Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis\{3-[2-(methylsulfonyl)pyrimidin-4-yl]pyridinium] tetrachloridocadmium

Dahua Hu* and Xia Liu

Department of City Science, Jiangsu City Vocation College, Nanjing 210003, People's Republic of China
Correspondence e-mail: hudh@jstvu.edu.cn

Received 1 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \mathrm{~A}$; R factor $=0.039 ; w R$ factor $=0.070 ;$ data-to-parameter ratio $=14.9$.

In the title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{CdCl}_{4}\right]$, the $\mathrm{Cd}^{\mathrm{II}}$ ion lies on a twofold axis and is coordinated by four chloride anions, with bond distances of 2.4787 (10) and 2.4410 (10) \AA. A chain along the c axis is formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogenbonding interactions and a weak $\pi-\pi$ interaction is observed between the pyrimidine rings of two adjacent parallel chains [centroid-centroid distance $=3.722$ (2) \AA]. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{CN}-$ $\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions also occur.

Related literature

For related structures, see: Huang et al. (2001); Dong et al. (2008, 2009).

Experimental

Crystal data

$\begin{array}{ll}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{CdCl}_{4}\right] & \text { Monoclinic, } C 2 / c \\ M_{r}=726.8 & a=17.556(3) \AA\end{array}$

$$
\begin{aligned}
& b=10.9541(15) \AA \\
& c=14.903(2) \AA \\
& \beta=113.354(3)^{\circ} \\
& V=2631.2(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector	6931 measured reflections
diffractometer	2576 independent reflections
Absorption correction: multi-scan	1857 reflections with $I>2 \sigma(I)$
$(S A D A B S ;$ Bruker, 2001$)$	$R_{\text {int }}=0.049$
$T_{\min }=0.573, T_{\max }=0.773$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad$ H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.070 \quad$ independent and constrained
$S=0.90$
2576 reflections
173 parameters

Mo $K \alpha$ radiation
$\mu=1.44 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$ refinement
$\Delta \rho_{\text {max }}=0.77 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.82(3)$	$2.26(3)$	$3.062(4)$	$170(3)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{i i}$	0.93	2.79	$3.603(4)$	146
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl}^{\mathrm{i}}$	0.93	2.72	$3.577(3)$	153
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.93	2.58	$3.475(5)$	162
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{Cl} 1^{\text {iv }}$	0.96	2.74	$3.552(6)$	143
$\mathrm{C} 10-\mathrm{H} 10 C \cdots \mathrm{O} 1^{v}$	0.96	2.53	$3.433(4)$	156

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iv) $x-\frac{1}{2}, y+\frac{1}{2}, z ;$ (v) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

DH is indebted to the Natural Science Fund for Colleges and Universities in Jiangsu Province (09KJD150009) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2019).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, H. Z., Zhao, J., Gou, S. \& Zhu, H. B. (2009). Polyhedron, 28, 1040-1048.
Dong, H. Z., Zhu, H. B., Liu, X. \& Gou, S. (2008). Polyhedron, 27, 2167-2174.
Huang, W., Gou, S., Hu, D., Chantrapromma, S., Fun, H. K. \& Meng, Q. (2001). Inorg. Chem. 40, 1712-1715.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1813 [https://doi.org/10.1107/S1600536811045995]

Bis\{3-[2-(methylsulfonyl)pyrimidin-4-yl]pyridinium\} tetrachloridocadmium

Dahua Hu and Xia Liu

S1. Comment

Crystal engineering of coordination compounds has attracted a great deal of attention in the recent years because of their potential as functional materials (Huang et al., 2001; Dong et al., 2008, 2009). One of the most efficient and powerful strategies for constructing such compounds is directed self-assembly of designed organic ligands and inorganic metal ions. Although self-assembly directed by metal-containing species is mainly assisted by coordination bond-base approach, other non-covalent interactions such as hydrogen bonding and aromatic $\pi-\pi$ stacking also have a significant impact on the architecture of the final product. One example is the dinuclear $\mathrm{Zn}^{\text {II }}$ macrocyclic species reported by Huang et al. (2001). Here we describe the $\mathrm{Cd}^{\mathrm{II}}$ title complex.
The title compound crystallizes in the monoclinic space group $C 2 / c$ and every unit cell contains four $\mathrm{Cd}^{\mathrm{II}}$ ions, eight 3-(2-methanesulfonyl-pyrimidin-4-yl)pyridinium cations (L) and sixteen chloride anions (Fig 1). Each $\mathrm{Cd}(\mathrm{II}$) ion is coordinated by four chloride anions, yielding a distorted tetrahedral coordination sphere with $\mathrm{Cd}-\mathrm{Cl} 1$ and $\mathrm{Cd}-\mathrm{Cl} 2$ distances in the range of $2.44-2.48 \AA$ and the corresponding $\mathrm{Cl} 2-\mathrm{Cd}-\mathrm{Cl} 1$ bond angles are $112.64(5)^{\circ}(\mathrm{Cl} 2 \mathrm{~A}-\mathrm{Cd1}-$ $\mathrm{Cl} 2), 111.85(4)^{\circ}(\mathrm{Cl} 2 \mathrm{~A}-\mathrm{Cd} 1-\mathrm{Cl} 1), 102.49(3)^{\circ}(\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1)$ and $102.49(3)^{\circ}(\mathrm{Cl} 2 \mathrm{~A}-\mathrm{Cd} 1-\mathrm{Cl1A})$, respectively. A one-dimensional chain is formed by $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 2$ hydrogen bonding interactions, as can be seen in Fig. 2; the corresponding bond length and bond angle are 3.474 (5) \AA and 162°, respectively. A weak $\pi-\pi$ interaction is observed between the pyrimidyl rings of two adjacent paralleled one-dimensional chains with the centroid-centroid separation of 3.722 (2) $\AA . \mathrm{A} \mathrm{Cd}_{2}(\mathrm{HL})_{4} \mathrm{Cl}_{8}$ structural unit, as the result of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interaction, is formed and shown in Fig. 3, where the corresponding bond lengths and bond angles are 3.552 (6) $\AA, 143^{\circ}(\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{Cl} 1) ; 3.603$ (4) \AA, $146^{\circ}(\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl} 1) ; 3.577(3) \AA, 153^{\circ}(\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl} 2)$ and $3.062(4) \AA, 170(3)^{\circ}(\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Cl} 1)$, respectively.

S2. Experimental

All solvents and chemicals were of analytical grade and were purchased from Aldrich or ACROS. They were used without further purification. For the synthesis of the title compound, a solution of $\mathrm{CdCl}_{4}(6.4 \mathrm{mg}, 0.025 \mathrm{mmol})$ in methanol (5 mL) was very slowly dropped on the top of a solution of $L(11.76 \mathrm{mg}, 0.05 \mathrm{mmol})$ in chloroform (5 mL) in a tube. Pale yellow single crystals formed after six days.

S3. Refinement

All hydrogen atoms were geometrically positioned ($\mathrm{C}-\mathrm{H} 0.93-0.97 \AA$) and refined in riding motion, with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}$ of the parent atom. Proton H3a was refined freely.

Figure 1
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering. Symmetry code for chlorine ions labelled A: -x,y,1/2-z.

Figure 2
One-dimensional chain formed by $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 2$ hydrogen bonding interactions.

Figure 3
The $\mathrm{Cd}_{2}(\mathrm{HL})_{4} \mathrm{Cl}_{8}$ structural unit, as the result of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions.

Bis\{3-[2-(methylsulfonyl)pyrimidin-4-yl]pyridinium\} tetrachloridocadmium

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{2}\left[\mathrm{CdCl}_{4}\right]$
$M_{r}=726.8$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=17.556$ (3) \AA
$b=10.9541(15) \AA$
$c=14.903(2) \AA$
$\beta=113.354(3)^{\circ}$
$V=2631.2(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.573, T_{\text {max }}=0.773$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.070$
$S=0.90$
2576 reflections
173 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

$$
\begin{aligned}
& F(000)=1448 \\
& D_{\mathrm{x}}=1.835 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1574 \text { reflections } \\
& \theta=2.3-23.3^{\circ} \\
& \mu=1.44 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, yellow } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

6931 measured reflections
2576 independent reflections
1857 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-15 \rightarrow 21$
$k=-13 \rightarrow 13$
$l=-18 \rightarrow 18$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0212 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.77 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
Cd1	0.5000	$0.12498(4)$	0.7500	$0.04176(15)$

C1	$0.2419(2)$	$0.9045(3)$	$0.6362(2)$	$0.0302(9)$
C2	$0.2441(3)$	$1.0195(3)$	$0.5153(3)$	$0.0489(11)$
H2	0.2245	1.0847	0.4723	0.059^{*}
C3	$0.3059(2)$	$0.9485(3)$	$0.5089(3)$	$0.0447(10)$
H3	0.3287	0.9655	0.4637	0.054^{*}
C4	$0.3329(2)$	$0.8511(3)$	$0.5717(2)$	$0.0283(8)$
C5	$0.3996(2)$	$0.7683(3)$	$0.5742(2)$	$0.0290(8)$
C6	$0.4485(2)$	$0.7960(3)$	$0.5240(2)$	$0.0366(9)$
H6	0.4388	0.8673	0.4872	0.044^{*}
C7	$0.5264(2)$	$0.6184(4)$	$0.5778(3)$	$0.0439(10)$
H7	0.5701	0.5694	0.5790	0.053^{*}
C8	$0.4791(3)$	$0.5852(3)$	$0.6274(3)$	$0.0458(11)$
H8	0.4896	0.5123	0.6622	0.055^{*}
C9	$0.4163(2)$	$0.6599(3)$	$0.6257(3)$	$0.0394(10)$
H9	0.3842	0.6374	0.6598	0.047^{*}
C10	$0.2557(3)$	$0.7643(3)$	$0.7978(3)$	$0.0530(12)$
H10A	0.2365	0.7479	0.8486	0.080^{*}
H10B	0.3123	0.7915	0.8265	0.080^{*}
H10C	0.2523	0.6912	0.7609	0.080^{*}
C11	$0.59743(7)$	$0.24503(10)$	$0.88918(7)$	$0.0569(3)$
C12	$0.42718(7)$	$0.00141(9)$	$0.82725(7)$	$0.0551(3)$
N1	$0.29884(18)$	$0.8269(2)$	$0.63567(19)$	$0.0297(7)$
N2	$0.21071(19)$	$0.9999(3)$	$0.5800(2)$	$0.0396(8)$
N3	$0.5089(2)$	$0.7219(3)$	$0.5280(2)$	$0.0425(9)$
O1	$0.20050(18)$	$0.9854(2)$	$0.77554(18)$	$0.0516(8)$
O2	$0.11304(17)$	$0.8336(3)$	$0.66480(19)$	$0.0639(9)$
S1	$0.19469(6)$	$0.87679(9)$	$0.72123(6)$	$0.0359(2)$
H3A	$0.535(2)$	$0.739(3)$	$0.495(2)$	$0.038(12)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cd1	$0.0430(3)$	$0.0412(3)$	$0.0413(3)$	0.000	$0.0170(2)$	0.000
C1	$0.033(2)$	$0.032(2)$	$0.028(2)$	$0.0004(17)$	$0.0141(18)$	$-0.0027(16)$
C2	$0.065(3)$	$0.044(2)$	$0.043(2)$	$0.020(2)$	$0.028(2)$	$0.0165(19)$
C3	$0.052(3)$	$0.049(2)$	$0.046(2)$	$0.012(2)$	$0.035(2)$	$0.010(2)$
C4	$0.031(2)$	$0.028(2)$	$0.0273(19)$	$-0.0006(17)$	$0.0133(17)$	$-0.0039(15)$
C5	$0.028(2)$	$0.037(2)$	$0.0246(19)$	$-0.0020(18)$	$0.0137(17)$	$-0.0053(16)$
C6	$0.038(2)$	$0.037(2)$	$0.036(2)$	$0.0058(19)$	$0.016(2)$	$0.0017(17)$
C7	$0.040(2)$	$0.052(3)$	$0.042(2)$	$0.016(2)$	$0.019(2)$	$-0.004(2)$
C8	$0.052(3)$	$0.046(2)$	$0.042(2)$	$0.017(2)$	$0.022(2)$	$0.0069(19)$
C9	$0.040(2)$	$0.046(2)$	$0.040(2)$	$0.008(2)$	$0.024(2)$	$0.0038(18)$
C10	$0.066(3)$	$0.055(3)$	$0.056(3)$	$0.019(2)$	$0.043(3)$	$0.022(2)$
C11	$0.0479(7)$	$0.0763(8)$	$0.0614(7)$	$-0.0234(6)$	$0.0375(6)$	$-0.0274(6)$
C12	$0.0647(8)$	$0.0508(6)$	$0.0542(7)$	$-0.0139(6)$	$0.0282(6)$	$-0.0008(5)$
N1	$0.0302(18)$	$0.0310(16)$	$0.0319(17)$	$0.0030(14)$	$0.0165(15)$	$-0.0023(13)$
N2	$0.044(2)$	$0.0389(18)$	$0.0403(19)$	$0.0099(16)$	$0.0218(17)$	$0.0016(15)$
N3	$0.034(2)$	$0.062(2)$	$0.042(2)$	$0.0010(19)$	$0.0270(19)$	$-0.0034(18)$

O1	$0.072(2)$	$0.0427(16)$	$0.0565(17)$	$0.0024(15)$	$0.0432(17)$	$-0.0102(13)$
O2	$0.0387(18)$	$0.095(2)$	$0.0585(19)$	$-0.0150(17)$	$0.0200(16)$	$-0.0098(16)$
S1	$0.0347(6)$	$0.0400(5)$	$0.0393(6)$	$0.0047(5)$	$0.0212(5)$	$-0.0014(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1- $\mathrm{Cl}^{\text {i }}$	2.4410 (10)	C6-N3	1.319 (4)
Cd1-Cl2	2.4410 (10)	C6-H6	0.9300
Cd1-Cl1	2.4787 (10)	C7-N3	1.322 (5)
$\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	2.4787 (10)	C7-C8	1.362 (5)
$\mathrm{C} 1-\mathrm{N} 1$	1.314 (4)	C7-H7	0.9300
C1-N2	1.315 (4)	C8-C9	1.366 (5)
C1-S1	1.794 (3)	C8-H8	0.9300
$\mathrm{C} 2-\mathrm{N} 2$	1.329 (4)	C9—H9	0.9300
C2-C3	1.368 (5)	C10-S1	1.732 (3)
C2-H2	0.9300	C10-H10A	0.9600
C3-C4	1.374 (4)	C10-H10B	0.9600
C3-H3	0.9300	C10-H10C	0.9600
C4-N1	1.337 (4)	N3-H3A	0.81 (3)
C4-C5	1.470 (4)	O1-S1	1.420 (2)
C5-C6	1.377 (4)	O2-S1	1.425 (3)
C5-C9	1.380 (4)		
Cl2 ${ }^{\text {i }}$ Cd1- Cl 2	112.64 (5)	N3-C7-H7	120.7
$\mathrm{Cl2}-\mathrm{Cd} 1-\mathrm{Cl1}$	111.85 (4)	C8-C7-H7	120.7
$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$	102.49 (3)	C7-C8-C9	119.4 (4)
Cl2 - $\mathrm{Cd} 1-\mathrm{Cl1} 1^{\text {i }}$	102.49 (3)	C7-C8-H8	120.3
$\mathrm{Cl} 2-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	111.85 (4)	C9-C8-H8	120.3
$\mathrm{Cl1}-\mathrm{Cd} 1-\mathrm{Cl}^{\text {i }}$	115.92 (6)	C8-C9-C5	121.2 (3)
N1-C1-N2	129.4 (3)	C8-C9-H9	119.4
N1-C1-S1	117.4 (2)	C5-C9-H9	119.4
N2-C1-S1	113.1 (3)	S1-C10-H10A	109.5
N2-C2-C3	123.3 (3)	S1-C10-H10B	109.5
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	118.4	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
C3-C2-H2	118.4	S1-C10-H10C	109.5
C2-C3-C4	117.6 (3)	H10A-C10-H10C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.2	H10B-C10-H10C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.2	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	115.6 (3)
N1-C4-C3	120.5 (3)	C1-N2-C2	113.5 (3)
N1-C4-C5	115.9 (3)	C6-N3-C7	123.9 (4)
C3-C4-C5	123.6 (3)	C6-N3-H3A	118 (3)
C6-C5-C9	116.8 (3)	C7-N3-H3A	118 (3)
C6-C5-C4	120.8 (3)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	116.28 (17)
C9-C5-C4	122.4 (3)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 10$	109.55 (18)
N3-C6-C5	120.2 (3)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 10$	111.57 (19)
N3-C6-H6	119.9	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	108.19 (15)

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.9	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$106.10(16)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8$	$118.5(4)$	$\mathrm{C} 10-\mathrm{S} 1-\mathrm{C} 1$	$104.33(17)$

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	$0.82(3)$	$2.26(3)$	$3.062(4)$	$170(3)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.93	2.79	$3.603(4)$	146
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.93	2.72	$3.577(3)$	153
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{~N} 2^{\text {iv }}$	0.93	2.58	$3.475(5)$	162
$\mathrm{C} 10 — \mathrm{H} 10 A \cdots \mathrm{Cl1}^{\text {v }}$	0.96	2.74	$3.552(6)$	143
$\mathrm{C} 10 — \mathrm{H} 10 C \cdots \mathrm{O}^{\text {vi }}$	0.96	2.53	$3.433(4)$	156

Symmetry codes: (ii) $x,-y+1, z-1 / 2$; (iii) $x-1 / 2,-y+3 / 2, z-1 / 2$; (iv) $x+1 / 2, y-1 / 2, z$; (v) $x-1 / 2, y+1 / 2, z$; (vi) $-x+1 / 2, y-1 / 2,-z+3 / 2$.

