

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isopropyltriphenylphosphonium bromide monohydrate

Hai Wang, Xi-Man Zhang, Ping Li and Hong-Yu Chen*

School of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China Correspondence e-mail: binboll@126.com

Received 4 October 2011; accepted 26 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.140; data-to-parameter ratio = 18.6.

In the title water-solvated salt, $C_{21}H_{22}P^+ \cdot Br^- \cdot H_2O$, the ionic components are linked by short $C-H \cdot \cdot \cdot Br$ contacts along the *a*-axis direction. The two half occupied water molecules are connected to each other by strong $O-H \cdot \cdot \cdot O$ hydrogen bonds and they are also linked to the bromide anion by short $O-H \cdot \cdot \cdot Br$ contacts.

Related literature

For information on phase-transfer catalysts, see: Asai *et al.* (1994). For the crystal structure of tetraphenylphosphoniuum bromide, see: Alcock *et al.* (1985). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{21}H_{22}P^+ \cdot Br^- \cdot H_2O$ $M_r = 403.28$ Orthorhombic, $P2_12_12_1$ a = 9.078 (5) Å

b = 13.043 (5) Å c = 17.755 (5) Å $V = 2102.3 (15) \text{ Å}^3$ Z = 4

Mo $K\alpha$ radiation	
$\mu = 2.04 \text{ mm}^{-1}$	

Data collection

Brucker APEXII CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.668, T_{\rm max} = 0.688$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.049 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.140 & \mbox{$\Delta\rho_{max}$} = 0.82 \mbox{ e \AA^{-3}} \\ S = 1.03 & \mbox{$\Delta\rho_{min}$} = -0.28 \mbox{ e \AA^{-3}} \\ 4250 \mbox{ reflections} & \mbox{$Absolute structure: Flack (1983),$} \\ 228 \mbox{ parameters} & 1799 \mbox{ Friedel pairs} \\ 6 \mbox{ restraints} & \mbox{Flack parameter: 0.014 (13)} \end{array}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> 1···Br1 ⁱ	0.85	2.86	3.701 (8)	169
O1−H2 <i>O</i> 1···O2	0.85	2.20	2.960 (11)	149
O2−H1O2···Br1 ⁱⁱ	0.85	2.68	3.526 (7)	175
O2−H2O2···Br1 ⁱⁱⁱ	0.85	2.81	3.598 (8)	154
C19−H19···Br1 ^{iv}	0.98	2.76	3.723 (4)	169
Symmetry codes: (i)	$-x + \frac{1}{2}, -y$	$y + 1, z + \frac{1}{2};$	(ii) $-x + 1, y - \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (iii)

 $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (iv) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2327).

References

Alcock, N. W., Pennington, M. & Willey, G. R. (1985). Acta Cryst. C41, 1549– 1550.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Asai, S., Nakamura, H., Tanabe, M. & Sakamoto, K. (1994). Ind. Eng. Chem. Res. 33, 1687–1691
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $0.20 \times 0.15 \times 0.13 \text{ mm}$

12177 measured reflections

4250 independent reflections

3331 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.034$

supporting information

Acta Cryst. (2011). E67, o3149 [https://doi.org/10.1107/S1600536811044849] Isopropyltriphenylphosphonium bromide monohydrate

Hai Wang, Xi-Man Zhang, Ping Li and Hong-Yu Chen

S1. Comment

The title compound belongs to a family of phase transfer catalysts, which usually contain large alkyl or aryl ions, such as R_4N^+, R_4P^+, R_4B^- etc. Because of their ease of dissolution in water, such salts have a conveninient to satisfactory hydrophobic hydration(Asai, et al., 1994).

The asymmetry unit of the title structure consists of one isopropyltriphenylphosphonium cation, one bromide anion and two half occupied water molecules (Fig. 1). In contrast with tetraphenylphosphonium salts, the major character of the cation of the title compound is that one phenyl group has been substituted by an isopropyl group. The fluctuation of the C_{phenyl} —P1 bond lengths in the title compound [from 1.789 (4)–1.806 (4) Å] is similar to that in the crystal structure of tetraphenylphosphonium bromide [1.801 (3)Å; Alcock, *et al.*, 1985]. The bonds between P1 and the C atoms of phenyl rings are Csp^2 —Psp³ bonds, but the connection between P1 and isopropyl group is typically an Csp^3 —Psp³ bond (Allen, *et al.*, 1987). The bond length of C19—P1 [1.818 (3) Å] associated with the isopropyl group is longer than that involving the phenyl groups, which vary from 1.789 (4) - 1.806 (4) Å.

In the crystal the water molecules are linked to the Br anion by short O—H…Br contacts, and the two half occupied water molecules are connected to one another by strong O-H…O hydrogen bonds (Table 1 and Fig. 2). The large cations and bromide anions are linked by short C19—H19…Br1 contacts (Table 1 and Fig. 2). These weak interactions also that play an important role in the stabilization of the crystal structure.

S2. Experimental

Triphenyl phosphine (10.5 g) and 2-bromopropane (4.2 mL) were placed in a teflon lined tube. The sealed tube was placed in an autoclave and heated to 433 K for 48 h, then cooled at a rate of 10 K/min. Colourless block-like crystals of the title compound were obtained.

S3. Refinement

The water H atoms were located in difference Fourier maps and were subsequently treated as riding atoms: O-H = 0.85Å with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96, and 0.98 Å for CH(aromatic), CH₃, and CH(methine) H-atoms, respectively, with = k × U_{eq}(parent C-atom), where k = 1.5 for CH₃ H-atoms and k = 1.2 for all other H-atoms.

Figure 1

A view of the molecular structure of the title compound, with the numbering scheme and thermal ellipsoids drawn at the 30%probability level.

Figure 2

A view of the crystal packing of the title compound, showing the O-H…Br and O-H…O hydrogen bonds, and the C-H…Br contacts as dashed lines [H atoms not involved in these contacts have been omitted for calrity].

Isopropyltriphenylphosphonium bromide monohydrate

Crystal data	
$C_{21}H_{22}P^+\cdot Br^-\cdot H_2O$	Hall symbol: P 2ac 2ab
$M_r = 403.28$	a = 9.078 (5) Å
Orthorhombic, $P2_12_12_1$	<i>b</i> = 13.043 (5) Å

Cell parameters from 3565 reflections

 $\theta = 2.5 - 23.5^{\circ}$

 $\mu = 2.04 \text{ mm}^{-1}$ T = 293 K

ROD, colourless

 $R_{\rm int} = 0.034$

 $h = -7 \rightarrow 11$ $k = -16 \rightarrow 15$ $l = -21 \rightarrow 21$

 $0.20 \times 0.15 \times 0.13 \text{ mm}$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

12177 measured reflections 4250 independent reflections 3331 reflections with $I > 2\sigma(I)$

c = 17.755 (5) Å $V = 2102.3 (15) Å^3$ Z = 4F(000) = 832 $D_{\rm x} = 1.274 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71069$ Å

Data collection

Brucker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.668, \ T_{\max} = 0.688$

Re

Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.0853P)^2]$
<i>S</i> = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
4250 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
228 parameters	$\Delta \rho_{\rm max} = 0.82 \text{ e } \text{\AA}^{-3}$
6 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1799 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.014 (13)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.46181 (8)	0.58731 (5)	0.00805 (3)	0.0720 (2)	
C1	0.2804 (4)	0.5002 (3)	0.7564 (2)	0.0320 (8)	
C2	0.2503 (5)	0.4645 (3)	0.8289 (3)	0.0468 (11)	
H2	0.2722	0.5050	0.8705	0.056*	
C3	0.1873 (6)	0.3679 (4)	0.8386 (3)	0.0570 (13)	
Н3	0.1690	0.3433	0.8868	0.068*	
C4	0.1527 (5)	0.3098 (3)	0.7778 (3)	0.0502 (13)	
H4	0.1075	0.2466	0.7850	0.060*	
C5	0.1833 (5)	0.3426 (3)	0.7054 (3)	0.0463 (12)	

C6 0.2478 (4) 0.4378 (3) 0.6943 (2) 0.0371 (9)H6 0.2694 0.4602 0.6458 0.045^* C7 0.3207 (5) 0.6876 (3) 0.6626 (2) 0.0340 (9)C8 0.4105 (6) 0.7668 (3) 0.6355 (3) 0.0493 (12)H8 0.5032 0.7770 0.6564 0.059^* C9 0.3631 (8) 0.8296 (4) 0.5783 (3) 0.0737 (18)H9 0.4228 0.8822 0.5604 0.088^* C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2)H10 0.1893 0.8561 0.5098 0.098^* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18)H11 0.0478 0.7239 0.5491 0.090^* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12)H12 0.1223 0.6205 0.6471 0.060^* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.312 (8)C14 0.6312 (5) 0.573 (3) 0.6648 (3) 0.0538 (14)H15 0.8199 0.5187 0.6183 0.065^* C15 0.7767 (5) 0.5321 (3) 0.6474 0.068^* C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.0569 (14)H16 0.9514 0.4930 0.7264 0.068^* C17 0.7943 (5) 0.5377 (3) 0.8257 (3) 0.0538 (13)H17 0.8493 0.5277 0.8425 <th>Н5</th> <th>0.1607</th> <th>0.3011</th> <th>0.6644</th> <th>0.056*</th> <th></th>	Н5	0.1607	0.3011	0.6644	0.056*	
H6 0.2694 0.4602 0.6458 0.045^* C7 $0.3207 (5)$ $0.6876 (3)$ $0.6626 (2)$ $0.0340 (9)$ C8 $0.4105 (6)$ $0.7668 (3)$ $0.6355 (3)$ $0.0493 (12)$ H8 0.5032 0.7770 0.6564 0.0594 C9 $0.3631 (8)$ $0.8296 (4)$ $0.5783 (3)$ $0.0737 (18)$ H9 0.4228 0.8822 0.5604 0.088^* C10 $0.2238 (10)$ $0.8130 (5)$ $0.5476 (3)$ $0.082 (2)$ H10 0.1893 0.8561 0.5098 0.098^* C11 $0.1386 (7)$ $0.7354 (6)$ $0.5719 (3)$ $0.0754 (18)$ H11 0.0478 0.7239 0.5491 0.090^* C12 $0.1835 (5)$ $0.6726 (4)$ $0.6299 (3)$ $0.0498 (12)$ H12 0.1223 0.6205 0.6471 0.060^* C13 $0.5706 (4)$ $0.5878 (3)$ $0.7380 (2)$ $0.0312 (8)$ C14 $0.6312 (5)$ $0.573 (3)$ $0.6682 (3)$ $0.0430 (10)$ H14 0.5765 0.5766 0.6245 0.052^* C15 $0.7767 (5)$ $0.5321 (3)$ $0.6648 (3)$ $0.0538 (14)$ H15 0.8199 0.5187 0.6183 0.066^* C17 $0.7943 (5)$ $0.5377 (3)$ $0.8037 (3)$ $0.0446 (11)$ H18 0.6089 0.5880 0.8503 0.054^* C15 $0.5706 (4)$ $0.5737 (3)$ $0.8257 (3)$ $0.0538 (13)$ H17 0.8493 0.5277 0.8425	C6	0.2478 (4)	0.4378 (3)	0.6943 (2)	0.0371 (9)	
C7 0.3207 (5) 0.6876 (3) 0.6626 (2) 0.0340 (9) C8 0.4105 (6) 0.7668 (3) 0.6355 (3) 0.0493 (12) H8 0.5032 0.7770 0.6564 0.059* C9 0.3631 (8) 0.8296 (4) 0.5783 (3) 0.0737 (18) H9 0.4228 0.8822 0.5604 0.088* C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2) H10 0.1893 0.8561 0.5098 0.098* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18) H11 0.0478 0.7239 0.5491 0.090* C12 0.1335 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12) H12 0.1223 0.6205 0.6471 0.060* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8) C14 0.6312 (5) 0.5173 (3) 0.6682 (3) 0.0438 (14) H15 0.8199 0.5187 0.6183 0.0567	H6	0.2694	0.4602	0.6458	0.045*	
C8 0.4105 (6) 0.7668 (3) 0.6355 (3) 0.0493 (12) H8 0.5032 0.7770 0.6564 0.059* C9 0.3631 (8) 0.8296 (4) 0.5783 (3) 0.0737 (18) H9 0.4228 0.8822 0.5604 0.088* C10 0.2338 (10) 0.8130 (5) 0.5476 (3) 0.082 (2) H10 0.1893 0.8561 0.5098 0.098* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18) H11 0.0478 0.7239 0.5491 0.090* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12) H12 0.1223 0.6205 0.6471 0.606* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8) C14 0.6312 (5) 0.5673 (3) 0.6682 (3) 0.0430 (10) H14 0.5765 0.5766 0.6245 0.052* C15 0.7767 (5) 0.5137 (3) 0.7293 (4) 0.0567 (14)	C7	0.3207 (5)	0.6876 (3)	0.6626 (2)	0.0340 (9)	
H8 0.5032 0.7770 0.6564 $0.059*$ C9 0.3631 (8) 0.8296 (4) 0.5783 (3) 0.0737 (18)H9 0.4228 0.8822 0.5604 $0.088*$ C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2)H10 0.1893 0.8561 0.5098 $0.098*$ C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18)H11 0.0478 0.7239 0.5491 $0.090*$ C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12)H12 0.1223 0.6205 0.64711 $0.060*$ C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8)C14 0.6312 (5) 0.5673 (3) 0.6642 (3) 0.0438 (10)H14 0.5765 0.5766 0.6245 $0.052*$ C15 0.7767 (5) 0.5321 (3) 0.6648 (3) 0.0538 (14)H15 0.8199 0.5187 0.6183 $0.065*$ C16 0.8552 (5) 0.5173 (3) 0.7264 $0.068*$ C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.0544 (11)H16 0.9514 0.93737 (3) 0.8260 (2) 0.0352 (9)H17 0.8493 0.5277 0.8425 $0.068*$ C18 0.6508 (4) 0.5737 (3) 0.8260 (2) 0.0352 (9)H19 0.3655 0.6618 0.8713 0.0424 C20 0.4348 (6) 0.7974 (3) 0.8257 (3) 0.05	C8	0.4105 (6)	0.7668 (3)	0.6355 (3)	0.0493 (12)	
C9 0.3631 (8) 0.8296 (4) 0.5783 (3) 0.0737 (18) H9 0.4228 0.8822 0.5604 0.088* C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2) H10 0.1893 0.8561 0.5098 0.098* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18) H11 0.0478 0.7239 0.5491 0.090* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12) H12 0.1223 0.6205 0.6471 0.060* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8) C14 0.6312 (5) 0.5673 (3) 0.6682 (3) 0.0430 (10) H14 0.5765 0.5187 0.6183 0.065* C15 0.7767 (5) 0.5187 0.6183 0.0658* C16 0.8552 (5) 0.5173 (3) 0.7264 0.068* C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.0569 (14)	H8	0.5032	0.7770	0.6564	0.059*	
H9 0.4228 0.8822 0.5604 0.088* C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2) H10 0.1893 0.8561 0.5098 0.098* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18) H11 0.0478 0.7239 0.5491 0.090* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12) H12 0.1223 0.6205 0.6471 0.060* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8) C14 0.6312 (5) 0.5673 (3) 0.6682 (3) 0.0430 (10) H14 0.5765 0.5766 0.6245 0.052* C15 0.7767 (5) 0.5321 (3) 0.6648 (3) 0.0538 (14) H15 0.8199 0.5187 0.6183 0.065* C16 0.8552 (5) 0.5173 (3) 0.7264 0.068* C17 0.7943 (5) 0.5379 (4) 0.7264 0.068* C18<	С9	0.3631 (8)	0.8296 (4)	0.5783 (3)	0.0737 (18)	
C10 0.2238 (10) 0.8130 (5) 0.5476 (3) 0.082 (2) H10 0.1893 0.8561 0.5098 0.098* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18) H11 0.0478 0.7239 0.5491 0.090* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12) H12 0.1223 0.6205 0.6471 0.060* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8) C14 0.6312 (5) 0.5673 (3) 0.6648 (3) 0.0538 (14) H14 0.5765 0.524 0.052* C15 0.7767 (5) 0.5321 (3) 0.6648 (3) 0.0538 (14) H15 0.8199 0.5187 0.6183 0.065* C16 0.8552 (5) 0.5173 (3) 0.7264 0.068* C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.0544 H17 0.8493 0.5277 0.8425 0.0668* C18 0.	H9	0.4228	0.8822	0.5604	0.088*	
H10 0.1893 0.8561 0.5098 0.098^* C11 0.1386 (7) 0.7354 (6) 0.5719 (3) 0.0754 (18)H11 0.0478 0.7239 0.5491 0.090^* C12 0.1835 (5) 0.6726 (4) 0.6299 (3) 0.0498 (12)H12 0.1223 0.6205 0.6471 0.060^* C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8)C14 0.6312 (5) 0.5673 (3) 0.6682 (3) 0.0430 (10)H14 0.5765 0.5766 0.6245 0.052^* C15 0.7767 (5) 0.5321 (3) 0.6648 (3) 0.0538 (14)H15 0.8199 0.5187 0.6183 0.0667^* C16 0.8552 (5) 0.5173 (3) 0.7293 (4) 0.0567 (14)H16 0.9514 0.4930 0.7264 0.068^* C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.05469 (14)H17 0.8493 0.5277 0.8425 0.068^* C18 0.6508 (4) 0.5737 (3) 0.8203 (2) 0.0352 (9)H19 0.3655 0.6618 0.8713 $0.042*$ C20 0.4348 (6) 0.7974 (3) 0.8257 (3) 0.0538 (13)H20A 0.4054 0.8408 0.7847 $0.081*$ H20B 0.5365 0.7789 0.8198 $0.081*$ H20C 0.4220 0.8334 0.8724 $0.081*$ H20A 0.4054 0.7266 (4) 0.8303 (3) 0.0530 (12)<	C10	0.2238 (10)	0.8130 (5)	0.5476 (3)	0.082 (2)	
C110.1386 (7)0.7354 (6)0.5719 (3)0.0754 (18)H110.04780.72390.54910.090*C120.1835 (5)0.6726 (4)0.6299 (3)0.0498 (12)H120.12230.62050.64710.060*C130.5706 (4)0.5878 (3)0.7380 (2)0.0312 (8)C140.6312 (5)0.5673 (3)0.6682 (3)0.0430 (10)H140.57650.57660.62450.052*C150.7767 (5)0.5321 (3)0.6648 (3)0.0538 (14)H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.82030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*H20B0.53650.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.7266 (4)0.87450.079*	H10	0.1893	0.8561	0.5098	0.098*	
H11 0.0478 0.7239 0.5491 0.090^* C12 $0.1835 (5)$ $0.6726 (4)$ $0.6299 (3)$ $0.0498 (12)$ H12 0.1223 0.6205 0.6471 0.060^* C13 $0.5706 (4)$ $0.5878 (3)$ $0.7380 (2)$ $0.0312 (8)$ C14 $0.6312 (5)$ $0.5673 (3)$ $0.6682 (3)$ $0.0430 (10)$ H14 0.5765 0.5766 0.6245 0.052^* C15 $0.7767 (5)$ $0.5321 (3)$ $0.6648 (3)$ $0.0538 (14)$ H15 0.8199 0.5187 0.6183 0.065^* C16 $0.8552 (5)$ $0.5173 (3)$ $0.7293 (4)$ $0.0567 (14)$ H16 0.9514 0.4930 0.7264 0.068^* C17 $0.7943 (5)$ $0.5379 (4)$ $0.7899 (3)$ $0.0569 (14)$ H17 0.8493 0.5277 0.8425 0.068^* C18 $0.6508 (4)$ $0.5737 (3)$ $0.8260 (2)$ $0.0352 (9)$ H19 0.3655 0.6618 0.8713 0.042^* C20 $0.4348 (6)$ $0.7974 (3)$ $0.8257 (3)$ $0.0538 (13)$ H20A 0.4054 0.8408 0.7847 0.081^* H20B 0.5365 0.7789 0.8198 0.081^* H20C 0.4220 0.8334 0.8724 0.061^* H20A 0.4054 $0.8303 (3)$ $0.0530 (12)$ H21A 0.1593 $0.7266 (4)$ $0.8303 (3)$ $0.0530 (12)$	C11	0.1386 (7)	0.7354 (6)	0.5719 (3)	0.0754 (18)	
C120.1835 (5)0.6726 (4)0.6299 (3)0.0498 (12)H120.12230.62050.64710.060*C130.5706 (4)0.5878 (3)0.7380 (2)0.0312 (8)C140.6312 (5)0.5673 (3)0.6682 (3)0.0430 (10)H140.57650.57660.62450.052*C150.7767 (5)0.5321 (3)0.6648 (3)0.0538 (14)H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H11	0.0478	0.7239	0.5491	0.090*	
H12 0.1223 0.6205 0.6471 $0.060*$ C13 0.5706 (4) 0.5878 (3) 0.7380 (2) 0.0312 (8)C14 0.6312 (5) 0.5673 (3) 0.6682 (3) 0.0430 (10)H14 0.5765 0.5766 0.6245 $0.052*$ C15 0.7767 (5) 0.5321 (3) 0.6648 (3) 0.0538 (14)H15 0.8199 0.5187 0.6183 $0.065*$ C16 0.8552 (5) 0.5173 (3) 0.7293 (4) 0.0567 (14)H16 0.9514 0.4930 0.7264 $0.068*$ C17 0.7943 (5) 0.5379 (4) 0.7989 (3) 0.0569 (14)H17 0.8493 0.5277 0.8425 $0.068*$ C18 0.6508 (4) 0.5737 (3) 0.8037 (3) 0.0446 (11)H18 0.6089 0.5880 0.8503 $0.054*$ C19 0.3403 (5) 0.7009 (3) 0.8250 (2) 0.0352 (9)H19 0.3655 0.6618 0.8713 $0.042*$ C20 0.4348 (6) 0.7974 (3) 0.8257 (3) 0.0538 (13)H20A 0.4054 0.8408 0.7847 $0.081*$ H20B 0.5365 0.7789 0.8198 $0.081*$ H20C 0.4220 0.8334 0.8724 $0.081*$ C21 0.1779 (5) 0.7266 (4) 0.8303 (3) 0.0530 (12)H21A 0.1593 0.7669 0.8745 $0.079*$	C12	0.1835 (5)	0.6726 (4)	0.6299 (3)	0.0498 (12)	
C130.5706 (4)0.5878 (3)0.7380 (2)0.0312 (8)C140.6312 (5)0.5673 (3)0.6682 (3)0.0430 (10)H140.57650.57660.62450.052*C150.7767 (5)0.5321 (3)0.6648 (3)0.0538 (14)H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H12	0.1223	0.6205	0.6471	0.060*	
C140.6312 (5)0.5673 (3)0.6682 (3)0.0430 (10)H140.57650.57660.62450.052*C150.7767 (5)0.5321 (3)0.6648 (3)0.0538 (14)H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0518 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*H20C0.42200.83340.87450.079*H21A0.15930.76690.87450.079*	C13	0.5706 (4)	0.5878 (3)	0.7380 (2)	0.0312 (8)	
H14 0.5765 0.5766 0.6245 $0.052*$ C15 $0.7767 (5)$ $0.5321 (3)$ $0.6648 (3)$ $0.0538 (14)$ H15 0.8199 0.5187 0.6183 $0.065*$ C16 $0.8552 (5)$ $0.5173 (3)$ $0.7293 (4)$ $0.0567 (14)$ H16 0.9514 0.4930 0.7264 $0.068*$ C17 $0.7943 (5)$ $0.5379 (4)$ $0.7989 (3)$ $0.0569 (14)$ H17 0.8493 0.5277 0.8425 $0.068*$ C18 $0.6508 (4)$ $0.5737 (3)$ $0.8037 (3)$ $0.0446 (11)$ H18 0.6089 0.5880 0.8503 $0.054*$ C19 $0.3403 (5)$ $0.7909 (3)$ $0.8260 (2)$ $0.0352 (9)$ H19 0.3655 0.6618 0.8713 $0.042*$ C20 $0.4348 (6)$ $0.7974 (3)$ $0.8257 (3)$ $0.0538 (13)$ H20A 0.4054 0.8408 0.7847 $0.081*$ H20B 0.5365 0.7789 0.8198 $0.081*$ H20C 0.4220 0.8334 0.8724 $0.081*$ H20C 0.4220 0.8334 0.8724 $0.081*$ H20A $0.1779 (5)$ $0.7266 (4)$ $0.8303 (3)$ $0.0530 (12)$ H21A 0.1593 0.7669 0.8745 $0.079*$	C14	0.6312 (5)	0.5673 (3)	0.6682 (3)	0.0430 (10)	
C150.7767 (5)0.5321 (3)0.6648 (3)0.0538 (14)H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H14	0.5765	0.5766	0.6245	0.052*	
H150.81990.51870.61830.065*C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C15	0.7767 (5)	0.5321 (3)	0.6648 (3)	0.0538 (14)	
C160.8552 (5)0.5173 (3)0.7293 (4)0.0567 (14)H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H15	0.8199	0.5187	0.6183	0.065*	
H160.95140.49300.72640.068*C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C16	0.8552 (5)	0.5173 (3)	0.7293 (4)	0.0567 (14)	
C170.7943 (5)0.5379 (4)0.7989 (3)0.0569 (14)H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H16	0.9514	0.4930	0.7264	0.068*	
H170.84930.52770.84250.068*C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C17	0.7943 (5)	0.5379 (4)	0.7989 (3)	0.0569 (14)	
C180.6508 (4)0.5737 (3)0.8037 (3)0.0446 (11)H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H17	0.8493	0.5277	0.8425	0.068*	
H180.60890.58800.85030.054*C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C18	0.6508 (4)	0.5737 (3)	0.8037 (3)	0.0446 (11)	
C190.3403 (5)0.7009 (3)0.8260 (2)0.0352 (9)H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H18	0.6089	0.5880	0.8503	0.054*	
H190.36550.66180.87130.042*C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C19	0.3403 (5)	0.7009 (3)	0.8260 (2)	0.0352 (9)	
C200.4348 (6)0.7974 (3)0.8257 (3)0.0538 (13)H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H19	0.3655	0.6618	0.8713	0.042*	
H20A0.40540.84080.78470.081*H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	C20	0.4348 (6)	0.7974 (3)	0.8257 (3)	0.0538 (13)	
H20B0.53650.77890.81980.081*H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H20A	0.4054	0.8408	0.7847	0.081*	
H20C0.42200.83340.87240.081*C210.1779 (5)0.7266 (4)0.8303 (3)0.0530 (12)H21A0.15930.76690.87450.079*	H20B	0.5365	0.7789	0.8198	0.081*	
C21 0.1779 (5) 0.7266 (4) 0.8303 (3) 0.0530 (12) H21A 0.1593 0.7669 0.8745 0.079*	H20C	0.4220	0.8334	0.8724	0.081*	
H21A 0.1593 0.7669 0.8745 0.079*	C21	0.1779 (5)	0.7266 (4)	0.8303 (3)	0.0530 (12)	
	H21A	0.1593	0.7669	0.8745	0.079*	
H21B 0.1216 0.6644 0.8327 0.079*	H21B	0.1216	0.6644	0.8327	0.079*	
H21C 0.1498 0.7648 0.7864 0.079*	H21C	0.1498	0.7648	0.7864	0.079*	
O1 0.4288 (9) 0.4940 (6) 0.5103 (4) 0.0650 (19) 0.50	01	0.4288 (9)	0.4940 (6)	0.5103 (4)	0.0650 (19)	0.50
H1O1 0.3405 0.4745 0.5027 0.097* 0.50	H1O1	0.3405	0.4745	0.5027	0.097*	0.50
H2O1 0.4722 0.4469 0.4855 0.097* 0.50	H2O1	0.4722	0.4469	0.4855	0.097*	0.50
O2 0.6608 (8) 0.3426 (5) 0.4736 (4) 0.0566 (18) 0.50	O2	0.6608 (8)	0.3426 (5)	0.4736 (4)	0.0566 (18)	0.50
H1O2 0.6370 0.2797 0.4777 0.085* 0.50	H1O2	0.6370	0.2797	0.4777	0.085*	0.50
H2O2 0.7522 0.3365 0.4835 0.085* 0.50	H2O2	0.7522	0.3365	0.4835	0.085*	0.50
P1 0.37744 (10) 0.61951 (7) 0.74506 (6) 0.0269 (2)	P1	0.37744 (10)	0.61951 (7)	0.74506 (6)	0.0269 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0904 (5)	0.0823 (4)	0.0433 (3)	0.0170 (3)	-0.0098 (3)	0.0009 (3)
C1	0.0245 (18)	0.0290 (17)	0.042 (2)	0.0013 (15)	0.0014 (18)	0.0014 (17)

supporting information

C2	0.054 (3)	0.039 (2)	0.047 (3)	-0.008 (2)	0.000 (2)	0.005 (2)
C3	0.062 (3)	0.048 (3)	0.061 (3)	-0.016 (3)	0.000 (3)	0.019 (2)
C4	0.035 (3)	0.032 (2)	0.084 (4)	-0.0057 (18)	-0.004 (2)	0.004 (2)
C5	0.035 (2)	0.035 (2)	0.068 (3)	-0.001 (2)	-0.006 (2)	-0.018 (2)
C6	0.033 (2)	0.037 (2)	0.041 (2)	0.0025 (18)	0.0034 (18)	-0.0061 (18)
C7	0.033 (2)	0.032 (2)	0.036 (2)	0.0060 (17)	0.0020 (18)	0.0009 (17)
C8	0.059 (3)	0.040 (2)	0.049 (3)	0.000 (2)	0.006 (2)	0.006 (2)
C9	0.111 (5)	0.050 (3)	0.061 (4)	0.020 (3)	0.026 (4)	0.021 (3)
C10	0.125 (6)	0.077 (4)	0.042 (3)	0.043 (4)	-0.001 (4)	0.021 (3)
C11	0.071 (4)	0.110 (5)	0.045 (3)	0.026 (4)	-0.017 (3)	0.006 (3)
C12	0.043 (3)	0.064 (3)	0.043 (3)	0.014 (2)	-0.006 (2)	0.005 (2)
C13	0.0247 (17)	0.0274 (17)	0.042 (2)	0.0007 (14)	0.0065 (16)	-0.0011 (17)
C14	0.041 (2)	0.036 (2)	0.053 (3)	0.000 (2)	0.009 (2)	-0.0011 (19)
C15	0.041 (3)	0.042 (3)	0.079 (4)	0.000 (2)	0.028 (3)	-0.007 (3)
C16	0.029 (2)	0.038 (2)	0.104 (5)	0.0034 (19)	0.016 (3)	0.006 (3)
C17	0.035 (3)	0.053 (3)	0.083 (4)	0.003 (2)	-0.007 (3)	0.016 (3)
C18	0.030 (2)	0.049 (3)	0.055 (3)	0.006 (2)	0.0002 (19)	0.004 (2)
C19	0.037 (2)	0.032 (2)	0.036 (2)	0.0005 (17)	0.0023 (18)	-0.0023 (16)
C20	0.053 (3)	0.037 (2)	0.071 (3)	-0.009 (2)	0.008 (3)	-0.010 (2)
C21	0.036 (2)	0.061 (3)	0.061 (3)	0.009 (2)	0.006 (2)	-0.012 (2)
01	0.072 (5)	0.077 (5)	0.045 (4)	-0.015 (4)	-0.011 (4)	0.001 (3)
O2	0.062 (4)	0.059 (4)	0.049 (4)	-0.009 (3)	0.008 (3)	0.013 (3)
P1	0.0222 (4)	0.0273 (4)	0.0313 (5)	0.0001 (4)	0.0016 (4)	0.0009 (4)

Geometric parameters (Å, °)

C1—C2	1.395 (6)	C13—C18	1.387 (6)
C1—C6	1.402 (6)	C13—P1	1.806 (4)
C1—P1	1.800 (4)	C14—C15	1.400 (6)
C2—C3	1.394 (6)	C14—H14	0.9300
С2—Н2	0.9300	C15—C16	1.363 (8)
C3—C4	1.355 (7)	C15—H15	0.9300
С3—Н3	0.9300	C16—C17	1.381 (8)
C4—C5	1.384 (7)	C16—H16	0.9300
C4—H4	0.9300	C17—C18	1.386 (6)
C5—C6	1.387 (6)	C17—H17	0.9300
С5—Н5	0.9300	C18—H18	0.9300
С6—Н6	0.9300	C19—C21	1.514 (6)
C7—C12	1.388 (6)	C19—C20	1.523 (6)
С7—С8	1.400 (6)	C19—P1	1.818 (4)
C7—P1	1.789 (4)	C19—H19	0.9800
С8—С9	1.374 (7)	C20—H20A	0.9600
С8—Н8	0.9300	C20—H20B	0.9600
C9—C10	1.394 (10)	C20—H20C	0.9600
С9—Н9	0.9300	C21—H21A	0.9600
C10-C11	1.345 (10)	C21—H21B	0.9600
С10—Н10	0.9300	C21—H21C	0.9600
C11—C12	1.377 (7)	O1—H1O1	0.8522

C11—H11	0.9300	O1—H2O1	0.8527
C12—H12	0.9300	O2—H1O2	0.8515
C13—C14	1.382 (6)	O2—H2O2	0.8512
C2—C1—C6	119.4 (4)	C13—C14—H14	120.7
C2—C1—P1	119.2 (3)	C15—C14—H14	120.7
C6—C1—P1	121.1 (3)	C16—C15—C14	120.2 (5)
C3—C2—C1	119.7 (5)	C16—C15—H15	119.9
С3—С2—Н2	120.2	C14—C15—H15	119.9
С1—С2—Н2	120.2	C15—C16—C17	121.1 (4)
C4—C3—C2	120.2 (5)	C15—C16—H16	119.5
С4—С3—Н3	119.9	C17—C16—H16	119.5
С2—С3—Н3	119.9	C16—C17—C18	119.7 (5)
C3—C4—C5	121.4 (4)	C16—C17—H17	120.1
C3—C4—H4	119.3	C18—C17—H17	120.1
С5—С4—Н4	119.3	C17—C18—C13	119.2 (5)
C4—C5—C6	119.5 (4)	C17—C18—H18	120.4
С4—С5—Н5	120.2	C13—C18—H18	120.4
С6—С5—Н5	120.2	C21—C19—C20	111.4 (4)
C5—C6—C1	119.8 (4)	C21—C19—P1	110.5 (3)
С5—С6—Н6	120.1	C20—C19—P1	112.1 (3)
С1—С6—Н6	120.1	С21—С19—Н19	107.6
С12—С7—С8	118.9 (4)	С20—С19—Н19	107.6
C12—C7—P1	122.0 (3)	P1-C19-H19	107.6
C8—C7—P1	118.7 (3)	С19—С20—Н20А	109.5
C9—C8—C7	120.8 (5)	C19—C20—H20B	109.5
С9—С8—Н8	119.6	H20A—C20—H20B	109.5
С7—С8—Н8	119.6	С19—С20—Н20С	109.5
C8—C9—C10	118.7 (6)	H20A—C20—H20C	109.5
С8—С9—Н9	120.7	H20B—C20—H20C	109.5
С10—С9—Н9	120.7	C19—C21—H21A	109.5
C11—C10—C9	120.9 (5)	C19—C21—H21B	109.5
C11—C10—H10	119.6	H21A—C21—H21B	109.5
С9—С10—Н10	119.6	C19—C21—H21C	109.5
C10-C11-C12	121.1 (6)	H21A—C21—H21C	109.5
C10—C11—H11	119.4	H21B—C21—H21C	109.5
C12—C11—H11	119.4	H1O1—O1—H2O1	98.0
C11—C12—C7	119.6 (5)	H1O2—O2—H2O2	98.0
C11—C12—H12	120.2	C7—P1—C1	112.38 (19)
С7—С12—Н12	120.2	C7—P1—C13	109.67 (19)
C14—C13—C18	121.2 (4)	C1—P1—C13	106.56 (17)
C14—C13—P1	119.5 (3)	C7—P1—C19	107.68 (18)
C18—C13—P1	118.8 (3)	C1—P1—C19	108.99 (19)
C13—C14—C15	118.6 (5)	C13—P1—C19	111.62 (19)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1O1···Br1 ⁱ	0.85	2.86	3.701 (8)	169
O1—H2 <i>O</i> 1···O2	0.85	2.20	2.960 (11)	149
O2—H1O2···Br1 ⁱⁱ	0.85	2.68	3.526 (7)	175
O2—H2O2···Br1 ⁱⁱⁱ	0.85	2.81	3.598 (8)	154
C19—H19···Br1 ^{iv}	0.98	2.76	3.723 (4)	169

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1/2, -*y*+1, *z*+1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) -*x*+3/2, -*y*+1, *z*+1/2; (iv) *x*, *y*, *z*+1.