C5—C6	1.504 (4)	C23—C22	1.371 (5)
C5—H5A	0.9700	С23—Н23	0.9300
C5—H5B	0.9700	C22—C21	1.358 (4)
C6—N3	1.469 (3)	C22—H22	0.9300
C6—H6A	0.9700	C21—C20	1.388 (4)
C6—H6B	0.9700	C21—H21	0.9300
N3—C7	1.292 (3)	C20—N4	1.470 (3)
C7—C8	1.252(3)	N4-02	1 209 (3)
C7—H7	0.9300	N4-03	1.209(3)
C8-C9	1 413 (3)	C1 - 07	1.220(3) 1 354(4)
C8-C17	1 445 (3)	C1—O6	1 369 (4)
C17—C16	1 408 (3)	$C1 \rightarrow 05$	1.389(1)
C17 - C12	1 419 (3)	C1—O4	1.300(2) 1 402(3)
	1.119 (3)		1.102 (3)
O1—Cu—N3	90.91 (7)	C7—C8—C17	120.07 (19)
O1—Cu—N1	86.12 (9)	C16—C17—C12	117.2 (2)
N3—Cu—N1	158.55 (11)	C16—C17—C8	123.6 (2)
O1—Cu—N2	151.48 (8)	C12—C17—C8	119.3 (2)
N3—Cu—N2	93.65 (8)	C15—C16—C17	121.1 (2)
N1—Cu—N2	99.07 (9)	C15—C16—H16	119.4
C1—N1—Cu	122.3 (2)	C17—C16—H16	119.4
C1—N1—H1	103 (2)	C16—C15—C14	120.8 (2)
Cu—N1—H1	108 (2)	C16—C15—H15	119.6
C1—N1—H2	110 (2)	C14—C15—H15	119.6
Cu—N1—H2	103 (2)	C13—C14—C15	119.7 (2)
H1—N1—H2	111 (3)	C13—C14—H14	120.1
N1—C1—C2	112.2 (2)	C15—C14—H14	120.1
N1—C1—H1A	109.2	C14—C13—C12	121.1 (3)
C2—C1—H1A	109.2	C14—C13—H13	119.5
N1—C1—H1B	109.2	C12—C13—H13	119.5
C2—C1—H1B	109.2	C13—C12—C17	120.1 (2)
H1A—C1—H1B	107.9	C13—C12—C11	121.0 (2)
C3—C2—C1	114.1 (3)	C17—C12—C11	118.9 (2)
C3—C2—H2A	108.7	C10-C11-C12	121.7 (2)
C1—C2—H2A	108.7	C10-C11-H11	119.2
C3—C2—H2B	108.7	C12—C11—H11	119.2
C1—C2—H2B	108.7	C11—C10—C9	121.5 (2)
H2A—C2—H2B	107.6	C11—C10—H10	119.2
N2—C3—C2	116.6 (2)	C9—C10—H10	119.2

N2—C3—H3A	108.1	O1—C9—C8	124.3 (2)
С2—С3—НЗА	108.1	O1—C9—C10	116.8 (2)
N2—C3—H3B	108.1	C8—C9—C10	118.8 (2)
С2—С3—Н3В	108.1	C9—O1—Cu	124.70 (14)
НЗА—СЗ—НЗВ	107.3	N2—C18—C19	115.07 (18)
C3—N2—C18	106.7 (2)	N2—C18—H18A	108.5
C3—N2—C4	108.2 (2)	C19—C18—H18A	108.5
C18—N2—C4	105.99 (19)	N2—C18—H18B	108.5
C3—N2—Cu	112.97 (17)	C19—C18—H18B	108.5
C18—N2—Cu	112.54 (13)	H18A—C18—H18B	107.5
C4—N2—Cu	110.16 (16)	C_{20} C_{19} C_{24}	115.0 (2)
C5—C4—N2	112.9 (2)	C20—C19—C18	126.9 (2)
C5—C4—H4A	109.0	C_{24} C 19 C 18	117.9 (2)
N2-C4-H4A	109.0	C_{23} C_{24} C_{19}	122.5(3)
C5—C4—H4B	109.0	C23—C24—H24	118.7
N2-C4-H4B	109.0	C19—C24—H24	118.7
H4A—C4—H4B	107.8	C_{22} C_{23} C_{24}	120.1 (3)
C4-C5-C6	112.7(2)	C22—C23—H23	120.1 (5)
C4—C5—H5A	109 1	C24—C23—H23	120.0
C6-C5-H5A	109.1	$C_{21} - C_{22} - C_{23}$	119.6(3)
C4-C5-H5B	109.1	$C_{21} = C_{22} = C_{23}$	120.2
C6-C5-H5B	109.1	C_{23} C_{22} H_{22}	120.2
H5A-C5-H5B	107.8	$C_{22} = C_{21} = C_{20}$	120.2 120.2(3)
N3-C6-C5	111.9(2)	$C_{22} = C_{21} = C_{20}$	119.9
N3—C6—H6A	109.2	$C_{22} = C_{21} = H_{21}$	119.9
C5-C6-H6A	109.2	$C_{20} = C_{21} = C_{121}$	122.6(2)
N3—C6—H6B	109.2	$C_{21} = C_{20} = N_4$	122.0(2) 115.2(2)
C5-C6-H6B	109.2	C19 - C20 - N4	113.2(2) 122.2(2)
H6A - C6 - H6B	107.9	02 - N4 - 03	122.2(2) 122.7(3)
C7 N3 C6	118 23 (19)	02 - N4 - C20	122.7(3)
C7 - N3 - Cu	123 45 (15)	02 - N4 - C20	110.5(3)
$C_{1} = N_{2} = C_{1}$	123.43(15)	07 C1 06	117.1(2) 107.8(5)
N_{3} C_{7} C_{8}	12647(19)	07 - C1 - 05	107.8(3)
N3 C7 H7	116.8	06 C1 05	111.3(3)
$N_{3} = C_{7} = H_{7}$	116.8	0003	107.4(2) 106.5(2)
C_{0} C_{8} C_{7}	120.22(10)	06 C1 04	100.3(2)
$C_{9} = C_{8} = C_{17}$	120.22(19) 110.6(2)	05 C1 04	112.2(3)
09-08-017	119.0 (2)	05-04	111.4 (2)
01— Cu — $N1$ — $C1$	-1705(3)	C16-C15-C14-C13	0.4(4)
$N_3 = C_1 = N_1 = C_1$	106.9 (3)	C_{15} C_{14} C_{13} C_{12}	0.1(1)
$N_2 - C_1 - N_1 - C_1$	-187(3)	C_{14} C_{13} C_{12} C_{17}	-12(4)
C_{μ} N_{1} C_{1} C_{2}	413(4)	C14 - C13 - C12 - C11	1.2(+) 178 1 (2)
$\mathcal{N}_{1} = \mathcal{C}_{1} = \mathcal{C}_{2}$	-67.9(4)	$C_{14} = C_{13} = C_{12} = C_{13}$	1/0.1(2)
C1 = C2 = C3 = N2	75 1 (4)	$C_{10} = C_{11} = C_{12} = C_{13}$	-1793(2)
$C_1 = C_2 = C_3 = 182$	77.0 (3)	$C_{16} = C_{17} = C_{12} = C_{15}$	-177 A(2)
$C_2 = C_3 = N_2 = C_{10}$	-1694(3)	$C_{10} - C_{17} - C_{12} - C_{11}$	1 4 (3)
$C_2 = C_3 = N_2 = C_4$	-47.2(3)	$C_{12} = C_{12} = C_{11} = C_{12}$	$-177 \in (2)$
$C_2 = C_3 = N_2 = C_4$	+1.2(3)	C_{13} C_{12} C_{11} C_{10} C_{10}	177.0(2)
O1 - Cu - N2 - C3	116.2 (2)	$U_1 - U_1 $	1.7 (4)

N3—Cu—N2—C3	-143.12 (18)	C12—C11—C10—C9	-1.3 (4)
N1—Cu—N2—C3	19.6 (2)	C7—C8—C9—O1	8.8 (3)
O1—Cu—N2—C18	-2.7 (2)	C17—C8—C9—O1	-175.4 (2)
N3—Cu—N2—C18	96.00 (16)	C7—C8—C9—C10	-170.5 (2)
N1—Cu—N2—C18	-101.32 (17)	C17—C8—C9—C10	5.2 (3)
O1—Cu—N2—C4	-120.71 (19)	C11—C10—C9—O1	178.4 (2)
N3—Cu—N2—C4	-22.04 (17)	C11—C10—C9—C8	-2.2 (4)
N1—Cu—N2—C4	140.64 (18)	C8—C9—O1—Cu	19.6 (3)
C3—N2—C4—C5	89.5 (3)	C10—C9—O1—Cu	-161.05 (17)
C18—N2—C4—C5	-156.4 (2)	N3—Cu—O1—C9	-32.2 (2)
Cu—N2—C4—C5	-34.4 (3)	N1—Cu—O1—C9	169.1 (2)
N2-C4-C5-C6	83.4 (3)	N2—Cu—O1—C9	67.2 (3)
C4—C5—C6—N3	-47.7 (3)	C3—N2—C18—C19	-168.7 (2)
C5—C6—N3—C7	154.6 (2)	C4—N2—C18—C19	76.2 (2)
C5—C6—N3—Cu	-25.0 (3)	Cu—N2—C18—C19	-44.3 (2)
O1—Cu—N3—C7	26.90 (18)	N2-C18-C19-C20	91.4 (3)
N1—Cu—N3—C7	108.6 (3)	N2-C18-C19-C24	-94.6 (3)
N2—Cu—N3—C7	-124.94 (18)	C20-C19-C24-C23	-3.0 (4)
O1—Cu—N3—C6	-153.60 (18)	C18—C19—C24—C23	-177.8 (3)
N1—Cu—N3—C6	-71.9 (3)	C19—C24—C23—C22	1.6 (5)
N2—Cu—N3—C6	54.57 (18)	C24—C23—C22—C21	0.4 (5)
C6—N3—C7—C8	170.9 (2)	C23—C22—C21—C20	-0.7 (4)
Cu—N3—C7—C8	-9.6 (3)	C22-C21-C20-C19	-1.0 (4)
N3—C7—C8—C9	-14.2 (3)	C22-C21-C20-N4	176.4 (2)
N3—C7—C8—C17	170.1 (2)	C24—C19—C20—C21	2.7 (3)
C9—C8—C17—C16	173.8 (2)	C18—C19—C20—C21	176.9 (2)
C7—C8—C17—C16	-10.4 (3)	C24—C19—C20—N4	-174.5 (2)
C9—C8—C17—C12	-4.9 (3)	C18-C19-C20-N4	-0.3 (4)
C7—C8—C17—C12	170.84 (19)	C21—C20—N4—O2	-9.1 (3)
C12—C17—C16—C15	-1.5 (3)	C19—C20—N4—O2	168.3 (2)
C8—C17—C16—C15	179.7 (2)	C21—C20—N4—O3	171.4 (2)
C17—C16—C15—C14	0.4 (4)	C19—C20—N4—O3	-11.2 (3)

Hydrogen-bond geometry (Å, °)

H···A	$D \cdots A$	D—H···A
2.46 (3)	2.948 (4)	119 (3)
2.39 (4)	3.203 (5)	163 (3)
2.82 (3)	3.249 (4)	114 (3)
2.51 (3)	3.031 (3)	122 (3)
	H···A 2.46 (3) 2.39 (4) 2.82 (3) 2.51 (3)	$H \cdots A$ $D \cdots A$ $2.46 (3)$ $2.948 (4)$ $2.39 (4)$ $3.203 (5)$ $2.82 (3)$ $3.249 (4)$ $2.51 (3)$ $3.031 (3)$

Symmetry code: (i) -x+1, -y+2, -z+1.