

V = 1659.5 (12) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.15 \; \rm mm$

18075 measured reflections

3860 independent reflections

2497 reflections with $I > 2\sigma(I)$

 $\mu = 0.18 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.087$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

O-Phenyl (tert-butylamido)(p-tolylamido)phosphinate

Mehrdad Pourayoubi,^a* Arnold L. Rheingold,^b Chao Chen,^b Fatemeh Karimi Ahmadabad^a and Atekeh **Tarahhomi**^a

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and ^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 21 October 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.089; wR factor = 0.203; data-to-parameter ratio = 16.4

In the title molecule, C₁₇H₂₃N₂O₂P, the P atom has a distorted tetrahedral environment. The P-N bond to the tolylamido fragment is 1.642 (4) Å while that to the butylamido fragment is 1.629 (3) Å. The dihedral angle between the two benzene rings is 82.3 $(2)^{\circ}$. In the crystal, adjacent molecules are linked via weak $N-H\cdots(O)P$ and $N-H\cdots N$ hydrogen-bonding interactions into an extended chain parallel to the b axis. The three methyl groups of the tert-butylamido substituent are disordered over two sets of sites with equal occupancies. The crystal studied was found to be a non-merohedral twin with the minor twin component = 23.1(1)%.

Related literature

For background to mixed-amido phosphinates, see: Pourayoubi et al. (2011a); Sabbaghi et al. (2011). For the sp^2 character of the nitrogen atom of the P(=O)N unit and also for its low Lewis-base character in acting as a hydrogen-bond acceptor, see: Toghraee et al. (2011); Pourayoubi et al. (2011b,c). For a description of the Cambridge Structure Database, see: Allen (2002).

Experimental

Crystal data $C_{17}H_{23}N_2O_2P$ $M_r = 318.34$ Monoclinic, $P2_1/n$ a = 11.412 (5) Å b = 9.519 (4) Å c = 15.768 (6) Å $\beta = 104.332(5)^{\circ}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (TWINABS: Sheldrick, 2008a) $T_{\min} = 0.966, T_{\max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.089$	235 parameters
$wR(F^2) = 0.203$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
3860 reflections	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots N2^{i}$ $N2 - H2 \cdots O1^{ii}$	0.88 0.88	2.32 2.40	3.175 (5) 3.275 (5)	163 170
	. 1 . 1	. 1	1 1 . 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: CELL_NOW (Sheldrick, 2008a) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b) and enCIFer (Allen et al., 2004).

Support of this investigation by the Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2550).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pourayoubi, M., Karimi Ahmadabad, F. & Nečas, M. (2011a). Acta Cryst. E67, 02523.
- Pourayoubi, M., Nečas, M. & Negari, M. (2011b). Acta Cryst. C67. Submitted. Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. C67, o265–o272.
- Sabbaghi, F., Pourayoubi, M., Karimi Ahmadabad, F. & Parvez, M. (2011). Acta Cryst. E67, 01502.
- Sheldrick, G. M. (2008a). CELL_NOW and TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). *Polyhedron*, **30**, 1680–1690.

supporting information

Acta Cryst. (2011). E67, o3405–o3406 [https://doi.org/10.1107/S1600536811048537]

O-Phenyl (tert-butylamido)(p-tolylamido)phosphinate

Mehrdad Pourayoubi, Arnold L. Rheingold, Chao Chen, Fatemeh Karimi Ahmadabad and Atekeh Tarahhomi

S1. Comment

Following our previous work on the synthesis of mixed-amido phosphinates containing a P(O)(O)(NH)(NH) skeleton (Pourayoubi *et al.*, 2011*a*), we report here on the synthesis and crystal structure of the title compound, $P(O)[OC_6H_5]$ [NHC₆H₄(4-CH₃)][NHC(CH₃)₃] (Fig. 1).

The P=O, P—O and P—N bond lengths and P—O—C and P—N—C bond angles are within the expected values (Sabbaghi *et al.*, 2011). The P atom has a distorted tetrahedral conformation with the bond angles in the range of 96.76 (17)° [O2–P1–N2] to 117.03 (17)° [O1–P1–N2]. The P1—N1 bond (with length of 1.642 (4) Å) is slightly longer than the P1—N2 bond (1.629 (3) Å). The dihedral angle between the phenyl rings of the OC₆H₅ and NHC₆H₄(4-CH₃) moieties is 82.3 (2)°.

In the crystal structure, the molecules are linked by weak N—H···(O)P and N—H···N hydrogen bonding interactions (Table 1) into an extended chain along [010] (Fig. 2). As illustrated for phosphoramidates by Toghraee *et al.* (2011) and Pourayoubi *et al.* (2011*b,c*) by examining all deposited phosphoramidates in the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002), the N atom of the P(=O)N unit usually adopts an *sp*² character (which is reflected in the bond angles at the N atom) and usually does not act as an acceptor in hydrogen bonding interactions. Therefore, the N—H···N—P contact in the crystal packing may rather be attributed to the assembly of the molecules with respect to one another.

S2. Experimental

To a solution of $(C_6H_5O)(4-CH_3C_6H_4NH)P(O)Cl (1.714 mmol)$ in chloroform, a solution of *tert*-butylamine (3.428 mmol) in chloroform was added at 273 K. After 5 h stirring, the solvent was removed in vacuum and the solid product was washed with distilled water. Single crystals were obtained from a mixture of $CH_3CN/CHCl_3$ at room temperature.

S3. Refinement

The investigated crystal was found to be a two-component rotational twin. The data for both components were integrated using *SAINT* and scaled with *TWINABS*. Final refinement was done using a *HKLF5* file generated by *TWINABS* with an appropriate *BASF* parameter (0.23089 (10)). The three methyl groups of the *tert*-butyl moiety were refined as being disordered in a 0.5:0.5 ratio. All H atoms were placed geometrically using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in *SHELXL97* (d(C—H) = 0.98 Å for methyl H atoms, d(C—H) = 0.95 Å for aromatic H atoms and d(N—H) = 0.88 Å for amide H atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$ for aromatic and amide H atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms).

Figure 1

An *ORTEP*-style plot and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radius. The disorder of the methyl groups is not shown.

Figure 2

Partial packing view showing the formation of the chain through the N—H···(O)P and N—H···N hydrogen bonds which are shown as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.

O-Phenyl (tert-butylamido)(p-tolylamido)phosphinate

Crystal data

 $C_{17}H_{23}N_2O_2P$ $M_r = 318.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.412 (5) Å b = 9.519 (4) Å c = 15.768 (6) Å $\beta = 104.332$ (5)° V = 1659.5 (12) Å³ Z = 4

Data collection

Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 680 $D_x = 1.274 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2700 reflections $\theta = 2.5-27.3^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.20 \times 0.18 \times 0.15 \text{ mm}$

Absorption correction: multi-scan (*TWINABS*; Sheldrick, 2008*a*) $T_{min} = 0.966$, $T_{max} = 0.974$ 3860 measured reflections 18075 independent reflections 2497 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.087$
$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
$h = -15 \rightarrow 14$

Refinement

Reginement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.089$	H-atom parameters constrained
$wR(F^2) = 0.203$	$w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 5.6384P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
3860 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
235 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008 <i>b</i>), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0051 (8)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $k = 0 \rightarrow 12$ $l = 0 \rightarrow 20$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	-0.3828 (4)	0.3138 (7)	0.1636 (3)	0.0484 (14)	
H1A	-0.4241	0.3213	0.1014	0.073*	
H1B	-0.4038	0.3950	0.1951	0.073*	
H1C	-0.4083	0.2273	0.1876	0.073*	
C2	-0.2482 (4)	0.3104 (6)	0.1738 (3)	0.0375 (11)	
C3	-0.1876 (4)	0.1854 (5)	0.1663 (2)	0.0330 (10)	
Н3	-0.2329	0.1008	0.1548	0.040*	
C4	-0.0631 (4)	0.1802 (5)	0.1750 (2)	0.0293 (9)	
H4	-0.0249	0.0933	0.1688	0.035*	
C5	0.0049 (3)	0.3026 (5)	0.1927 (2)	0.0264 (9)	
C6	-0.0545 (3)	0.4307 (5)	0.1998 (2)	0.0288 (9)	
H6	-0.0095	0.5155	0.2113	0.035*	
C7	-0.1785 (4)	0.4320 (5)	0.1901 (2)	0.0338 (10)	
H7	-0.2174	0.5189	0.1948	0.041*	
C8	0.2197 (4)	0.1078 (5)	0.0673 (3)	0.0323 (10)	
C9	0.1197 (4)	0.1458 (5)	0.0015 (3)	0.0362 (11)	
H9	0.0411	0.1470	0.0118	0.043*	
C10	0.1373 (5)	0.1821 (6)	-0.0801 (3)	0.0449 (12)	
H10	0.0700	0.2084	-0.1261	0.054*	
C11	0.2522 (5)	0.1802 (6)	-0.0946 (3)	0.0450 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H11	0.2638	0.2068	-0.1500	0.054*	
C12	0.3495 (5)	0.1395 (6)	-0.0283 (3)	0.0439 (12)	
H12	0.4277	0.1364	-0.0391	0.053*	
C13	0.3357 (4)	0.1030 (5)	0.0541 (3)	0.0369 (11)	
H13	0.4031	0.0757	0.0998	0.044*	
C14	0.2211 (4)	0.1101 (5)	0.3984 (2)	0.0286 (9)	
C15	0.3531 (8)	0.0707 (13)	0.4489 (6)	0.041 (2)	0.50
H15A	0.3657	-0.0303	0.4432	0.061*	0.50
H15B	0.3653	0.0948	0.5109	0.061*	0.50
H15C	0.4108	0.1231	0.4242	0.061*	0.50
C16	0.1961 (10)	0.2594 (11)	0.4144 (6)	0.038 (2)	0.50
H16A	0.2495	0.3199	0.3905	0.058*	0.50
H16B	0.2105	0.2757	0.4775	0.058*	0.50
H16C	0.1116	0.2811	0.3858	0.058*	0.50
C17	0.1378 (10)	0.0128 (12)	0.4394 (6)	0.043 (2)	0.50
H17A	0.0529	0.0386	0.4154	0.065*	0.50
H17B	0.1588	0.0247	0.5031	0.065*	0.50
H17C	0.1500	-0.0855	0.4251	0.065*	0.50
C15′	0.3377 (8)	0.1837 (13)	0.4350 (5)	0.041 (2)	0.50
H15D	0.4046	0.1256	0.4264	0.062*	0.50
H15E	0.3473	0.2002	0.4977	0.062*	0.50
H15F	0.3378	0.2739	0.4050	0.062*	0.50
C16′	0.1147 (9)	0.2038 (12)	0.4044 (6)	0.042 (2)	0.50
H16D	0.1245	0.2966	0.3802	0.063*	0.50
H16E	0.1123	0.2135	0.4658	0.063*	0.50
H16F	0.0391	0.1613	0.3710	0.063*	0.50
C17′	0.2138 (9)	-0.0251 (11)	0.4441 (5)	0.034 (2)	0.50
H17D	0.1421	-0.0773	0.4126	0.051*	0.50
H17E	0.2080	-0.0063	0.5040	0.051*	0.50
H17F	0.2865	-0.0810	0.4457	0.051*	0.50
N1	0.1321 (3)	0.3055 (4)	0.2034 (2)	0.0272 (8)	
H1	0.1619	0.3882	0.1951	0.033*	
N2	0.2060 (3)	0.0744 (4)	0.3037 (2)	0.0281 (8)	
H2	0.1806	-0.0109	0.2871	0.034*	
O1	0.3536 (2)	0.2436 (3)	0.24577 (18)	0.0325 (7)	
O2	0.2020 (2)	0.0677 (3)	0.14980 (17)	0.0304 (7)	
P1	0.23229 (9)	0.17878 (13)	0.22865 (6)	0.0262 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.028 (2)	0.083 (4)	0.036 (2)	-0.002 (3)	0.0118 (19)	-0.001 (3)
C2	0.024 (2)	0.070 (4)	0.0189 (19)	-0.006(2)	0.0061 (15)	-0.004(2)
C3	0.029 (2)	0.048 (3)	0.0203 (19)	-0.008(2)	0.0044 (16)	0.003 (2)
C4	0.028 (2)	0.037 (2)	0.0229 (19)	-0.0024 (19)	0.0063 (15)	0.0036 (19)
C5	0.0230 (19)	0.040(2)	0.0163 (17)	0.0016 (18)	0.0043 (14)	0.0045 (17)
C6	0.024 (2)	0.041 (3)	0.0214 (19)	-0.0008 (18)	0.0050 (15)	-0.0012 (18)
C7	0.029 (2)	0.054 (3)	0.0192 (19)	0.008 (2)	0.0083 (16)	-0.003 (2)

Acta Cryst. (2011). E67, o3405-o3406

supporting information

C8	0.038 (2)	0.038 (3)	0.022 (2)	-0.001 (2)	0.0106 (17)	-0.0050 (19)
C9	0.036 (2)	0.048 (3)	0.025 (2)	0.000 (2)	0.0081 (17)	-0.004 (2)
C10	0.057 (3)	0.053 (3)	0.024 (2)	0.010 (3)	0.009 (2)	-0.003 (2)
C11	0.063 (3)	0.051 (3)	0.027 (2)	-0.002 (3)	0.022 (2)	-0.008 (2)
C12	0.048 (3)	0.055 (3)	0.035 (2)	-0.007 (2)	0.023 (2)	-0.011 (2)
C13	0.034 (2)	0.045 (3)	0.033 (2)	-0.004 (2)	0.0097 (19)	-0.008 (2)
C14	0.031 (2)	0.037 (3)	0.0199 (19)	0.0019 (19)	0.0097 (16)	-0.0009 (18)
C15	0.038 (5)	0.063 (7)	0.019 (4)	0.001 (5)	0.002 (4)	-0.002 (5)
C16	0.047 (6)	0.049 (6)	0.023 (4)	0.000 (5)	0.015 (4)	0.006 (4)
C17	0.057 (7)	0.052 (7)	0.023 (5)	-0.018 (6)	0.016 (5)	0.001 (4)
C15′	0.040 (5)	0.066 (7)	0.019 (4)	-0.019 (5)	0.009 (4)	-0.009 (5)
C16′	0.041 (5)	0.063 (7)	0.024 (4)	0.021 (5)	0.012 (4)	-0.004 (4)
C17′	0.040 (5)	0.046 (6)	0.019 (4)	0.002 (5)	0.011 (4)	0.004 (4)
N1	0.0212 (16)	0.038 (2)	0.0229 (16)	-0.0022 (15)	0.0067 (13)	0.0015 (15)
N2	0.0318 (18)	0.035 (2)	0.0169 (16)	-0.0020 (16)	0.0045 (13)	-0.0002 (14)
01	0.0238 (14)	0.0463 (19)	0.0275 (15)	-0.0002 (13)	0.0067 (11)	-0.0013 (14)
O2	0.0316 (15)	0.0385 (18)	0.0216 (14)	-0.0021 (13)	0.0079 (11)	-0.0046 (13)
P1	0.0215 (5)	0.0383 (6)	0.0184 (5)	0.0005 (5)	0.0045 (4)	-0.0014 (5)

Geometric parameters (Å, °)

C1—C2	1.506 (6)	C14—C17′	1.488 (10)
C1—H1A	0.9800	C14—N2	1.500 (5)
C1—H1B	0.9800	C14—C16′	1.528 (10)
C1—H1C	0.9800	C14—C15	1.565 (10)
C2—C7	1.391 (7)	C14—C17	1.576 (10)
C2—C3	1.396 (7)	C15—H15A	0.9800
C3—C4	1.394 (5)	C15—H15B	0.9800
С3—Н3	0.9500	C15—H15C	0.9800
C4—C5	1.390 (6)	C16—H16A	0.9800
C4—H4	0.9500	C16—H16B	0.9800
C5—C6	1.413 (6)	C16—H16C	0.9800
C5—N1	1.419 (5)	C17—H17A	0.9800
С6—С7	1.386 (5)	C17—H17B	0.9800
С6—Н6	0.9500	C17—H17C	0.9800
С7—Н7	0.9500	C15′—H15D	0.9800
С8—С9	1.386 (6)	С15′—Н15Е	0.9800
C8—C13	1.391 (6)	C15′—H15F	0.9800
C8—O2	1.417 (5)	C16′—H16D	0.9800
C9—C10	1.395 (6)	С16'—Н16Е	0.9800
С9—Н9	0.9500	C16'—H16F	0.9800
C10—C11	1.385 (7)	C17′—H17D	0.9800
C10—H10	0.9500	С17′—Н17Е	0.9800
C11—C12	1.379 (7)	C17′—H17F	0.9800
C11—H11	0.9500	N1—P1	1.642 (4)
C12—C13	1.392 (6)	N1—H1	0.8800
С12—Н12	0.9500	N2—P1	1.629 (3)
С13—Н13	0.9500	N2—H2	0.8800

C14—C16	1.483 (11)	O1—P1	1.478 (3)
C14—C15′	1.487 (10)	02—P1	1.603 (3)
	1.107 (10)	02 11	1.000 (0)
C2	109 5	N2-C14-C16'	107 3 (4)
$C_2 = C_1 = H_1B$	109.5	C16-C14-C15	107.3(1) 110.2(7)
HIA_C1_HIB	109.5	C17'-C14-C15	73.1.(6)
$C^2 - C^1 - H^1C$	109.5	N_{2} C_{14} C_{15}	1081(0)
	109.5	$C_{16} - C_{14} - C_{15}$	142.0 (6)
HIB-C1-HIC	109.5	C16 - C14 - C17	142.0(0) 109.4(6)
C7 $C2$ $C3$	116.9 (4)	C15' C14 C17	133.6 (6)
C_{7}^{-} C_{2}^{-} C_{1}^{1}	110.9(4)	$N_{2} = C_{14} = C_{17}$	133.0(0)
$C_{1} = C_{2} = C_{1}$	121.5(5)	$N_2 = C_1 4 = C_1 7$	110.0(3)
$C_{3} = C_{2} = C_{1}$	121.3(3)	C10 - C14 - C17	73.4(0)
$C_4 - C_2 - C_2$	122.4 (4)	C13 - C14 - C17	104.0 (0)
C4 - C3 - H3	118.8	CI4—CI5—HI5A	109.5
C2—C3—H3	118.8	C14—C15—H15B	109.5
$C_{5} - C_{4} - C_{3}$	119.6 (4)	C14—C15—H15C	109.5
С5—С4—Н4	120.2	C14—C16—H16A	109.5
C3—C4—H4	120.2	C14—C16—H16B	109.5
C4—C5—C6	119.0 (4)	C14—C16—H16C	109.5
C4—C5—N1	122.9 (4)	C14—C17—H17A	109.5
C6—C5—N1	118.1 (4)	C14—C17—H17B	109.5
C7—C6—C5	119.8 (4)	C14—C17—H17C	109.5
С7—С6—Н6	120.1	C14—C15′—H15D	109.5
С5—С6—Н6	120.1	C14—C15′—H15E	109.5
C6—C7—C2	122.3 (4)	H15D—C15′—H15E	109.5
С6—С7—Н7	118.9	C14—C15′—H15F	109.5
С2—С7—Н7	118.9	H15D—C15′—H15F	109.5
C9—C8—C13	122.3 (4)	H15E—C15′—H15F	109.5
C9—C8—O2	118.6 (4)	C14—C16′—H16D	109.5
C13—C8—O2	119.0 (4)	C14—C16′—H16E	109.5
C8—C9—C10	118.4 (4)	H16D—C16′—H16E	109.5
С8—С9—Н9	120.8	C14—C16′—H16F	109.5
С10—С9—Н9	120.8	H16D—C16′—H16F	109.5
C11—C10—C9	120.5 (4)	H16E—C16′—H16F	109.5
C11—C10—H10	119.8	C14—C17′—H17D	109.5
C9—C10—H10	119.8	C14—C17′—H17E	109.5
C12—C11—C10	119.7 (4)	H17D—C17′—H17E	109.5
C12-C11-H11	120.1	C14—C17′—H17F	109.5
C10-C11-H11	120.1	H17D—C17′—H17F	109.5
$C_{11} - C_{12} - C_{13}$	121.5 (5)	H17E-C17'-H17F	109.5
$C_{11} - C_{12} - H_{12}$	119.2	C5 - N1 - P1	130.2(3)
C_{13} C_{12} H_{12}	119.2	C5—N1—H1	114.9
C_{8} C_{13} C_{12} C_{12}	117.2 117.6(4)	P1N1H1	114.9
C8 C13 H13	121.2	C14 N2 P1	114.9 126.0(3)
С12_С13_Н13	121.2	C14 N2 H2	117.0
C12 - C13 - 1113 C16 - C14 - C15'	710(7)	P1H2	117.0
C16 C14 C17'	135 2 (6)	$C_8 \cap 2$ D1	1188(2)
C15' C14 C17'	111.9 (6)	01 P1 02	110.0(3) 115.41(14)
-0.13 - 0.14 - 0.17	111.0 (0)	01-11-02	113.41 (10)

C16—C14—N2	114.0 (5)	O1—P1—N2	117.03 (17)
C15′—C14—N2	111.4 (4)	O2—P1—N2	96.76 (17)
C17′—C14—N2	106.2 (5)	O1—P1—N1	107.61 (19)
C15'—C14—C16'	110.4 (7)	O2—P1—N1	107.01 (16)
C17'—C14—C16'	109.5 (6)	N2—P1—N1	112.47 (17)
C7—C2—C3—C4	0.3 (6)	C6—C5—N1—P1	159.1 (3)
C1—C2—C3—C4	179.6 (4)	C16—C14—N2—P1	32.5 (6)
C2—C3—C4—C5	0.7 (6)	C15′—C14—N2—P1	-45.5 (7)
C3—C4—C5—C6	-1.2 (5)	C17'-C14-N2-P1	-167.5 (5)
C3—C4—C5—N1	179.3 (3)	C16'-C14-N2-P1	75.5 (6)
C4—C5—C6—C7	0.7 (6)	C15—C14—N2—P1	-90.4 (6)
N1—C5—C6—C7	-179.8 (3)	C17—C14—N2—P1	155.9 (6)
C5—C6—C7—C2	0.3 (6)	C9—C8—O2—P1	-101.8 (4)
C3—C2—C7—C6	-0.8 (6)	C13—C8—O2—P1	80.5 (5)
C1—C2—C7—C6	179.9 (4)	C8—O2—P1—O1	-51.6 (3)
C13—C8—C9—C10	-1.0 (7)	C8—O2—P1—N2	-175.9 (3)
O2—C8—C9—C10	-178.6 (4)	C8—O2—P1—N1	68.1 (3)
C8—C9—C10—C11	0.0 (8)	C14—N2—P1—O1	54.8 (4)
C9-C10-C11-C12	1.2 (8)	C14—N2—P1—O2	177.8 (3)
C10-C11-C12-C13	-1.4 (8)	C14—N2—P1—N1	-70.6 (4)
C9—C8—C13—C12	0.7 (7)	C5—N1—P1—O1	-170.6 (3)
O2—C8—C13—C12	178.3 (4)	C5—N1—P1—O2	64.8 (3)
C11—C12—C13—C8	0.5 (8)	C5—N1—P1—N2	-40.3 (4)
C4—C5—N1—P1	-21.4 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
N1—H1···N2 ⁱ	0.88	2.32	3.175 (5)	163
N2—H2…O1 ⁱⁱ	0.88	2.40	3.275 (5)	170

Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2.