organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(7a*R**,12bS*)-8,12b-Dihydro-7a*H*indeno[1',2':5,6][1,4]selenazino[2,3,4-*ij*]quinolin-13-ium hydrogen sulfate

Gunay Z. Mammadova,^a* Zhanna V. Matsulevich,^b Galina N. Borisova,^b Alexander V. Borisov^b and Victor N. Khrustalev^c

^aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan, ^bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod, 603950 Russian Federation, and ^cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-0334 Moscow, 119991 Russian Federation Correspondence e-mail: gunka479@mail.ru

Received 31 October 2011; accepted 8 November 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.114; data-to-parameter ratio = 17.7.

In the title compound, $C_{18}H_{14}NSe^+ HSO_4^-$, the cyclopentene ring in the cation has an envelope conformation while the central six-membered 1,4-selenazine ring adopts a sofa conformation. The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°. In the crystal, the anions form chains along the *c* axis through $O-H\cdots O$ hydrogen bonds. Weak $C-H\cdots O$ and $C-H\cdots \pi$ hydrogen bonds, as well as attractive Se\cdots Se [3.5608 (8) Å] interactions, further consolidate the crystal structure.

Related literature

For the synthesis and biological properties of selenium- and nitrogen-containing heterocycles, see: Mugesh *et al.* (2001); Koketsu & Ishihara (2003); Nogueira *et al.* (2004); Bhabak & Mugesh (2007); Mlochowski & Giurg (2009); Back (2009); Mukherjee *et al.* (2010). For related compounds, see: Wright (2001); Garud *et al.* (2007); Sommen *et al.* (2007); Borisov *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{lll} C_{18}H_{14}\text{NSe}^+\text{\cdot}\text{HSO}_4^- & V = 10\\ M_r = 420.34 & Z = 4\\ \text{Monoclinic, } P_{2_1}/c & \text{Mo K}\\ a = 11.1355 \ (11) \text{ Å} & \mu = 2.\\ b = 19.5653 \ (19) \text{ Å} & T = 12\\ c = 7.9609 \ (8) \text{ Å} & 0.20 \times\\ \beta = 107.005 \ (2)^\circ \end{array}$

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T_{min} = 0.644, T_{max} = 0.953

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.114$ S = 1.004007 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C3A/C4-C6/C6A/C13A ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4O···O3 ⁱ	0.96	1.59	2.548 (3)	171
$C1 - H1 \cdots O1$	0.95	2.19	3.114 (4)	165
C3−H3···O2 ⁱⁱ	0.95	2.28	3.154 (4)	153
$C4-H4\cdots O2^{ii}$	0.95	2.49	3.308 (4)	144
C5−H5···O4 ⁱⁱⁱ	0.95	2.55	3.367 (4)	145
$C7A - H7A \cdots O2^{iv}$	1.00	2.49	3.367 (4)	146
$C12B - H12B \cdots O1^{i}$	1.00	2.42	3.244 (4)	139
$C12B - H12B \cdots O3^{i}$	1.00	2.57	3.355 (4)	135
$C11-H11\cdots Cg^{v}$	0.95	2.78	3.679 (4)	159

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) x, y, z - 1; (v) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2313).

References

- Back, T. G. (2009). Can. J. Chem. 87, 1657-1674.
- Bhabak, K. P. & Mugesh, G. (2007). Chem. Eur. J. 13, 4594-4601.
- Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2011). Chem. Heterocycl. Compd Engl. Ed. 47, 654–655.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535.
- Koketsu, M. & Ishihara, H. (2003). Curr. Org. Chem. 7, 175-185.

Mlochowski, J. & Giurg, M. (2009). Topics in Heterocyclic Chemistry, Vol. 19, edited by R. R. Gupta, pp. 287–340. Berlin, Heidelberg: Springer–Verlag. Mugesh, G., du Mont, W.-W. & Sies, H. (2001). Chem. Rev. 101, 2125–2179.

 $V = 1658.6 (3) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 2.41 \text{ mm}^{-1}$ T = 120 K $0.20 \times 0.02 \times 0.02 \text{ mm}$

14396 measured reflections

 $R_{\rm int} = 0.054$

226 parameters

 $\Delta \rho_{\rm max} = 1.00 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$

4007 independent reflections

2902 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Mukherjee, A. J., Zade, S. S., Singh, H. B. & Sunoj, R. B. (2010). Chem. Rev.

Mukherjee, A. J., Zade, S. S., Shigh, H. B. & Sunoj, K. B. (2010). *Chem. Rev.* 110, 4357–4416.
 Nogueira, C. W., Zeni, G. & Rocha, J. B. T. (2004). *Chem. Rev.* 104, 6255–6285.
 Sheldrick, G. M. (1998). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sommen, G. L., Linden, A. & Heimgartner, H. (2007). Helv. Chim. Acta, 90, 472-487.
- Wright, S. W. (2001). J. Heterocycl. Chem. 38, 723-726.

supporting information

Acta Cryst. (2011). E67, o3286-o3287 [https://doi.org/10.1107/S1600536811047167]

(7a*R**,12b*S**)-8,12b-Dihydro-7a*H*-indeno[1',2':5,6][1,4]selenazino[2,3,4*ij*]quinolin-13-ium hydrogen sulfate

Gunay Z. Mammadova, Zhanna V. Matsulevich, Galina N. Borisova, Alexander V. Borisov and Victor N. Khrustalev

S1. Comment

In the last years, the selenium- and nitrogen-containing heterocycles have attracted considerable attention owing to the variety of their pharmacological properties (Mugesh *et al.*, 2001; Wright, 2001; Koketsu & Ishihara, 2003; Nogueira *et al.*, 2004; Bhabak & Mugesh, 2007; Garud *et al.*, 2007; Sommen *et al.*, 2007; Back, 2009; Mlochowski & Giurg, 2009; Mukherjee *et al.*, 2010). This article describes the structure of 8,12*b*-dihydro-7*aH*-indeno[1',2':5,6][1,4]selenazino[2,3,4-*ij*]quinolin-13-ium hydrosulfate, which was obtained by a reaction of 8,12*b*-dihydro-7*aH*-indeno[1',2':5,6][1,4]selenazino[2,3,4-*ij*]quinolin-13-ium chloride (Borisov *et al.*, 2011) with potassium hydrosulfate (Fig. 1).

The title compound of I, $[C_{18}H_{14}NSe][HSO_4]$, is a salt consisting of indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium cation and hydrosulfate anion. The cation of I comprises a fused pentacyclic system containing one five-membered ring (cyclopentene) and four six-membered rings (two benzene, 3,6-dihydro-1,4-selenazine and pyridine) (Fig. 2). The cyclopentene ring has the usual *envelope* conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.549 (5)Å)), and the central six-membered 1,4-selenazine ring adopts a *sofa* conformation (the C7A carbon atom is out of the plane through the other atoms of the ring by 0.677 (4)Å). The dihedral angle between the planes of the terminal benzene rings is 68.08 (11)°.

In the crystal, anions of I form chains along the *c* axis through the intermolecular O4—H4O···O3ⁱ hydrogen bonding interactions (Table 1, Fig. 3). Weak intermolecular C—H···O (Table 1) and C11—H11··· π (C3A^v–C4^v) (the H11···C3A^v and H11···C4^v distances are 2.79Å and 2.86Å, respectively) hydrogen bonds as well as attractive Se···Se^{vi} (3.5608 (8)Å) interactions consolidate further the three-dimensional crystal packing (Fig. 3). Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (v) - *x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*+1.

The cation of **I** possesses two asymmetric centers at the C7A and C12B carbon atoms and can have potentially four diastereomers. The crystal of **I** is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-7a R^* ,12b S^* .

S2. Experimental

A mixture of 8,12*b*-dihydro-7a*H*-indeno[1',2':5,6][1,4]selenazino[2,3,4- *ij*]quinolin-13-ium chloride (0.147 g, 0.4 mmol) with KHSO₄ (0.057 g, 0.42 mmol) in CH₃OH (20 ml) was refluxed for 0.5 h to dissolve the starting materials. After that the reaction mixture was concentrated in *vacuo*. Then CH₂Cl₂ (20 ml) was added to the solid to give precipitate of KCl which was separated by filtration. The filtrate was concentrated in *vacuo*. The solid was recrystallized from CH₂Cl₂ to give I as orange needles. Yield is 89%. M.p. = 502–503 K. IR (KBr), *v* (cm⁻¹): 3481, 2987, 1608, 1552, 1485, 1440, 1294, 1172, 1134, 796, 721, 468, 419. ¹H NMR (DMSO-d₆, 300 MHz, 302 K): δ = 9.72 (dd, 1H, H1, J = 6.0, J = 1.3), 9.45 (dd,

1H, H3, J = 8.4, J = 1.4), 8.37 (dd, 1H, H2, J = 8.3, J = 5.8), 8.28 (dd, 1H, H4, J = 8.1, J = 1.3), 8.23 (dd, 1H, H6, J = 7.5, J = 1.3), 7.83 (t, 1H, H5, J = 7.8), 7.52 (d, 1H, H9, J = 7.5), 7.31 (t, 1H, H10, J = 7.5), 7.14 (t, 1H, H11, J = 7.5), 6.89 (d, 1H, H12b, J = 4.7), 6.60 (d, 1H, H12, J = 7.6), 4.87 (t, 1H, H7a, J = 4.7), 3.59 (dd, 1H, H8, J = 16.8, J = 4.7), 3.25 (d, H8, J = 16.8). Anal. Calcd. for $C_{18}H_{15}NO_4SSe: C, 51.43; H, 3.59; N, 3.33$. Found: C, 51.34; H, 3.52; N, 3.29.

S3. Refinement

The hydroxyl hydrogen atom was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(O)]$. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$.

Figure 1

Reaction of 8,12b-dihydro-7aH-indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium chloride with potassium hydro-sulfate.

Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level.

Figure 3

Crystal packing of I demonstrating the anionic chains along the c axis. Dashed lines indicate the intermolecular hydrogen bonding and attractive Se...Se interactions.

(7aR*,12bS*)-8,12b-Dihydro-7aH- indeno[1',2':5,6][1,4]selenazino[2,3,4-ij]quinolin-13-ium hydrogen sulfate

Crystal data

$C_{18}H_{14}NSe^{+}HSO_{4}^{-}$ $M_{r} = 420.34$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 11.1355 (11) Å b = 19.5653 (19) Å c = 7.9609 (8) Å $\beta = 107.005 (2)^{\circ}$ $V = 1658.6 (3) \text{ Å}^{3}$ Z = 4	F(000) = 848 $D_x = 1.683 \text{ Mg m}^{-3}$ Melting point = 502–503 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2341 reflections $\theta = 2.2-24.8^{\circ}$ $\mu = 2.41 \text{ mm}^{-1}$ T = 120 K Needle, orange $0.20 \times 0.02 \times 0.02 \text{ mm}$
Data collection	
Bruker SMART 1K CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1998) $T_{min} = 0.644$, $T_{max} = 0.953$ 14396 measured reflections 4007 independent reflections 2902 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.054$	$k = -24 \rightarrow 25$
$\theta_{\rm max} = 28.0^{\circ}, \theta_{\rm min} = 1.9^{\circ}$	$l = -10 \rightarrow 10$
$h = -14 \rightarrow 14$	

Refinement	
Refinement on F^2	Secon
Least-squares matrix: full	ma
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydro
$wR(F^2) = 0.114$	H-ato
S = 1.00	w = 1
4007 reflections	wh
226 parameters	$(\Delta/\sigma)_{i}$
0 restraints	$\Delta ho_{ m max}$

0 Primary atom site location: structure-invariant direct methods

R

ndary atom site location: difference Fourier ogen site location: difference Fourier map om parameters constrained $/[\sigma^2(F_0^2) + (0.054P)^2 + 2.36P]$ here $P = (F_o^2 + 2F_c^2)/3$ max = 0.001 $= 1.00 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1870 (3)	0.58708 (18)	0.3376 (5)	0.0216 (7)
H1	0.2013	0.6277	0.4059	0.026*
C2	0.1119 (3)	0.53643 (18)	0.3759 (5)	0.0242 (8)
H2	0.0772	0.5420	0.4708	0.029*
C3	0.0884 (3)	0.47893 (19)	0.2765 (5)	0.0236 (7)
Н3	0.0365	0.4441	0.3010	0.028*
C3A	0.1413 (3)	0.47090 (17)	0.1365 (4)	0.0183 (7)
C4	0.1189 (3)	0.40994 (19)	0.0350 (5)	0.0227 (7)
H4	0.0648	0.3756	0.0564	0.027*
C5	0.1763 (3)	0.40145 (19)	-0.0938 (5)	0.0246 (8)
Н5	0.1622	0.3608	-0.1621	0.030*
C6	0.2556 (3)	0.45222 (19)	-0.1259 (4)	0.0224 (7)
H6	0.2938	0.4452	-0.2167	0.027*
C6A	0.2801 (3)	0.51193 (17)	-0.0303 (4)	0.0192 (7)
Se7	0.40049 (3)	0.571862 (19)	-0.07394 (4)	0.02345 (12)
C7A	0.3453 (3)	0.65434 (18)	0.0190 (4)	0.0218 (7)
H7A	0.2719	0.6763	-0.0679	0.026*
C8	0.4599 (3)	0.70229 (18)	0.0743 (4)	0.0242 (8)
H8A	0.5125	0.6978	-0.0061	0.029*
H8B	0.4334	0.7505	0.0757	0.029*
C8A	0.5298 (3)	0.67800 (17)	0.2574 (4)	0.0208 (7)
C9	0.6519 (3)	0.69027 (18)	0.3579 (5)	0.0237 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H9	0.7065	0.7171	0.3129	0.028*
C10	0.6934 (3)	0.6625 (2)	0.5264 (5)	0.0274 (8)
H10	0.7772	0.6704	0.5967	0.033*
C11	0.6130 (3)	0.6235 (2)	0.5921 (5)	0.0274 (8)
H11	0.6426	0.6048	0.7070	0.033*
C12	0.4901 (3)	0.61157 (18)	0.4919 (4)	0.0215 (7)
H12	0.4349	0.5851	0.5369	0.026*
C12A	0.4499 (3)	0.63916 (16)	0.3249 (4)	0.0164 (6)
C12B	0.3200 (3)	0.64029 (17)	0.1943 (4)	0.0182 (7)
H12B	0.2770	0.6818	0.2221	0.022*
N13	0.2398 (2)	0.58057 (13)	0.2079 (3)	0.0155 (5)
C13A	0.2219 (3)	0.52230 (17)	0.1038 (4)	0.0165 (6)
S1	0.07534 (8)	0.71231 (4)	0.61913 (10)	0.01767 (18)
01	0.1979 (2)	0.70926 (12)	0.5924 (3)	0.0217 (5)
02	0.0535 (2)	0.66144 (13)	0.7377 (3)	0.0268 (6)
O3	0.0469 (2)	0.78149 (12)	0.6674 (3)	0.0232 (5)
O4	-0.0231 (2)	0.69555 (14)	0.4394 (3)	0.0290 (6)
H4O	0.0104	0.7065	0.3440	0.043*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0230 (17)	0.0187 (18)	0.0244 (17)	0.0016 (14)	0.0093 (14)	-0.0044 (13)
C2	0.0268 (18)	0.025 (2)	0.0273 (18)	-0.0002 (15)	0.0177 (15)	-0.0031 (14)
C3	0.0234 (17)	0.0207 (18)	0.0289 (18)	-0.0007 (14)	0.0111 (15)	0.0006 (14)
C3A	0.0149 (15)	0.0174 (17)	0.0213 (16)	0.0016 (13)	0.0034 (13)	-0.0001 (13)
C4	0.0169 (16)	0.0240 (19)	0.0252 (17)	-0.0037 (14)	0.0028 (14)	-0.0028 (14)
C5	0.0223 (18)	0.0213 (18)	0.0274 (18)	-0.0050 (14)	0.0028 (15)	-0.0100 (14)
C6	0.0197 (17)	0.0265 (19)	0.0206 (16)	0.0021 (15)	0.0052 (14)	-0.0053 (14)
C6A	0.0184 (16)	0.0206 (18)	0.0184 (15)	-0.0026 (13)	0.0049 (13)	-0.0009 (13)
Se7	0.0276 (2)	0.0244 (2)	0.02247 (19)	-0.00505 (15)	0.01375 (14)	-0.00375 (14)
C7A	0.0265 (18)	0.0193 (18)	0.0191 (16)	0.0015 (14)	0.0059 (14)	0.0041 (13)
C8	0.032 (2)	0.0197 (18)	0.0226 (17)	-0.0019 (15)	0.0101 (15)	0.0031 (14)
C8A	0.0270 (18)	0.0117 (16)	0.0262 (17)	0.0012 (14)	0.0119 (15)	-0.0013 (13)
C9	0.0201 (17)	0.0204 (18)	0.0335 (19)	-0.0041 (14)	0.0122 (15)	-0.0062 (15)
C10	0.0180 (17)	0.034 (2)	0.0269 (18)	0.0022 (15)	0.0015 (14)	-0.0095 (16)
C11	0.0248 (19)	0.029 (2)	0.0254 (18)	0.0051 (16)	0.0026 (15)	0.0003 (15)
C12	0.0204 (17)	0.0222 (18)	0.0214 (16)	0.0024 (14)	0.0055 (13)	0.0022 (14)
C12A	0.0169 (15)	0.0141 (16)	0.0179 (15)	0.0012 (13)	0.0046 (12)	-0.0031 (12)
C12B	0.0186 (16)	0.0150 (16)	0.0195 (16)	-0.0001 (13)	0.0034 (13)	0.0009 (13)
N13	0.0144 (13)	0.0135 (14)	0.0190 (13)	0.0012 (10)	0.0056 (10)	0.0001 (10)
C13A	0.0126 (14)	0.0155 (16)	0.0188 (15)	0.0018 (12)	0.0007 (12)	-0.0017 (12)
S 1	0.0187 (4)	0.0188 (4)	0.0159 (4)	-0.0036 (3)	0.0057 (3)	-0.0017 (3)
01	0.0203 (12)	0.0209 (13)	0.0244 (12)	-0.0030 (10)	0.0074 (10)	-0.0040 (10)
O2	0.0313 (14)	0.0236 (14)	0.0261 (13)	-0.0067 (11)	0.0095 (11)	0.0032 (10)
O3	0.0317 (14)	0.0212 (13)	0.0189 (11)	0.0032 (11)	0.0107 (10)	0.0012 (10)
04	0.0227 (13)	0.0483 (17)	0.0163 (12)	-0.0130 (12)	0.0064 (10)	-0.0072 (11)
	. /	. /	. ,		. ,	

Geometric parameters (Å, °)

C1—N13	1.336 (4)	C8—H8A	0.9900	
C1—C2	1.386 (5)	C8—H8B	0.9900	
C1—H1	0.9500	C8A—C9	1.382 (5)	
C2—C3	1.356 (5)	C8A—C12A	1.391 (4)	
С2—Н2	0.9500	C9—C10	1.395 (5)	
C3—C3A	1.414 (5)	С9—Н9	0.9500	
С3—Н3	0.9500	C10—C11	1.390 (5)	
C3A—C4	1.421 (5)	C10—H10	0.9500	
C3A—C13A	1.422 (5)	C11—C12	1.388 (5)	
C4—C5	1.368 (5)	C11—H11	0.9500	
C4—H4	0.9500	C12—C12A	1.383 (5)	
С5—С6	1.401 (5)	C12—H12	0.9500	
С5—Н5	0.9500	C12A—C12B	1.515 (4)	
C6—C6A	1.377 (5)	C12B—N13	1.494 (4)	
С6—Н6	0.9500	C12B—H12B	1.0000	
C6A—C13A	1.416 (4)	N13—C13A	1.389 (4)	
C6A—Se7	1.888 (3)	S1—O2	1.441 (2)	
Se7—C7A	1.948 (3)	S1—O1	1.443 (2)	
C7A—C12B	1.527 (4)	S1—O3	1.467 (2)	
С7А—С8	1.541 (5)	S1—O4	1.562 (2)	
С7А—Н7А	1.0000	O4—H4O	0.9632	
C8—C8A	1.514 (5)			
N13—C1—C2	122.1 (3)	C9—C8A—C12A	120.2 (3)	
N13—C1—H1	118.9	C9—C8A—C8	130.1 (3)	
C2C1H1	118.9	C12A—C8A—C8	109.7 (3)	
C3—C2—C1	119.4 (3)	C8A—C9—C10	118.8 (3)	
С3—С2—Н2	120.3	С8А—С9—Н9	120.6	
С1—С2—Н2	120.3	С10—С9—Н9	120.6	
C2—C3—C3A	119.9 (3)	C11—C10—C9	120.5 (3)	
С2—С3—Н3	120.1	C11—C10—H10	119.8	
СЗА—СЗ—НЗ	120.1	C9—C10—H10	119.8	
C3—C3A—C4	119.8 (3)	C12—C11—C10	120.8 (3)	
C3—C3A—C13A	119.8 (3)	C12—C11—H11	119.6	
C4—C3A—C13A	120.3 (3)	C10—C11—H11	119.6	
C5—C4—C3A	119.0 (3)	C12A—C12—C11	118.3 (3)	
С5—С4—Н4	120.5	C12A—C12—H12	120.8	
СЗА—С4—Н4	120.5	C11—C12—H12	120.8	
C4—C5—C6	120.5 (3)	C12—C12A—C8A	121.4 (3)	
С4—С5—Н5	119.7	C12—C12A—C12B	129.9 (3)	
С6—С5—Н5	119.7	C8A—C12A—C12B	108.5 (3)	
C6A—C6—C5	122.3 (3)	N13—C12B—C12A	114.2 (3)	
С6А—С6—Н6	118.8	N13—C12B—C7A	118.7 (3)	
С5—С6—Н6	118.8	C12A—C12B—C7A	103.6 (3)	
C6—C6A—C13A	118.5 (3)	N13—C12B—H12B	106.5	
C6—C6A—Se7	117.5 (3)	C12A—C12B—H12B	106.5	

C13A—C6A—Se7	123 8 (2)	C7A—C12B—H12B	106 5
C6A—Se7—C7A	97.16 (15)	C1—N13—C13A	121.4 (3)
C12B—C7A—C8	102.0 (3)	C1—N13—C12B	112.9 (3)
C12B—C7A—Se7	111.2 (2)	C13A—N13—C12B	125.7 (3)
C8—C7A—Se7	106.6 (2)	N13—C13A—C6A	123.4 (3)
C12B—C7A—H7A	112.2	N13—C13A—C3A	117.3 (3)
C8—C7A—H7A	112.2	C6A—C13A—C3A	119.3 (3)
Se7—C7A—H7A	112.2	O2—S1—O1	114.60 (15)
C8A—C8—C7A	103.5 (3)	O2—S1—O3	112.03 (15)
C8A—C8—H8A	111.1	O1—S1—O3	111.29 (15)
С7А—С8—Н8А	111.1	O2—S1—O4	104.34 (15)
C8A—C8—H8B	111.1	O1—S1—O4	107.28 (14)
C7A—C8—H8B	111.1	O3—S1—O4	106.62 (15)
H8A—C8—H8B	109.0	S1—O4—H4O	110.2
N13—C1—C2—C3	-1.6 (5)	C8—C8A—C12A—C12B	-4.2 (4)
C1—C2—C3—C3A	0.6 (5)	C12—C12A—C12B—N13	-30.0(5)
C2—C3—C3A—C4	178.6 (3)	C8A—C12A—C12B—N13	155.7 (3)
C2—C3—C3A—C13A	1.9 (5)	C12—C12A—C12B—C7A	-160.7 (3)
C3—C3A—C4—C5	-176.5 (3)	C8A—C12A—C12B—C7A	25.1 (3)
C13A—C3A—C4—C5	0.2 (5)	C8—C7A—C12B—N13	-162.7 (3)
C3A-C4-C5-C6	-0.3 (5)	Se7—C7A—C12B—N13	-49.4 (4)
C4—C5—C6—C6A	0.4 (5)	C8—C7A—C12B—C12A	-34.8 (3)
C5-C6-C6A-C13A	-0.5 (5)	Se7—C7A—C12B—C12A	78.5 (3)
C5—C6—C6A—Se7	174.4 (3)	C2-C1-N13-C13A	0.1 (5)
C6—C6A—Se7—C7A	159.0 (3)	C2-C1-N13-C12B	-178.1 (3)
C13A—C6A—Se7—C7A	-26.4 (3)	C12A—C12B—N13—C1	80.4 (3)
C6A—Se7—C7A—C12B	44.9 (3)	C7A—C12B—N13—C1	-156.9 (3)
C6A—Se7—C7A—C8	155.2 (2)	C12A—C12B—N13—C13A	-97.7 (4)
C12B—C7A—C8—C8A	32.3 (3)	C7A—C12B—N13—C13A	25.0 (4)
Se7—C7A—C8—C8A	-84.4 (3)	C1—N13—C13A—C6A	-177.3 (3)
C7A—C8—C8A—C9	163.5 (3)	C12B—N13—C13A—C6A	0.6 (5)
C7A-C8-C8A-C12A	-18.1 (4)	C1—N13—C13A—C3A	2.3 (4)
C12A—C8A—C9—C10	0.6 (5)	C12B—N13—C13A—C3A	-179.7 (3)
C8—C8A—C9—C10	178.8 (3)	C6—C6A—C13A—N13	-179.9 (3)
C8A-C9-C10-C11	-0.3 (5)	Se7—C6A—C13A—N13	5.5 (5)
C9-C10-C11-C12	-0.2 (6)	C6—C6A—C13A—C3A	0.5 (5)
C10-C11-C12-C12A	0.3 (5)	Se7—C6A—C13A—C3A	-174.2 (2)
C11—C12—C12A—C8A	0.0 (5)	C3—C3A—C13A—N13	-3.3 (5)
C11-C12-C12A-C12B	-173.6 (3)	C4—C3A—C13A—N13	-179.9 (3)
C9—C8A—C12A—C12	-0.5 (5)	C3—C3A—C13A—C6A	176.4 (3)
C8—C8A—C12A—C12	-179.0 (3)	C4—C3A—C13A—C6A	-0.3 (5)
C9—C8A—C12A—C12B	174.4 (3)		

D—H	H···A	D···· A	D—H··· A
0.96	1.59	2.548 (3)	171
0.95	2.19	3.114 (4)	165
0.95	2.28	3.154 (4)	153
0.95	2.49	3.308 (4)	144
0.95	2.55	3.367 (4)	145
1.00	2.49	3.367 (4)	146
1.00	2.42	3.244 (4)	139
1.00	2.57	3.355 (4)	135
0.95	2.78	3.679 (4)	159
	D—H 0.96 0.95 0.95 0.95 1.00 1.00 1.00 0.95	D —H $H \cdots A$ 0.961.590.952.190.952.280.952.490.952.551.002.491.002.421.002.570.952.78	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Hydrogen-bond geometry (Å, °) Cg is the centroid of the C3A/C4–C6/C6A/C13A ring.

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) *x*, *y*, *z*-1; (v) -*x*+1, -*y*+1, -*z*+1.