organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Diallyl-2,2',5,5'-tetrachloro-*N,N*'-[1,3-phenylenebis(methylene)]dibenzenesulfonamide

Tahir Ali Sheikh,^a Ejaz,^a Islam Ullah Khan^a* and William T. A. Harrison^b

^aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: iuklodhi@yahoo.com

Received 28 October 2011; accepted 29 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.044; *wR* factor = 0.122; data-to-parameter ratio = 21.0.

In the title compound, $C_{26}H_{24}Cl_4N_2O_4S_2$, the dihedral angles between the central benzene ring and the pendant rings are 70.07 (12) and 59.07 (12)°. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C–S–N– C torsion angles [104.66 (17) and -76.35 (19)°] and S–N– C–C torsion angles [129.61 (17) and 147.10 (17)°]. Both N atoms are close to planar (bond angle sums = 359.0 and 354.8°). In the crystal, inversion dimers are formed *via* a pair of weak C–H···O interactions which generate $R_2^2(22)$ loops.

Related literature

For related structures, see: Ejaz et al. (2011a,b).

Experimental

Crystal data

si ysiai aala	
$\begin{aligned} & \sum_{26}H_{24}Cl_4N_2O_4S_2 \\ & M_r = 634.39 \\ & \text{Triclinic, } PI \\ & = 8.2744 \ (2) \text{ Å} \\ & p = 11.3398 \ (2) \text{ Å} \\ & r = 15.6481 \ (4) \text{ Å} \\ & \mu = 87.777 \ (1)^{\circ} \\ & B = 84.443 \ (1)^{\circ} \end{aligned}$	$\gamma = 84.257 (1)^{\circ}$ $V = 1453.40 (6) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 0.59 \text{ mm}^{-1}$ T = 296 K $0.40 \times 0.15 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer 21435 measured reflections	7190 independent reflections 5200 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.122$ S = 1.05 (190) reflections	343 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{-3} = -0.59 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8-H8A\cdots O3^{i}$	0.97	2.59	3.422 (3)	144
Symmetry code: (i) - x	+1 - n - 7			

Symmetry code: (i) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2341).

References

- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ejaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011a). Acta Cryst. E67, 03037.
- Ejaz, Khan, I. U., Ahmad, H., Harrison, W. T. A. & Sheikh, T. A. (2011b). Acta Cryst. E67, 03038.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o3280 [https://doi.org/10.1107/S1600536811045478]

N,*N*'-Diallyl-2,2',5,5'-tetrachloro-*N*,*N*'-[1,3-phenylenebis(methylene)]dibenzenesulfonamide

Tahir Ali Sheikh, Ejaz, Islam Ullah Khan and William T. A. Harrison

S1. Comment

As part of our ongoing structural studies of symmetrical aryl sulfonamides (Ejaz *et al.*, 2011*a*,*b*), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.

The dihedral angles between the central (C1-C6) benzene ring and the pendant (C11-C16) and (C2-C26)1 rings are 70.07 (12) and 59.07 (12)°, respectively. The equivalent angle between the pendant rings is 79.24 (12)°. Both sulfonamide groups lie to the same side of the central ring but the pendant chains have very different conformations, as indicated by their C11—S1—N1—C7 and C21—S2—N2—C17 torsion angles [104.66 (17) and -76.35 (19)°, respectively] and their S1—N1—C7—C2 and S2—N2—C17—C6 torsion angles [129.61 (17) and 147.10 (17)°, respectively]. The N atoms are close to planar (bond angle sums = 359.0 and 354.8°).

In the crystal, inversion dimers are formed, by a pair of weak C—H···O interactions which generate $R^2_2(22)$ loops (Fig. 2). There are no significant aromatic π - π stacking interactions in the crystal.

S2. Experimental

A mixture of *N*,*N*'-(benzene-1,3-diyldimethanediyl)bis(2,5-dichlorobenzenesulfonamide) (0.32 g; 0.5 mmol), sodium hydride (0.25 g; 0.9 mmol) and *N*,*N*-dimethylformamide (10.0 ml) was stirred in a 100-ml round bottom flask at room temperature for half an hour, followed by the addition of allyl bromide (0.1 ml, 1.0 mmol). The reaction mixture was further stirred for five hours, and its completion was monitored by TLC. After completion, the contents were poured over crushed ice. The precipitated product was isolated, washed and recrystallized from methanol to yield colourless block-like crystals of the title compound.

S3. Refinement

The hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figure 1

The molecular structure of the title molecule, showing 50% displacement ellipsoids and the atom numbeirng scheme

Figure 2

A view of the C—H···O hydrogen-bond (double-dashed line) inversion dimer in the crystal of the title compound [C atoms are shown as spheres; H atoms, except those attached to C8, have been omitted for clarity; symmetry code: (i) – x+1, -y, -z].

N,N'-Diallyl-2,2',5,5'-tetrachloro-N,N'- [1,3-phenylenebis(methylene)]dibenzenesulfonamide

Crystal data	
$C_{26}H_{24}Cl_4N_2O_4S_2$ $M_r = 634.39$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.2744 (2) Å b = 11.3398 (2) Å c = 15.6481 (4) Å a = 87.777 (1)° $\beta = 84.443$ (1)° $\gamma = 84.257$ (1)° V = 1453.40 (6) Å ³	Z = 2 F(000) = 652 $D_x = 1.450 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7190 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.40 \times 0.15 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 21435 measured reflections 7190 independent reflections	5200 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.05	H-atom parameters constrained
7190 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0515P)^2 + 0.5046P]$
343 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.59 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3523 (3)	0.37348 (17)	0.05525 (13)	0.0427 (5)
H1	0.4634	0.3801	0.0553	0.051*
C2	0.2551 (3)	0.36986 (17)	0.13297 (13)	0.0436 (5)
C3	0.0903 (3)	0.3619 (2)	0.13202 (16)	0.0567 (6)
Н3	0.0238	0.3608	0.1834	0.068*
C4	0.0236 (3)	0.3556 (3)	0.05513 (19)	0.0681 (7)
H4	-0.0878	0.3500	0.0549	0.082*
C5	0.1202 (3)	0.3573 (2)	-0.02092 (17)	0.0630 (7)
Н5	0.0742	0.3518	-0.0724	0.076*
C6	0.2857 (3)	0.36727 (18)	-0.02203 (13)	0.0475 (5)
C7	0.3328 (3)	0.36645 (18)	0.21600 (13)	0.0452 (5)
H7A	0.3917	0.4358	0.2188	0.054*
H7B	0.2492	0.3673	0.2640	0.054*
C8	0.3762 (3)	0.14402 (19)	0.22185 (16)	0.0560 (6)
H8A	0.4636	0.0801	0.2193	0.067*
H8B	0.3180	0.1408	0.1712	0.067*
C9	0.2634 (4)	0.1266 (2)	0.2993 (2)	0.0722 (8)
Н9	0.3045	0.1303	0.3522	0.087*
C10	0.1167 (5)	0.1073 (4)	0.2996 (3)	0.1118 (13)
H10A	0.0708	0.1030	0.2480	0.134*
H10B	0.0538	0.0974	0.3515	0.134*
C11	0.6357 (2)	0.20232 (19)	0.35234 (12)	0.0414 (4)
C12	0.5655 (3)	0.2651 (2)	0.42343 (13)	0.0469 (5)
C13	0.5809 (3)	0.2177 (2)	0.50477 (14)	0.0616 (6)
H13	0.5360	0.2610	0.5520	0.074*

C14	0.6615 (4)	0.1076 (3)	0.51736 (16)	0.0670 (7)
H14	0.6721	0.0766	0.5726	0.080*
C15	0.7263 (3)	0.0438 (2)	0.44686 (15)	0.0550 (6)
C16	0.7139 (3)	0.0899 (2)	0.36483 (14)	0.0474 (5)
H16	0.7579	0.0457	0.3178	0.057*
C17	0.3948 (3)	0.36633 (19)	-0.10491 (13)	0.0529 (6)
H17A	0.3550	0.4297	-0.1432	0.064*
H17B	0.5044	0.3799	-0.0934	0.064*
C18	0.4535 (3)	0.14377 (19)	-0.09764 (15)	0.0547 (6)
H18A	0.4232	0.0750	-0.1250	0.066*
H18B	0.3977	0.1464	-0.0402	0.066*
C19	0.6323 (4)	0.1299 (3)	-0.09123 (19)	0.0726 (8)
H19	0.6998	0.1201	-0.1420	0.087*
C20	0.7008 (5)	0.1304 (3)	-0.0213 (3)	0.1042 (12)
H20A	0.6375	0.1400	0.0308	0.125*
H20B	0.8140	0.1212	-0.0226	0.125*
C21	0.2219 (3)	0.30691 (18)	-0.27923 (13)	0.0428 (5)
C22	0.0825 (3)	0.2487 (2)	-0.25724 (16)	0.0539 (6)
C23	-0.0632 (3)	0.2931 (3)	-0.2852 (2)	0.0703 (8)
H23	-0.1553	0.2530	-0.2710	0.084*
C24	-0.0753 (3)	0.3962 (3)	-0.3342 (2)	0.0723 (8)
H24	-0.1748	0.4257	-0.3533	0.087*
C25	0.0607 (3)	0.4551 (2)	-0.35453 (17)	0.0591 (6)
C26	0.2105 (3)	0.41098 (19)	-0.32823 (14)	0.0468 (5)
H26	0.3024	0.4509	-0.3433	0.056*
S1	0.63115 (7)	0.25666 (5)	0.24397 (3)	0.04469 (14)
S2	0.41781 (6)	0.25211 (5)	-0.25007 (3)	0.04245 (14)
N1	0.4463 (2)	0.25790 (15)	0.22148 (11)	0.0450 (4)
N2	0.3983 (2)	0.25128 (15)	-0.14661 (11)	0.0485 (4)
01	0.7286 (2)	0.16884 (15)	0.19430 (10)	0.0610 (4)
O2	0.6734 (2)	0.37546 (14)	0.23770 (10)	0.0586 (4)
O3	0.4524 (2)	0.13258 (14)	-0.27629 (10)	0.0560 (4)
C11	0.45440 (9)	0.40108 (6)	0.41341 (4)	0.06439 (18)
C12	0.82694 (11)	-0.09625 (7)	0.45968 (5)	0.0831 (2)
C13	0.08862 (9)	0.12043 (6)	-0.19397 (5)	0.0722 (2)
Cl4	0.04722 (11)	0.58805 (7)	-0.41244 (6)	0.0902 (3)
O4	0.52548 (18)	0.33697 (15)	-0.28380 (10)	0.0525 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0560 (13)	0.0353 (10)	0.0367 (10)	-0.0047 (9)	-0.0038 (9)	-0.0011 (8)
C2	0.0565 (13)	0.0350 (10)	0.0379 (11)	0.0030 (9)	-0.0044 (9)	-0.0015 (8)
C3	0.0557 (14)	0.0599 (14)	0.0517 (14)	0.0045 (11)	0.0003 (11)	-0.0044 (11)
C4	0.0500 (14)	0.0834 (19)	0.0707 (18)	0.0048 (13)	-0.0112 (13)	-0.0129 (14)
C5	0.0723 (17)	0.0652 (16)	0.0524 (14)	0.0078 (13)	-0.0229 (13)	-0.0080 (12)
C6	0.0699 (15)	0.0351 (10)	0.0371 (11)	-0.0007 (10)	-0.0072 (10)	-0.0013 (8)
C7	0.0587 (13)	0.0416 (11)	0.0335 (10)	-0.0001 (9)	0.0011 (9)	-0.0039 (8)

supporting information

C8	0.0685 (15)	0.0386 (11)	0.0630 (15)	-0.0089(10)	-0.0144(12)	0.0006 (10)
C9	0.0738 (19)	0.0669 (17)	0.080 (2)	-0.0249(14)	-0.0178 (15)	0.0206 (14)
C10	0.083 (2)	0.132 (3)	0.127 (3)	-0.044 (2)	-0.020(2)	0.029 (3)
C11	0.0436 (11)	0.0504 (12)	0.0306 (10)	-0.0091 (9)	-0.0017 (8)	-0.0018(8)
C12	0.0524 (12)	0.0527 (12)	0.0363 (11)	-0.0080 (10)	-0.0027 (9)	-0.0050(9)
C13	0.0766 (17)	0.0754 (17)	0.0310 (11)	-0.0037 (14)	0.0019 (11)	-0.0058 (11)
C14	0.0852 (19)	0.0777 (18)	0.0365 (12)	-0.0043 (15)	-0.0051 (12)	0.0085 (12)
C15	0.0603 (14)	0.0558 (14)	0.0485 (13)	-0.0063 (11)	-0.0069 (11)	0.0089 (10)
C16	0.0489 (12)	0.0559 (13)	0.0379 (11)	-0.0069 (10)	-0.0035 (9)	-0.0033 (9)
C17	0.0875 (18)	0.0387 (11)	0.0334 (11)	-0.0118 (11)	-0.0048 (11)	0.0005 (8)
C18	0.0774 (17)	0.0414 (12)	0.0432 (12)	-0.0038 (11)	0.0008 (11)	0.0045 (9)
C19	0.081 (2)	0.0750 (18)	0.0587 (16)	0.0039 (15)	-0.0086 (14)	0.0118 (14)
C20	0.105 (3)	0.114 (3)	0.096 (3)	0.001 (2)	-0.032 (2)	-0.004 (2)
C21	0.0441 (11)	0.0470 (11)	0.0377 (11)	-0.0051 (9)	-0.0011 (9)	-0.0109 (9)
C22	0.0494 (13)	0.0528 (13)	0.0593 (14)	-0.0087 (10)	0.0041 (11)	-0.0141 (11)
C23	0.0453 (14)	0.0733 (18)	0.093 (2)	-0.0101 (12)	-0.0023 (13)	-0.0180 (16)
C24	0.0486 (14)	0.0769 (19)	0.093 (2)	0.0034 (13)	-0.0200 (14)	-0.0187 (16)
C25	0.0648 (16)	0.0526 (14)	0.0609 (15)	0.0052 (12)	-0.0172 (12)	-0.0116 (11)
C26	0.0500 (12)	0.0480 (12)	0.0436 (12)	-0.0043 (9)	-0.0085 (9)	-0.0083 (9)
S1	0.0529 (3)	0.0501 (3)	0.0300 (2)	-0.0060 (2)	0.0017 (2)	-0.0006 (2)
S2	0.0450 (3)	0.0478 (3)	0.0337 (3)	-0.0032 (2)	0.0003 (2)	-0.0033 (2)
N1	0.0604 (11)	0.0355 (9)	0.0401 (9)	-0.0053 (8)	-0.0098 (8)	-0.0001 (7)
N2	0.0749 (13)	0.0377 (9)	0.0324 (9)	-0.0040 (8)	-0.0041 (8)	-0.0002 (7)
01	0.0690 (11)	0.0715 (11)	0.0369 (8)	0.0091 (9)	0.0071 (7)	-0.0046 (7)
O2	0.0689 (11)	0.0584 (10)	0.0504 (9)	-0.0231 (8)	-0.0005 (8)	0.0057 (7)
03	0.0645 (10)	0.0540 (9)	0.0468 (9)	0.0077 (8)	-0.0003 (7)	-0.0138 (7)
Cl1	0.0808 (4)	0.0610 (4)	0.0484 (3)	0.0087 (3)	-0.0027 (3)	-0.0135 (3)
Cl2	0.1044 (6)	0.0696 (4)	0.0707 (5)	0.0120 (4)	-0.0131 (4)	0.0149 (4)
C13	0.0726 (4)	0.0601 (4)	0.0836 (5)	-0.0233 (3)	0.0114 (4)	-0.0002 (3)
Cl4	0.1033 (6)	0.0672 (4)	0.1033 (6)	0.0049 (4)	-0.0444 (5)	0.0105 (4)
O4	0.0452 (8)	0.0693 (10)	0.0431 (8)	-0.0114 (7)	-0.0023 (7)	0.0070 (7)

Geometric parameters (Å, °)

C1—C6	1.384 (3)	C15—C16	1.376 (3)
C1—C2	1.393 (3)	C15—Cl2	1.732 (3)
C1—H1	0.9300	C16—H16	0.9300
С2—С3	1.378 (3)	C17—N2	1.478 (3)
С2—С7	1.502 (3)	C17—H17A	0.9700
C3—C4	1.379 (4)	C17—H17B	0.9700
С3—Н3	0.9300	C18—N2	1.472 (3)
C4—C5	1.369 (4)	C18—C19	1.484 (4)
C4—H4	0.9300	C18—H18A	0.9700
C5—C6	1.383 (4)	C18—H18B	0.9700
С5—Н5	0.9300	C19—C20	1.281 (4)
C6—C17	1.507 (3)	C19—H19	0.9300
C7—N1	1.476 (3)	C20—H20A	0.9300
С7—Н7А	0.9700	C20—H20B	0.9300

С7—Н7В	0.9700	C21—C26	1.382 (3)
C8—N1	1.467 (3)	C21—C22	1.393 (3)
C8—C9	1.475 (4)	C21—S2	1.773 (2)
C8—H8A	0.9700	C22—C23	1.365 (4)
C8—H8B	0.9700	C22—Cl3	1.727 (3)
C9—C10	1,254 (4)	C23—C24	1.373 (4)
C9—H9	0.9300	C23—H23	0.9300
C10—H10A	0.9300	C_{24} C_{25}	1 371 (4)
C10 H10R	0.9300	C_{24} H24	0.9300
	1 386 (3)	$C_{24} = 1124$ $C_{25} = C_{26}$	1.384(3)
$C_{11} = C_{10}$	1.300(3)	$C_{25} = C_{20}$	1.304(3)
$C_{11} = C_{12}$	1.391(3) 1.784(2)	C_{25} C_{14}	1.728(3)
C12 - C12	1.764(2) 1.275(2)	C20—H20	0.9300
	1.375 (3)	SI02	1.4226 (16)
	1.724 (2)		1.4227 (16)
C13—C14	1.372 (4)	SI—NI	1.6011 (19)
С13—Н13	0.9300	\$2-03	1.4249 (16)
C14—C15	1.378 (4)	S2—O4	1.4281 (16)
C14—H14	0.9300	S2—N2	1.6112 (18)
C6—C1—C2	120.9 (2)	N2—C17—C6	110.33 (18)
C6—C1—H1	119.6	N2—C17—H17A	109.6
C2—C1—H1	119.6	С6—С17—Н17А	109.6
C3—C2—C1	119.0 (2)	N2—C17—H17B	109.6
$C_{3}-C_{2}-C_{7}$	1212(2)	C6-C17-H17B	109.6
C1 - C2 - C7	1197(2)	H17A - C17 - H17B	108.1
$C_{2} - C_{3} - C_{4}$	120.2(2)	N_{2} C_{18} C_{19}	1132(2)
$C_2 C_3 H_3$	110.0	$N_2 C_{18} H_{18A}$	108.0
$C_2 = C_3 = H_3$	119.9	C10 C18 H18A	108.9
$C_{4} = C_{3} = 113$	119.9 120.4(2)	N2 C19 H19D	108.9
$C_5 = C_4 = C_5$	120.4 (3)	N2 - C10 - C10 - H10D	108.9
$C_3 = C_4 = H_4$	119.8		108.9
$C_3 - C_4 - H_4$	119.8	H18A-C18-H18B	107.7
C4 - C5 - C6	120.7 (2)	$C_{20} = C_{19} = C_{18}$	125.2 (3)
C4—C5—H5	119./	C20—C19—H19	117.4
С6—С5—Н5	119.7	С18—С19—Н19	117.4
C5—C6—C1	118.8 (2)	С19—С20—Н20А	120.0
C5—C6—C17	121.4 (2)	С19—С20—Н20В	120.0
C1—C6—C17	119.7 (2)	H20A—C20—H20B	120.0
N1—C7—C2	109.52 (16)	C26—C21—C22	119.4 (2)
N1—C7—H7A	109.8	C26—C21—S2	117.30 (16)
С2—С7—Н7А	109.8	C22—C21—S2	123.27 (18)
N1—C7—H7B	109.8	C23—C22—C21	120.2 (2)
С2—С7—Н7В	109.8	C23—C22—Cl3	118.4 (2)
H7A—C7—H7B	108.2	C21—C22—Cl3	121.38 (19)
N1—C8—C9	111.8 (2)	C22—C23—C24	120.7 (3)
N1—C8—H8A	109.2	С22—С23—Н23	119.6
С9—С8—Н8А	109.2	С24—С23—Н23	119.6
N1—C8—H8B	109.2	C25—C24—C23	119.4 (3)
С9—С8—Н8В	109.2	C25—C24—H24	120.3

H8A—C8—H8B	107.9	C23—C24—H24	120.3
C10—C9—C8	125.5 (3)	C24—C25—C26	121.1 (2)
C10—C9—H9	117.3	C_{24} C_{25} C_{14}	120.3(2)
C8—C9—H9	117.3	$C_{26} = C_{25} = C_{14}$	118.6(2)
C9-C10-H10A	120.0	$C_{21} - C_{26} - C_{25}$	119 2 (2)
C9-C10-H10B	120.0	$C_{21} = C_{26} = H_{26}$	120.4
H10A—C10—H10B	120.0	C_{25} C_{26} H_{26}	120.4
C16-C11-C12	119.06(19)	02 - 81 - 01	118 98 (11)
$C_{16} - C_{11} - S_{1}$	116.79 (15)	02 - 101 - 101	107.96 (10)
C12-C11-S1	124 15 (17)	01 - 1 - 1	108.42(10)
C13 - C12 - C11	1199(2)	02 - 11 - 11	109.12(10)
C13 - C12 - C11	117.98 (18)	01 - 1 - 11	109.01(10) 104.72(10)
$C_{11} - C_{12} - C_{11}$	122 09 (17)	N1-S1-C11	106 50 (9)
C14 - C13 - C12	122.09(17) 121.1(2)	03 - 82 - 04	100.30(9) 118 28 (10)
C_{14} C_{13} H_{13}	119 5	03 - S2 - N2	108.01 (9)
C_{12} C_{13} H_{13}	119.5	$04 - S^2 - N^2$	110.01(9)
$C_{12} = C_{13} = C_{14} = C_{15}$	119.0(2)	03 - 52 - C21	108.82(10)
C13 - C14 - C13	120.5	03-52-021 04-52-021	105.82(10)
$C_{15} = C_{14} = H_{14}$	120.5	$N_{2} = S_{2} = C_{21}$	103.88(10) 104.16(10)
$C_{15} = C_{14} = 114$	120.3 121.0(2)	12-52-021	104.10(10) 117.11(18)
$C_{10} = C_{13} = C_{14}$	121.0(2) 118.46(10)	C_{8} N1 S1	117.11(10) 117.03(15)
$C_{10} = C_{13} = C_{12}$	120.56(19)	C7 N1 S1	117.95(15) 123.00(14)
C14 - C15 - C12	120.30(19) 110.0(2)	$C_1 = N_1 = S_1$	123.33(14) 117.55(18)
$C_{15} = C_{16} = C_{11}$	119.9 (2)	$C_{10} = N_2 = C_{17}$	117.33(18) 110.85(15)
C11 C16 H16	120.0	$C_{10} = N_2 = S_2$	119.03(13) 117.27(14)
СП-С10-н10	120.0	C1/-N2-32	117.37 (14)
C6—C1—C2—C3	-1.0(3)	C23—C24—C25—Cl4	-177.5 (2)
C6—C1—C2—C7	174.88 (18)	C22—C21—C26—C25	-0.1 (3)
C1—C2—C3—C4	1.1 (3)	S2—C21—C26—C25	178.15 (17)
C7—C2—C3—C4	-174.8 (2)	C24—C25—C26—C21	-1.3 (4)
C2—C3—C4—C5	-0.1 (4)	Cl4—C25—C26—C21	177.70 (16)
C3—C4—C5—C6	-0.9 (4)	C16—C11—S1—O2	-134.09 (17)
C4—C5—C6—C1	1.0 (4)	C12—C11—S1—O2	46.3 (2)
C4—C5—C6—C17	178.5 (2)	C16—C11—S1—O1	-5.38 (19)
C2-C1-C6-C5	0.0 (3)	C12—C11—S1—O1	175.01 (19)
C2-C1-C6-C17	-177.50 (18)	C16—C11—S1—N1	109.37 (17)
C3—C2—C7—N1	114.2 (2)	C12—C11—S1—N1	-70.3 (2)
C1-C2-C7-N1	-61.7 (2)	C26—C21—S2—O3	-125.84 (16)
N1-C8-C9-C10	123.0 (4)	C22—C21—S2—O3	52.3 (2)
C16—C11—C12—C13	3.0 (3)	C26—C21—S2—O4	2.29 (18)
S1—C11—C12—C13	-177.43 (19)	C22—C21—S2—O4	-179.54 (18)
C16—C11—C12—Cl1	-175.59 (17)	C26—C21—S2—N2	119.15 (16)
S1—C11—C12—Cl1	4.0 (3)	C22—C21—S2—N2	-62.7 (2)
C11—C12—C13—C14	-1.5 (4)	C9—C8—N1—C7	-65.1 (3)
Cl1—C12—C13—C14	177.1 (2)	C9—C8—N1—S1	104.1 (2)
C12—C13—C14—C15	-0.6 (4)	C2—C7—N1—C8	-61.9 (2)
C13—C14—C15—C16	1.2 (4)	C2-C7-N1-S1	129.61 (17)
C13—C14—C15—Cl2	-179.3 (2)	O2—S1—N1—C8	178.66 (16)
	× /		

C14—C15—C16—C11	0.2 (4)	O1—S1—N1—C8	48.51 (19)
Cl2—C15—C16—C11	-179.29 (17)	C11—S1—N1—C8	-63.70 (18)
C12-C11-C16-C15	-2.3 (3)	O2—S1—N1—C7	-12.98 (19)
S1—C11—C16—C15	178.04 (18)	O1—S1—N1—C7	-143.13 (16)
C5—C6—C17—N2	-63.4 (3)	C11—S1—N1—C7	104.66 (17)
C1—C6—C17—N2	114.1 (2)	C19—C18—N2—C17	-73.6 (3)
N2-C18-C19-C20	116.5 (3)	C19—C18—N2—S2	80.2 (2)
C26—C21—C22—C23	1.2 (3)	C6-C17-N2-C18	-58.5 (3)
S2—C21—C22—C23	-176.92 (19)	C6—C17—N2—S2	147.10 (17)
C26—C21—C22—Cl3	-178.38 (16)	O3—S2—N2—C18	14.2 (2)
S2—C21—C22—Cl3	3.5 (3)	O4—S2—N2—C18	-116.77 (18)
C21—C22—C23—C24	-1.0 (4)	C21—S2—N2—C18	129.81 (18)
Cl3—C22—C23—C24	178.6 (2)	O3—S2—N2—C17	168.06 (17)
C22—C23—C24—C25	-0.3 (4)	O4—S2—N2—C17	37.1 (2)
C23—C24—C25—C26	1.5 (4)	C21—S2—N2—C17	-76.35 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8A···O3 ⁱ	0.97	2.59	3.422 (3)	144

Symmetry code: (i) -x+1, -y, -z.