organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-5-({[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)pyridine

Hao Ji and Xu-Dong Xu*

Department of Bioengineering, College of Medicine, Southeast University, Nanjing 210009, People's Republic of China, and Jiangsu Tiansheng Pharmaceutical, Company Limited Jurong City 212415, Jiangsu Province, People's Republic of China Correspondence e-mail: xuxd5555@163.com

Received 12 November 2011; accepted 24 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.060; wR factor = 0.147; data-to-parameter ratio = 13.6.

In the title compound, $C_{15}H_{12}CIN_3O_2S$, the central oxadiazole ring forms dihedral angles of 7.72 (14) and 69.86 (12)° with the benzene and pyridine rings, respectively. The crystal packing is governed only by van der Waals interactions.

Related literature

For background to the biological activity of heterocyclic compounds, see: Mamolo *et al.* (2001); Liu *et al.* (2001); Demirbas *et al.* (2004). For the synthesis, see: Zareef *et al.* (2008); Wu *et al.* (2011). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₅H₁₂ClN₃O₂S

 $M_r = 333.80$

Orthorhombic, *Pbca* a = 12.311 (2) Å b = 8.1229 (15) Å c = 29.956 (6) Å V = 2995.6 (10) Å³

Data collection

Bruker SMART APEX areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.886, T_{max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 201 parameters $wR(F^2) = 0.147$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 2730 reflections $\Delta \rho_{min} = -0.23$ e Å $^{-3}$

Z = 8

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.05 \text{ mm}$

5300 measured reflections

2730 independent reflections

1514 reflections with $I > 2\sigma(I)$

 $\mu = 0.40 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.089$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2672).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Winconsin, USA.
- Demirbas, N., Karaoglu, S. A., Demirbas, A. & Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.
- Liu, F., Luo, X. Q., Song, B. A., Bhadury, P. S., Yang, S., Jin, L. H., Xue, W. & Hu, D. Y. (2001). *Bioorg. Med. Chem.* **16**, 3632–3640.
- Mamolo, M. G., Falagiani, V., Zampieri, D., Vio, L. & Banfi, E. (2001). Farmaco, 56, 587–592.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, X. L., Zhu, C. F., Lü, Z. D., Wei, C. S. & Liao, X. C. (2011). Chin. J. Org. Chem. 31, 824–831.
- Zareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). *ARKIVOC*, *ii*, 141–152.

supporting information

Acta Cryst. (2011). E67, o3490 [https://doi.org/10.1107/S1600536811050410]

2-Chloro-5-({[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)-pyridine

Hao Ji and Xu-Dong Xu

S1. Comment

Heterocyclic compounds have been of great interest since many years, in particular due to the important role these compouns play in the development of medicinal chemistry (Mamolo *et al.*, 2001; Liu *et al.*, 2001; Demirbas *et al.*, 2004). As a contribution to the structural characterization of new heterocyclic compounds, we report here the structure of the title compound.

In the title compound (Fig. 1) all bond lengths are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the central oxadiazole ring (N1/N2/O2/C8/C9) and the benzene (C2–C7) and pyridine (N3/C11–C15) rings are of 7.72 (14) and 69.86 (12)°, respectively. In the crystal structure, no hydrogen bonds, $\pi \cdots \pi$ interactions or C—H $\cdots \pi$ short contacts are observed, the structure being stabilized only by van der Waals interactions.

S2. Experimental

The title compound was synthesized according to the previously reported literature methods (Zareef *et al.*, 2008; Wu *et al.*, 2011). Single crystals suitable for X-ray diffraction analysis were obtained by evaporation of an ethanol solution.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

2-Chloro-5-({[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)pyridine

Crystal data C₁₅H₁₂ClN₃O₂S

 $M_r = 333.80$

Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 4.2 - 26^{\circ}$

 $\mu = 0.40 \text{ mm}^{-1}$ T = 298 K

Needle, yellow $0.30 \times 0.20 \times 0.05 \text{ mm}$

Cell parameters from 2256 reflections

a = 12.311 (2) Å b = 8.1229 (15) Å c = 29.956 (6) Å $V = 2995.6 (10) \text{ Å}^3$ Z = 8 F(000) = 1376 $D_x = 1.480 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX area-detector	5300 measured reflections
diffractometer	2730 independent reflections
Radiation source: fine-focus sealed tube	1514 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.089$
ω scans	$\theta_{\rm max} = 25.3^{\circ}, \theta_{\rm min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 0$
$T_{\min} = 0.886, \ T_{\max} = 0.980$	$l = 0 \rightarrow 35$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.060$ Hydrogen site location: inferred from $wR(F^2) = 0.147$ neighbouring sites S = 0.97H-atom parameters constrained 2730 reflections $w = 1/[\sigma^2(F_o^2) + (0.0512P)^2]$ 201 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	V	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1	0.5087 (4)	-0.2986 (7)	0.24553 (18)	0.0714 (16)	
H1A	0.5338	-0.1867	0.2461	0.107*	
H1B	0.5102	-0.3387	0.2154	0.107*	
H1C	0.5552	-0.3654	0.2638	0.107*	
C2	0.3779 (4)	-0.2211 (6)	0.29959 (14)	0.0472 (11)	
C3	0.4536 (3)	-0.1655 (5)	0.33013 (14)	0.0455 (11)	
H3	0.5271	-0.1861	0.3256	0.055*	
C4	0.4201 (3)	-0.0794 (5)	0.36728 (13)	0.0420 (11)	
H4	0.4715	-0.0414	0.3876	0.050*	
C5	0.3108 (3)	-0.0486 (5)	0.37482 (13)	0.0371 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	0.2359 (3)	-0.1103 (6)	0.34482 (14)	0.0507 (12)
H6	0.1621	-0.0936	0.3498	0.061*
C7	0.2693 (4)	-0.1962 (6)	0.30773 (15)	0.0600 (14)
H7	0.2179	-0.2379	0.2880	0.072*
C8	0.2797 (3)	0.0489 (5)	0.41334 (13)	0.0364 (10)
C9	0.1752 (3)	0.1674 (5)	0.46014 (14)	0.0396 (11)
C10	0.1054 (4)	0.3455 (5)	0.52966 (12)	0.0442 (11)
H10A	0.1658	0.4113	0.5190	0.053*
H10B	0.0493	0.4206	0.5397	0.053*
C11	0.1431 (3)	0.2446 (5)	0.56864 (13)	0.0384 (10)
C12	0.2518 (3)	0.2350 (6)	0.57983 (14)	0.0473 (11)
H12	0.3018	0.2869	0.5613	0.057*
C13	0.2170 (4)	0.0810 (6)	0.64102 (14)	0.0454 (12)
C14	0.1079 (4)	0.0776 (6)	0.63222 (15)	0.0518 (12)
H14	0.0604	0.0206	0.6507	0.062*
C15	0.0706 (3)	0.1604 (6)	0.59533 (14)	0.0481 (12)
H15	-0.0030	0.1597	0.5884	0.058*
N1	0.3412 (3)	0.1276 (4)	0.44087 (11)	0.0436 (9)
N2	0.2721 (3)	0.2060 (5)	0.47184 (11)	0.0447 (9)
N3	0.2897 (3)	0.1545 (5)	0.61608 (12)	0.0501 (10)
O1	0.4021 (3)	-0.3058 (5)	0.26198 (11)	0.0770 (12)
O2	0.1718 (2)	0.0681 (3)	0.42357 (9)	0.0415 (7)
S	0.05258 (9)	0.22470 (15)	0.48350 (4)	0.0480 (3)
C11	0.26557 (11)	-0.01868 (18)	0.68838 (4)	0.0683 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.066 (3)	0.076 (4)	0.072 (4)	0.002 (3)	0.013 (3)	-0.028 (3)
C2	0.049 (3)	0.043 (3)	0.049 (3)	-0.003(2)	0.002 (2)	-0.007(2)
C3	0.040 (2)	0.046 (3)	0.050(3)	-0.002(2)	0.003 (2)	0.000(2)
C4	0.043 (3)	0.041 (3)	0.041 (3)	-0.003 (2)	-0.008(2)	-0.002 (2)
C5	0.037 (2)	0.036 (2)	0.038 (2)	-0.004 (2)	-0.0005 (18)	0.008 (2)
C6	0.033 (2)	0.058 (3)	0.061 (3)	0.000 (2)	0.003 (2)	-0.007 (3)
C7	0.044 (3)	0.068 (4)	0.068 (3)	-0.007 (3)	-0.005 (2)	-0.021 (3)
C8	0.037 (2)	0.030 (2)	0.043 (2)	0.000 (2)	-0.0009 (19)	0.003 (2)
C9	0.044 (3)	0.032 (2)	0.043 (3)	0.001 (2)	0.001 (2)	0.004 (2)
C10	0.051 (3)	0.036 (2)	0.045 (3)	0.009 (2)	0.010 (2)	0.001 (2)
C11	0.043 (2)	0.029 (2)	0.044 (2)	0.004 (2)	0.005 (2)	-0.001 (2)
C12	0.046 (2)	0.046 (3)	0.049 (3)	-0.008 (2)	0.008 (2)	-0.001 (2)
C13	0.053 (3)	0.036 (3)	0.048 (3)	0.005 (2)	-0.012 (2)	0.000(2)
C14	0.045 (3)	0.047 (3)	0.063 (3)	-0.009 (2)	0.005 (2)	0.020 (3)
C15	0.032 (2)	0.050 (3)	0.062 (3)	0.002 (2)	0.001 (2)	0.013 (2)
N1	0.039 (2)	0.043 (2)	0.049 (2)	0.0011 (19)	0.0011 (17)	-0.0014 (19)
N2	0.036 (2)	0.049 (2)	0.049 (2)	0.0006 (18)	0.0023 (16)	-0.0050 (19)
N3	0.042 (2)	0.054 (3)	0.054 (2)	0.000 (2)	0.0002 (19)	0.001 (2)
O1	0.061 (2)	0.098 (3)	0.072 (2)	-0.015 (2)	0.0116 (19)	-0.045 (2)
O2	0.0362 (16)	0.0386 (17)	0.0497 (19)	-0.0011 (14)	-0.0003 (13)	0.0021 (15)

supporting information

S	0.0375 (6)	0.0510(7)	0.0556 (7)	0.0047 (6)	0.0017 (5)	0.0007 (7)
Cl1	0.0728 (9)	0.0660 (9)	0.0661 (8)	-0.0008 (7)	-0.0169 (7)	0.0169 (7)

Geometric parameters (Å, °)

C1—01	1.404 (6)	C9—N2	1.282 (5)
C1—H1A	0.9600	C9—O2	1.361 (5)
C1—H1B	0.9600	C9—S	1.728 (4)
C1—H1C	0.9600	C10-C11	1.500 (5)
C2—O1	1.353 (5)	C10—S	1.816 (4)
C2—C3	1.381 (6)	C10—H10A	0.9700
C2—C7	1.375 (6)	C10—H10B	0.9700
C3—C4	1.378 (5)	C11—C15	1.379 (5)
С3—Н3	0.9300	C11—C12	1.383 (6)
C4—C5	1.387 (5)	C12—N3	1.350 (5)
C4—H4	0.9300	C12—H12	0.9300
C5—C6	1.382 (5)	C13—N3	1.310 (5)
C5—C8	1.451 (5)	C13—C14	1.368 (6)
C6—C7	1.375 (6)	C13—Cl1	1.740 (4)
С6—Н6	0.9300	C14—C15	1.373 (6)
С7—Н7	0.9300	C14—H14	0.9300
C8—N1	1.289 (5)	C15—H15	0.9300
C8—O2	1.372 (4)	N1—N2	1.411 (4)
O1—C1—H1A	109.5	O2—C9—S	117.3 (3)
O1—C1—H1B	109.5	C11—C10—S	114.1 (3)
H1A—C1—H1B	109.5	C11-C10-H10A	108.7
O1—C1—H1C	109.5	S-C10-H10A	108.7
H1A—C1—H1C	109.5	C11-C10-H10B	108.7
H1B—C1—H1C	109.5	S-C10-H10B	108.7
O1—C2—C3	124.7 (4)	H10A—C10—H10B	107.6
O1—C2—C7	115.9 (4)	C15—C11—C12	117.2 (4)
C3—C2—C7	119.4 (4)	C15—C11—C10	121.5 (4)
C4—C3—C2	120.0 (4)	C12-C11-C10	121.3 (4)
С4—С3—Н3	120.0	N3-C12-C11	123.9 (4)
С2—С3—Н3	120.0	N3-C12-H12	118.1
C3—C4—C5	120.9 (4)	C11—C12—H12	118.1
C3—C4—H4	119.6	N3-C13-C14	124.7 (4)
C5—C4—H4	119.6	N3—C13—Cl1	116.2 (3)
C6—C5—C4	118.4 (4)	C14—C13—Cl1	119.0 (4)
C6—C5—C8	122.6 (4)	C13—C14—C15	118.2 (4)
C4—C5—C8	119.0 (4)	C13—C14—H14	120.9
C7—C6—C5	120.7 (4)	C15—C14—H14	120.9
С7—С6—Н6	119.7	C14—C15—C11	119.6 (4)
С5—С6—Н6	119.7	C14—C15—H15	120.2
C6—C7—C2	120.6 (4)	C11—C15—H15	120.2
С6—С7—Н7	119.7	C8—N1—N2	106.8 (3)
С2—С7—Н7	119.7	C9—N2—N1	105.7 (3)

supporting information

N1—C8—O2	111.7 (4)	C13—N3—C12	116.3 (4)
N1	128.6 (4)	C2	118.4 (4)
O2—C8—C5	119.7 (4)	C9—O2—C8	102.5 (3)
N2—C9—O2	113.2 (4)	C9—S—C10	98.1 (2)
N2—C9—S	129.5 (4)		
O1—C2—C3—C4	179.6 (4)	C13—C14—C15—C11	-0.4 (7)
C7—C2—C3—C4	-3.0 (7)	C12-C11-C15-C14	2.6 (7)
C2—C3—C4—C5	0.6 (7)	C10-C11-C15-C14	-176.1 (4)
C3—C4—C5—C6	1.8 (6)	O2—C8—N1—N2	-0.1 (5)
C3—C4—C5—C8	-177.3 (4)	C5-C8-N1-N2	178.7 (4)
C4—C5—C6—C7	-1.8 (7)	O2—C9—N2—N1	0.2 (5)
C8—C5—C6—C7	177.2 (4)	S-C9-N2-N1	-179.1 (3)
C5—C6—C7—C2	-0.6 (7)	C8—N1—N2—C9	0.0 (4)
O1—C2—C7—C6	-179.4 (4)	C14—C13—N3—C12	1.6 (7)
C3—C2—C7—C6	3.0 (8)	Cl1—C13—N3—C12	-178.6 (3)
C6—C5—C8—N1	-171.9 (4)	C11—C12—N3—C13	0.9 (7)
C4—C5—C8—N1	7.2 (6)	C3-C2-O1-C1	-19.0 (7)
C6—C5—C8—O2	6.8 (6)	C7—C2—O1—C1	163.5 (5)
C4—C5—C8—O2	-174.1 (4)	N2-C9-O2-C8	-0.2 (4)
S-C10-C11-C15	-69.6 (5)	S—C9—O2—C8	179.1 (3)
S-C10-C11-C12	111.7 (4)	N1-C8-O2-C9	0.2 (4)
C15-C11-C12-N3	-3.0 (7)	С5—С8—О2—С9	-178.7 (3)
C10-C11-C12-N3	175.8 (4)	N2—C9—S—C10	-2.2 (5)
N3-C13-C14-C15	-1.8 (8)	O2—C9—S—C10	178.6 (3)
Cl1—C13—C14—C15	178.4 (4)	C11—C10—S—C9	-79.9 (3)