

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,6-Dibromo-4-(2-hydroxyethyl)phenol

Ding-giang Lu,^a* Hong Chai,^a Xiu-guan Ling,^a Jia Chen^a and Iia-li Wang^b

^aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wangzhe_guilai@126.com

Received 1 November 2011; accepted 4 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.014 Å; R factor = 0.067; wR factor = 0.161; data-to-parameter ratio = 15.7.

The title compound, C₈H₈Br₂O₂, crystallized with two independent molecules (A and B) in the asymmetric unit. They differ in the conformation of the 2-hydroxyethyl chain with the C-C-C-O torsion angle being $-68.0(12)^{\circ}$ in molecule A and 172.2 (9)° in molecule B. In the crystal, the A molecules are linked via pairs of $O-H \cdots O$ hydrogen bonds, forming inversion dimers, while the B molecules are linked via an $O-H \cdots O$ hydrogen bond, forming a polymeric chain propagating in [010]. In addition, there are $O-H \cdots O$ and O-H···Br hydrogen bonds, and Br···Br [3.599 (2) Å] and π - π interactions [centroid–centroid distances = 3.581 (6) and 3.931 (6) Å], leading to the formation of a two-dimensional network parallel to (001).

Related literature

For background and further synthetic details, see: Guerard et al. (2009); Bovicelli et al. (2007). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Zhu et al. (2011)

3416 independent reflections

 $R_{\rm int} = 0.087$

1 restraint

 $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$

reflections

1874 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

H-atom parameters constrained

intensity decay: 1%

Experimental

Crystal data

β

$C_8H_8Br_2O_2$	$\gamma = 87.39 \ (3)^{\circ}$
$M_r = 295.94$	V = 929.6 (3) Å ³
Triclinic, $P\overline{1}$	Z = 4
a = 8.5740 (17) Å	Mo $K\alpha$ radiation
b = 9.845 (2) Å	$\mu = 8.68 \text{ mm}^{-1}$
c = 11.392 (2) Å	T = 293 K
$\alpha = 86.08 \ (3)^{\circ}$	$0.20 \times 0.10 \times 0.10$ mm
$\beta = 75.79 \ (3)^{\circ}$	

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\rm min} = 0.276, \ T_{\rm max} = 0.478$
3664 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.161$ S = 1.003416 reflections 217 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1O\cdots O2^{i}$	0.82	1.93	2.665 (11)	149
$O4 - H4O \cdots O3^{ii}$	0.85	2.09	2.837 (9)	146
$O2-H2O\cdots O4^{iii}$	0.82	2.09	2.896 (10)	168
$O3-H3O\cdots Br2^{iv}$	0.85	2.55	3.291 (7)	147
	(A)			

x, y + 1, z;Symmetry codes: (i) -x+1, -y+1, -z+2;(ii) (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y - 1, z - 1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the '863' project (2007 A A02Z211) from the Ministry of Science and Technology, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2342).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bovicelli, P., Antonioletti, R., Mancini, S., Causio, S., Borioni, G., Ammendola, S. & Barontini, M. (2007). Synth. Commun. 37, 4245-4252.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Guerard, K. C., Sabot, C., Racicot, L. & Canesi, S. (2009). J. Org. Chem. 74, 2039-2045.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925. Zhu, J., Yang, W., Wang, L., Wang, K. & Hu, Y. (2011). *Acta Cryst.* E**67**, 01109.

supporting information

Acta Cryst. (2011). E67, o3263-o3264 [https://doi.org/10.1107/S1600536811046538]

2,6-Dibromo-4-(2-hydroxyethyl)phenol

Ding-qiang Lu, Hong Chai, Xiu-quan Ling, Jia Chen and Jia-li Wang

S1. Comment

The title compound is used as a key intermediate in drug synthesis, and has been synthesized following a procedure described previously by (Bovicelli *et al.*, 2007). We report herein on its synthesis and crystal structure.

The title compound crystallized with two independent molecules (A & B) in the asymmetric unit (Fig. 1). They differ significantly in conformation, as may be seen from the torsion angles in the 2-hydroxyethyl chain. For molecule A the torsion angles C1—C6—C7—C8 and C6—C7—C8—O2 are -56.6 (14) and -68.0 (13)°, respectively, while the corresponding torsion angles C13—C14—C15—C16 and C14—C15—C16—O4 in molecule B are -82.6 (12) and 172.2 (9)°, respectively. The bond lengths (Allen *et al.*, 1987) and bond angles are otherwise within normal ranges.

In the crystal, the A molecules are linked *via* O—H···O hydrogen bonds to form inversion dimers, while the B molecules are linked *via* an O—H···O hydrogen bond to form a polymer chain propagating in [010], see Fig. 2. In the crystal, there are other O—H···O and O—H···Br hydrogen bonds (Table 1), and weak π ··· π stacking interactions involving the aromatic rings with their inversion related rings. The centroid-centroid distances are 3.931 (6) Å for Cg1··· $Cg1^{i}$ [Cg1 is the centroid of ring (C1—C6); symmetry code (i) -*x* + 1, -*y* + 1, -*z* + 2] and 3.581 (6) Å for Cg2··· $Cg2^{ii}$ [Cg2 is the centroid of ring (C9—C14); symmetry code (ii) -*x* + 2, -*y*, -*z* + 1]. There is also a short Br1···Br4ⁱⁱⁱ interaction present [3.599 (2) Å; symmetry code: (iii) -*x* + 1, -*y*, -*z* + 2]. These interactions result in the formation of two-dimensional networks lieing parallel to the *ab* plane (Fig. 3).

S2. Experimental

The title compound was synthesized using a slightly modified version of the procedure reported on by (Bovicelli *et al.*, 2007), using twice the quantity of NaBr. To a solution of 4-hydroxyphenethyl alcohol (217.4 mmol, 30 g) and NaBr (434.8 mmol, 44.34 g) in acetone (600 ml), a solution of oxone (200 g) in water (1 *L*) was added dropwise at 263 K within 3 h. The progress of the reaction was monitored by thin-layer chromatography (TLC, hexane/ethyl acetate 3:2), and when the reaction was over (complete consumption of the substrate), AcOEt (500 ml) was added to the mixture. The organic layer was separated, and the aqueous phase was extracted with two 300 mL portions of AcOEt (300 ml). The combined organic solutions were washed with water (300 ml), dried over anhydrous Na₂SO₄(white power,100 g), and evaporated. The product obtained in almost quantitative yield (59.7 g), appeared to be spectroscopically pure: white solid. Crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an acetone solution at room temperature.

S3. Refinement

H atoms were positioned geometrically and constrained to ride on their parent atoms: O—H = 0.82 or 0.85 Å, C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for methyl H atoms, and k = 1.2 for all other H atoms.

Figure 1

The molecular structure of the two indpendent molecules (A and B) of the title compound, with the atom numbering scheme and displacement ellipsoids drawn at 30% probability levels.

Figure 2

A view along the *a* axis of the hydrogen bonded inversion dimers of A molecules and the polymer chain of B molecules of the title compound [hydrogen bonds are shown as dashed cyan lines; see Table 1 for details; symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z; (iii) x, y - 1, z].

Figure 3

A perspective view along the b axis of the crystal packing of the title compound, showing the O—H···O and O—H···Br hydrogen bonds as dashed lines (see Table 1 for details).

2,6-Dibromo-4-(2-hydroxyethyl)phenol

Crystal data	
$C_8H_8Br_2O_2$ $M_r = 295.94$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 8.5740 (17) Å b = 9.845 (2) Å c = 11.392 (2) Å $a = 86.08 (3)^{\circ}$ $\beta = 75.79 (3)^{\circ}$ $\gamma = 87.39 (3)^{\circ}$ $V = 929.6 (3) \text{ Å}^3$	Z = 4 F(000) = 568 $D_x = 2.115 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 8.68 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.20 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$T_{\min} = 0.276, T_{\max} = 0.478$ 3664 measured reflections 3416 independent reflections 1874 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{\max} = 25.4^{\circ}, \ \theta_{\min} = 1.9^{\circ}$ $h = 0 \rightarrow 10$

3 standard reflections every 200 reflections intensity decay: 1%		
Secondary atom site location: difference Fourier		
map		
Hydrogen site location: inferred from		
neighbouring sites		
H-atom parameters constrained		
$w = 1/[\sigma^2(F_o^2) + (0.072P)^2]$		
where $P = (F_o^2 + 2F_c^2)/3$		
$(\Delta/\sigma)_{\rm max} < 0.001$		
$\Delta ho_{ m max} = 0.63 \ { m e} \ { m \AA}^{-3}$		
$\Delta \rho_{\rm min} = -0.72 \text{ e } \text{\AA}^{-3}$		

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.68665 (14)	0.22580 (14)	1.16796 (12)	0.0661 (5)
Br2	0.15646 (15)	0.59523 (13)	1.18207 (12)	0.0703 (5)
01	0.4403 (9)	0.4472 (8)	1.2658 (7)	0.070 (3)
O2	0.4818 (9)	0.3052 (8)	0.6910 (7)	0.066 (3)
C1	0.4707 (12)	0.2251 (11)	1.0171 (9)	0.050 (4)
C2	0.5035 (11)	0.2892 (9)	1.1125 (9)	0.043 (3)
C3	0.4101 (13)	0.3990 (10)	1.1676 (9)	0.049 (4)
C4	0.2875 (12)	0.4483 (10)	1.1133 (9)	0.050 (3)
C5	0.2490 (12)	0.3861 (10)	1.0200 (9)	0.050 (4)
C6	0.3404 (13)	0.2735 (11)	0.9689 (10)	0.053 (4)
C7	0.2967 (12)	0.1977 (12)	0.8703 (9)	0.056 (4)
C8	0.4333 (12)	0.1821 (9)	0.7602 (9)	0.049 (3)
Br3	1.12544 (15)	-0.02904 (13)	0.15184 (12)	0.0742 (5)
Br4	0.64211 (13)	-0.12778 (11)	0.58132 (10)	0.0558 (4)
O3	0.8985 (8)	-0.1939 (6)	0.3477 (6)	0.049 (2)
O4	0.7207 (8)	0.5766 (7)	0.4611 (6)	0.056 (3)
С9	0.9903 (11)	0.1713 (10)	0.3173 (9)	0.046 (4)
C10	0.9906 (11)	0.0338 (10)	0.2919 (9)	0.045 (3)
C11	0.8926 (11)	-0.0623 (9)	0.3728 (9)	0.039 (3)
C12	0.7878 (10)	-0.0124 (9)	0.4787 (9)	0.036 (3)
C13	0.7884 (11)	0.1234 (10)	0.5006 (10)	0.048 (3)
C14	0.8884 (11)	0.2154 (10)	0.4232 (10)	0.047 (3)
C15	0.8832 (12)	0.3638 (11)	0.4564 (10)	0.052 (4)

supporting information

C16	0.7456 (13)	0.4450 (10)	0.4198 (11)	0.059 (4)
H1	0.53400	0.15080	0.98510	0.0600*
H1O	0.46340	0.52760	1.25190	0.1050*
H2O	0.41630	0.32850	0.65120	0.0990*
H5	0.16160	0.41900	0.99050	0.0600*
H7A	0.26060	0.10790	0.90340	0.0670*
H7B	0.20760	0.24600	0.84580	0.0670*
H8A	0.52520	0.14080	0.78600	0.0580*
H8B	0.40200	0.11990	0.70820	0.0580*
H3O	0.96250	-0.21940	0.28290	0.0590*
H4O	0.80520	0.62110	0.43080	0.0840*
H9	1.05730	0.23190	0.26410	0.0560*
H13	0.71880	0.15470	0.57020	0.0580*
H15A	0.87040	0.36660	0.54320	0.0620*
H15B	0.98440	0.40530	0.41600	0.0620*
H16A	0.64730	0.39530	0.45080	0.0710*
H16C	0.76670	0.45120	0.33200	0.0710*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0559 (7)	0.0740 (9)	0.0707 (8)	0.0040 (6)	-0.0190 (6)	-0.0112 (6)
Br2	0.0754 (9)	0.0556 (8)	0.0731 (9)	0.0157 (6)	-0.0043 (6)	-0.0185 (6)
01	0.079 (6)	0.067 (6)	0.062 (5)	-0.009 (4)	-0.010 (4)	-0.010 (4)
O2	0.074 (5)	0.066 (5)	0.056 (5)	-0.011 (4)	-0.010 (4)	-0.015 (4)
C1	0.043 (6)	0.055 (7)	0.041 (6)	-0.001 (5)	0.013 (5)	-0.012 (5)
C2	0.045 (6)	0.034 (5)	0.050 (6)	-0.003 (4)	-0.009(5)	-0.016 (4)
C3	0.062 (7)	0.038 (6)	0.047 (6)	-0.007 (5)	-0.007 (5)	-0.016 (5)
C4	0.049 (6)	0.045 (6)	0.046 (6)	0.006 (5)	0.003 (5)	0.011 (5)
C5	0.042 (6)	0.051 (7)	0.052 (7)	0.008 (5)	-0.003(5)	-0.010 (5)
C6	0.049 (6)	0.054 (7)	0.057 (7)	-0.003 (5)	-0.010 (5)	-0.018 (5)
C7	0.052 (6)	0.065 (8)	0.049 (7)	-0.004 (6)	-0.003(5)	-0.023 (5)
C8	0.062 (7)	0.032 (5)	0.051 (6)	-0.002 (5)	-0.009(5)	-0.012 (4)
Br3	0.0710 (8)	0.0624 (8)	0.0702 (9)	0.0004 (6)	0.0217 (6)	-0.0141 (6)
Br4	0.0524 (7)	0.0416 (6)	0.0638 (7)	-0.0090 (5)	0.0075 (5)	-0.0094 (5)
03	0.055 (4)	0.037 (4)	0.046 (4)	0.004 (3)	0.008 (3)	-0.016 (3)
O4	0.056 (5)	0.044 (4)	0.065 (5)	0.000 (4)	-0.004(4)	-0.017 (4)
C9	0.040 (6)	0.035 (6)	0.056 (7)	0.000 (5)	0.000 (5)	0.011 (5)
C10	0.038 (5)	0.048 (6)	0.046 (6)	-0.007 (5)	0.001 (4)	-0.012 (5)
C11	0.043 (5)	0.024 (5)	0.051 (6)	0.002 (4)	-0.013 (4)	-0.017 (4)
C12	0.033 (5)	0.024 (5)	0.051 (6)	-0.001 (4)	-0.007(4)	-0.010 (4)
C13	0.030 (5)	0.045 (6)	0.063 (7)	0.010 (5)	0.002 (5)	-0.012 (5)
C14	0.039 (5)	0.045 (5)	0.061 (7)	0.003 (5)	-0.016 (5)	-0.015 (5)
C15	0.043 (6)	0.052 (6)	0.062 (7)	0.005 (5)	-0.012 (5)	-0.015 (5)
C16	0.061 (7)	0.038 (6)	0.071 (8)	0.007 (5)	-0.002 (6)	-0.016 (5)

Geometric parameters (Å, °)

Br1—C2	1.897 (10)	C1—H1	0.9300
Br2—C4	1.882 (10)	С5—Н5	0.9300
Br3—C10	1.852 (10)	С7—Н7В	0.9700
Br4—C12	1.857 (9)	C7—H7A	0.9700
O1—C3	1.330 (13)	C8—H8B	0.9700
O2—C8	1.420 (12)	C8—H8A	0.9700
01—H10	0.8200	C9—C10	1.403 (14)
O2—H2O	0.8200	C9—C14	1.388 (15)
O3—C11	1.342 (11)	C10-C11	1.423 (14)
O4—C16	1.398 (12)	C11—C12	1.419 (14)
O3—H3O	0.8500	C12—C13	1.377 (13)
O4—H4O	0.8500	C13—C14	1.387 (15)
C1—C2	1.385 (14)	C14—C15	1.530 (15)
C1—C6	1.412 (15)	C15—C16	1.522 (16)
C2—C3	1.404 (14)	С9—Н9	0.9300
C3—C4	1.398 (15)	C13—H13	0.9300
C4—C5	1.376 (14)	C15—H15A	0.9700
C5—C6	1.403 (15)	C15—H15B	0.9700
C6—C7	1.518 (15)	C16—H16A	0.9700
С7—С8	1.502 (14)	C16—H16C	0.9700
C3—O1—H1O	109.00	C7—C8—H8B	109.00
C8—O2—H2O	109.00	O2—C8—H8A	109.00
С11—О3—НЗО	119.00	C10—C9—C14	118.9 (9)
C16—O4—H4O	108.00	C9—C10—C11	122.0 (9)
C2—C1—C6	119.4 (10)	Br3—C10—C11	117.8 (7)
C1—C2—C3	123.3 (9)	Br3—C10—C9	120.2 (7)
Br1—C2—C1	117.5 (7)	O3—C11—C12	122.1 (8)
Br1—C2—C3	119.2 (7)	O3—C11—C10	120.7 (9)
O1—C3—C2	119.7 (10)	C10-C11-C12	117.2 (8)
C2—C3—C4	115.5 (9)	Br4—C12—C13	120.5 (8)
O1—C3—C4	124.8 (9)	Br4—C12—C11	119.9 (7)
Br2—C4—C3	118.1 (7)	C11—C12—C13	119.6 (9)
Br2—C4—C5	118.8 (8)	C12—C13—C14	122.8 (10)
C3—C4—C5	122.9 (9)	C9—C14—C15	121.4 (9)
C4—C5—C6	120.6 (10)	C9—C14—C13	119.5 (9)
C1—C6—C5	118.1 (10)	C13—C14—C15	119.1 (9)
C5—C6—C7	122.1 (10)	C14—C15—C16	111.6 (9)
C1—C6—C7	119.6 (10)	O4—C16—C15	114.7 (9)
C6—C7—C8	113.7 (9)	С10—С9—Н9	121.00
O2—C8—C7	115.0 (8)	С14—С9—Н9	121.00
C2—C1—H1	120.00	C12—C13—H13	119.00
С6—С1—Н1	120.00	C14—C13—H13	119.00
С6—С5—Н5	120.00	C14—C15—H15A	109.00
С4—С5—Н5	120.00	C14—C15—H15B	109.00
С6—С7—Н7А	109.00	C16—C15—H15A	109.00

109.00	C16—C15—H15B	109.00
109.00	H15A—C15—H15B	108.00
109.00	O4—C16—H16A	109.00
108.00	O4—C16—H16C	109.00
109.00	C15—C16—H16A	109.00
109.00	C15—C16—H16C	109.00
108.00	H16A—C16—H16C	108.00
-176.8 (8)	C14—C9—C10—Br3	-179.8 (8)
2.0 (16)	C14—C9—C10—C11	-1.6 (15)
0.2 (15)	C10—C9—C14—C13	-0.7 (15)
-175.8 (9)	C10—C9—C14—C15	179.6 (9)
-7.3 (13)	Br3—C10—C11—O3	0.0 (13)
173.7 (7)	Br3—C10—C11—C12	-178.9 (7)
173.9 (10)	C9—C10—C11—O3	-178.2 (9)
-5.1 (15)	C9—C10—C11—C12	2.9 (14)
0.9 (14)	O3—C11—C12—Br4	-4.8 (13)
-172.6 (10)	O3—C11—C12—C13	179.2 (9)
179.8 (7)	C10-C11-C12-Br4	174.2 (7)
6.3 (15)	C10-C11-C12-C13	-1.9 (14)
-177.9 (8)	Br4—C12—C13—C14	-176.3 (8)
-4.5 (16)	C11—C12—C13—C14	-0.2 (15)
0.9 (16)	C12—C13—C14—C9	1.6 (16)
176.8 (10)	C12-C13-C14-C15	-178.7 (9)
-56.6 (13)	C9—C14—C15—C16	97.1 (12)
127.6 (11)	C13—C14—C15—C16	-82.6 (12)
-68.0 (12)	C14—C15—C16—O4	172.2 (9)
	109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 108.00 -176.8 (8) 2.0 (16) 0.2 (15) -175.8 (9) -7.3 (13) 173.7 (7) 173.9 (10) -5.1 (15) 0.9 (14) -172.6 (10) 179.8 (7) 6.3 (15) -177.9 (8) -4.5 (16) 0.9 (16) 176.8 (10) -56.6 (13) 127.6 (11) -68.0 (12)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.82	1.93	2.665 (11)	149
0.85	2.09	2.837 (9)	146
0.82	2.09	2.896 (10)	168
0.85	2.55	3.291 (7)	147
	<i>D</i> —H 0.82 0.85 0.82 0.82 0.85	D—H H···A 0.82 1.93 0.85 2.09 0.82 2.09 0.85 2.55	D—HH···AD···A0.821.932.665 (11)0.852.092.837 (9)0.822.092.896 (10)0.852.553.291 (7)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*+1, *y*-1, *z*-1.