

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetraaqua(μ_3 -naphthalene-1,6disulfonato- $\kappa^4 O^1: O^6, O^{6'}: O^{6''}$)strontium(II)] monohydrate]

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 4 November 2011; accepted 9 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 17.2.

In the crystal structure of the polymeric title compound, $\{[Sr(C_{10}H_6O_6S_2)(H_2O)_4]\cdot H_2O\}_n$, the naphthalene-1,6-disulfonate dianion uses one $-SO_3$ unit to O,O'-chelate to an Sr^{II} cation and its third O atom to bind to another Sr^{II} cation. The other $-SO_3$ unit binds to yet another Sr^{II} atom. The four coordinated water molecules are monodentate but one is disordered over two positions in a 1:1 ratio. The μ_3 -bonding mode of the dianion generates a polymeric three-dimensional network; the network is consolidated by $O-H\cdots O$ hydrogen bonds. The Sr^{II} cation exists in an undefined eight-coordinate environment.

Related literature

For a review of metal arenesulfonates, see: Cai (2004). For a related strontium naphthalenedisulfonate, see: Cai *et al.* (2001).

Experimental

Crystal data $[Sr(C_{10}H_6O_6S_2)(H_2O)_4] \cdot H_2O$ $M_r = 463.97$

Orthorhombic, $P2_12_12_1$ a = 7.1067 (16) Å b = 14.080 (4) Å c = 16.745 (6) Å $V = 1675.6 (9) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.511, T_{\rm max} = 0.620$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.024 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.057 & & & & & & & \\ S = 1.02 & & & & & & & \\ 3786 \mbox{ reflections} & & & & & & & \\ 220 \mbox{ parameters} & & & & & & & \\ 15 \mbox{ restraints} & & & & & & \\ Flack \mbox{ parameter:} -0.017 \mbox{ (4)} \end{array}$

Table 1

Selected bond lengths (Å).

S=1 01	2 727 (2)	S=1 01W	2 6 41 (2)
Sr1_02	2.737(2)	Sr1_02W	2.041(2)
Sr1 = 02 $Sr1 = 03^{i}$	2.721(2) 2.583(2)	Sr1 = 02W Sr1 = 03W	2.502(2) 2.500(2)
Sr1-O4 ⁱⁱ	2.5352 (19)	Sr1-O4W	2.585 (14)
	 2	1 1	

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (ii) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	y (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1w-H12···O2 ⁱⁱⁱ	0.84	2.25	2.809 (3)	124
$O2w-H21\cdots O5^{iv}$	0.84	2.03	2.793 (3)	151
$O2w-H22\cdots O5w^{v}$	0.84	1.95	2.763 (3)	164
$O3w-H31\cdots O6^{vi}$	0.84	2.09	2.829 (3)	147
$O3w-H32\cdots O5w^{v}$	0.84	1.99	2.754 (3)	151
O5w−H51···O6 ⁱⁱ	0.84	2.06	2.874 (3)	163
O5w−H52···O1w	0.84	2.02	2.831 (3)	160
Symmetry codes: (ii)	$-x+\frac{1}{2},-y$	$+1, z - \frac{1}{2};$ (i	ii) $x - \frac{1}{2}, -v + \frac{3}{2}$	$\frac{3}{2}, -z + 2;$ (iv)

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2};$ (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{2}{2};$ (iv) $-x - \frac{1}{2}, -y + 1, z - \frac{1}{2};$ (v) $-x, y - \frac{1}{2}, -z + \frac{3}{2};$ (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2.$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5382).

metal-organic compounds

Mo $K\alpha$ radiation $\mu = 3.52 \text{ mm}^{-1}$

 $0.22 \times 0.17 \times 0.15 \text{ mm}$

16056 measured reflections

3786 independent reflections

3497 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.030$

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Cai, J. (2004). Coord. Chem. Rev. 248, 1061–1083.
- Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520–530.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2011). E67, m1767-m1768 [https://doi.org/10.1107/S1600536811047593]

Poly[[tetraaqua(μ_3 -naphthalene-1,6-disulfonato- $\kappa^4 O^1: O^6, O^{6'}: O^{6''}$)strontium(II)] monohydrate]

Shan Gao and Seik Weng Ng

S1. Comment

A review of metal arenesulfonates that are synthesized in aqueous medium explains the reasons for the ability of the ions to form stable metal-organic frameworks owing to multiple coordination modes of the sulfonate $-SO_3$ groups (Cai, 2004). Among the divalent metal derivatives, the strontium system has been less studied (Cai *et al.*, 2001). In the crystal structure of $Sr(H_2O)_4(C_{10}H_6O_6S_2)H_2O$, the $C_{10}H_6O_6S_2^{2^2}$ dianion uses one $-SO_3$ unit to O,O'-chelate to an Sr^{II} atom and its third O atom to bind to another Sr^{II} atom. The other $-SO_3$ unit binds to yet another Sr^{II} atom (Scheme I, Fig. 1). T; the four coordinated water molecules are monodentate but one is disordered over two positions in a 1:1 ratio. The μ_3 bonding mode of the dianon generates a polymeric three-dimensional network; the network is consolidated by $O-H\cdots O$ hydrogen bonds (Table 1). The Sr atom exists in an undefined eight-coordinate environment.

S2. Experimental

Strontium nitrate (1 mmol) and sodium naphthalene-1,6-disulfonate (1 mmol) were dissolved in water (10 ml). The solution was filtered and set aside; yellow crystals were isolated from the filtrate after several days.

S3. Refinement

Carbon-bound H-atoms were generated geometrically and were included in the riding model approximation [C—H 0.93 Å, U, $1.2U_{eq}(C)$]. The water H-atoms were placed in calculated positions [O—H 0.84 Å, $U 1.5U_{eq}(O)$] on the basis of hydrogen bonding interactions; however, only some are involved and others are not.

One of the water molecules is disordered over two positions in a 1:1 ratio.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a fragment of polymeric $Sr(H_2O)_4(C_{10}H_6O_6S_2)H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Poly[[tetraaqua(μ_3 -naphthalene-1,6-disulfonato- $\kappa^4 O^1$: O^6 ; O^6' : $O^{6''}$) strontium] monohydrate]

Crystal data

$[Sr(C_{10}H_6O_6S_2)(H_2O)_4]$ ·H ₂ O
$M_r = 463.97$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
a = 7.1067 (16) Å
b = 14.080 (4) Å
c = 16.745 (6) Å
V = 1675.6 (9) Å ³
Z = 4

Data collection	
Rigaku R-AXIS RAPID IP	16056 measured reflections
diffractometer	3786 independent reflections
Radiation source: fine-focus sealed tube	3497 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
ω scan	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 9$
(ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 18$
$T_{\min} = 0.511, \ T_{\max} = 0.620$	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.057$ S = 1.023786 reflections 220 parameters 15 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

F(000) = 936 $D_{\rm x} = 1.839 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 14836 reflections $\theta = 3.1 - 27.1^{\circ}$ $\mu = 3.52 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.22 \times 0.17 \times 0.15 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0282P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1584 Friedel pairs Absolute structure parameter: -0.017 (4)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sr1	0.17295 (3)	0.709854 (16)	0.858456 (15)	0.02516 (7)	
S1	-0.05018 (9)	0.60924 (5)	1.00949 (4)	0.03027 (15)	
S2	0.03060 (8)	0.15903 (4)	1.19980 (4)	0.02706 (14)	
01	-0.1183 (2)	0.61336 (14)	0.92809 (12)	0.0384 (5)	
O2	0.1341 (3)	0.65457 (14)	1.01330 (13)	0.0419 (5)	
03	-0.1813 (3)	0.64691 (14)	1.06765 (13)	0.0512 (6)	
04	0.1872 (3)	0.20770 (14)	1.23766 (11)	0.0367 (4)	
05	-0.1493 (3)	0.18114 (15)	1.23623 (12)	0.0435 (5)	
06	0.0641 (3)	0.05717 (13)	1.19636 (13)	0.0355 (4)	
O1W	-0.0894 (3)	0.84232 (15)	0.86687 (16)	0.0516 (6)	
H11	-0.0628	0.8806	0.9036	0.077*	
H12	-0.1939	0.8169	0.8764	0.077*	
O2W	-0.0715 (3)	0.68007 (15)	0.74884 (13)	0.0430 (5)	
H21	-0.1701	0.7106	0.7592	0.065*	
H22	-0.0964	0.6218	0.7467	0.065*	
O3W	0.2189 (3)	0.54239 (15)	0.81275 (15)	0.0550 (6)	
H31	0.3323	0.5340	0.8004	0.082*	
H32	0.1506	0.5320	0.7728	0.082*	
O4W	0.518 (2)	0.6538 (11)	0.8714 (6)	0.069 (2)	0.50
H41	0.5845	0.6977	0.8902	0.103*	0.50
H42	0.5236	0.6071	0.9026	0.103*	0.50
O4W′	0.506 (2)	0.6686 (11)	0.9022 (6)	0.069 (2)	0.50
H43	0.5283	0.6115	0.8912	0.103*	0.50
H44	0.5160	0.6770	0.9517	0.103*	0.50
O5W	0.0879 (3)	0.98623 (17)	0.77588 (17)	0.0621 (7)	
H51	0.1881	0.9625	0.7577	0.093*	
H52	0.0479	0.9502	0.8123	0.093*	
C1	-0.0216 (3)	0.48828 (18)	1.03469 (16)	0.0273 (6)	
C2	-0.0014 (4)	0.4641 (2)	1.11612 (16)	0.0311 (6)	
H2	0.0027	0.5116	1.1547	0.037*	
C3	0.0120 (3)	0.37121 (17)	1.13822 (17)	0.0307 (5)	
H3	0.0240	0.3561	1.1921	0.037*	
C4	0.0081 (3)	0.29677 (19)	1.08087 (14)	0.0242 (5)	
C5	0.0181 (3)	0.19898 (19)	1.09993 (15)	0.0257 (5)	
C6	0.0120 (3)	0.1312 (2)	1.04032 (17)	0.0328 (6)	
H6	0.0171	0.0671	1.0536	0.039*	
C7	-0.0016 (4)	0.1581 (2)	0.96025 (18)	0.0371 (7)	
H7	-0.0033	0.1118	0.9206	0.045*	
C8	-0.0124 (4)	0.2518 (2)	0.93974 (17)	0.0346 (6)	
H8	-0.0236	0.2688	0.8863	0.042*	
C9	-0.0066 (3)	0.32300 (18)	0.99881 (15)	0.0260 (5)	
C10	-0.0232 (3)	0.42029 (19)	0.97758 (16)	0.0290 (6)	
H10	-0.0353	0.4374	0.9242	0.035*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Sr1	0.02683 (11)	0.02339 (11)	0.02527 (12)	-0.00045 (10)	-0.00087 (10)	0.00222 (10)
S1	0.0361 (3)	0.0258 (3)	0.0289 (4)	0.0041 (3)	0.0054 (3)	0.0052 (3)
S2	0.0299 (3)	0.0254 (3)	0.0259 (3)	-0.0017 (3)	0.0003 (3)	0.0027 (3)
01	0.0372 (10)	0.0418 (11)	0.0361 (12)	0.0039 (8)	-0.0012 (8)	0.0105 (10)
O2	0.0464 (12)	0.0381 (11)	0.0412 (13)	-0.0101 (9)	-0.0084 (9)	0.0077 (10)
03	0.0737 (13)	0.0331 (11)	0.0468 (14)	0.0164 (11)	0.0289 (13)	0.0041 (10)
04	0.0434 (9)	0.0365 (10)	0.0302 (10)	-0.0086 (11)	-0.0086 (8)	0.0029 (9)
05	0.0395 (11)	0.0529 (13)	0.0381 (12)	0.0061 (9)	0.0154 (9)	0.0089 (10)
06	0.0417 (10)	0.0255 (10)	0.0392 (12)	0.0007 (8)	-0.0055 (9)	0.0042 (9)
O1W	0.0457 (11)	0.0422 (12)	0.0667 (16)	0.0074 (9)	0.0137 (11)	-0.0032 (12)
O2W	0.0438 (10)	0.0432 (13)	0.0420 (13)	0.0003 (9)	-0.0116 (9)	0.0002 (10)
O3W	0.0486 (12)	0.0399 (12)	0.0765 (19)	0.0157 (10)	0.0014 (11)	-0.0116 (12)
O4W	0.036 (2)	0.094 (4)	0.075 (6)	0.011 (2)	-0.010 (5)	-0.009 (5)
O4W′	0.036 (2)	0.094 (4)	0.075 (6)	0.011 (2)	-0.010 (5)	-0.009 (5)
O5W	0.0504 (12)	0.0479 (14)	0.088 (2)	0.0178 (11)	0.0124 (12)	0.0176 (14)
C1	0.0272 (12)	0.0259 (13)	0.0287 (15)	0.0009 (10)	0.0038 (10)	0.0067 (11)
C2	0.0434 (15)	0.0261 (13)	0.0237 (15)	0.0025 (11)	-0.0002 (11)	-0.0010 (10)
C3	0.0439 (14)	0.0294 (13)	0.0187 (13)	-0.0003 (11)	-0.0009 (12)	0.0045 (12)
C4	0.0233 (10)	0.0288 (13)	0.0207 (12)	-0.0010 (10)	0.0003 (9)	-0.0016 (12)
C5	0.0251 (11)	0.0284 (13)	0.0238 (13)	0.0010 (11)	0.0001 (9)	0.0009 (11)
C6	0.0339 (14)	0.0284 (14)	0.0361 (17)	-0.0007 (11)	-0.0043 (12)	-0.0028 (12)
C7	0.0439 (16)	0.0365 (17)	0.0309 (16)	0.0010 (14)	-0.0008 (13)	-0.0134 (13)
C8	0.0399 (14)	0.0418 (16)	0.0222 (15)	0.0024 (12)	-0.0030 (11)	-0.0032 (12)
С9	0.0228 (11)	0.0304 (14)	0.0248 (14)	0.0027 (10)	0.0019 (10)	-0.0005 (11)
C10	0.0335 (13)	0.0333 (14)	0.0202 (14)	0.0016 (11)	0.0016 (10)	0.0036 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Sr1-01	2.737 (2)	O3W—H32	0.8400
Sr1—O2	2.721 (2)	O4W—H41	0.8400
Sr1—O3 ⁱ	2.583 (2)	O4W—H42	0.8400
Sr1—O4 ⁱⁱ	2.5352 (19)	O4W'—H43	0.8400
Sr1—O1W	2.641 (2)	O4W'—H44	0.8401
Sr1—O2W	2.562 (2)	O5W—H51	0.8430
Sr1—O3W	2.500 (2)	O5W—H52	0.8433
Sr1—O4W	2.585 (14)	C1—C10	1.353 (4)
Sr1—O4W'	2.542 (15)	C1—C2	1.413 (4)
S1—O1	1.448 (2)	C2—C3	1.363 (4)
S1—O3	1.448 (2)	С2—Н2	0.9300
S1—O2	1.458 (2)	C3—C4	1.422 (4)
S1—C1	1.766 (3)	С3—Н3	0.9300
S2—O5	1.450 (2)	C4—C5	1.415 (4)
S2—O4	1.4526 (19)	C4—C9	1.427 (3)
S2—O6	1.4550 (19)	C5—C6	1.382 (4)
S2—C5	1.767 (3)	C6—C7	1.397 (4)

$O_{2} = C_{\pi} 1^{ij}$	2582(2)		0.0200
03—Sf1	2.583(2)	Co—H6	0.9300
$O4$ — $Sr1^{V}$	2.5352 (19)	C/C8	1.366 (4)
O1W—H11	0.8401	С7—Н7	0.9300
O1W—H12	0.8399	C8—C9	1.409 (4)
O2W—H21	0.8399	C8—H8	0.9300
O2W—H22	0.8399	C9—C10	1.420 (4)
O3W—H31	0.8401	C10—H10	0.9300
$O3W$ —Sr1— $O4^{ii}$	97 84 (7)	\$1-03-\$r1 ⁱⁱⁱ	150.00(13)
O_2W Sr1 O_4W'	75.6(2)	$S_1 = O_2 = S_1$	130.00(13) 140.82(12)
0.5 w - 511 - 0.4 w	75.0 (5)	S2-04-SIT	149.65 (12)
04^{-1} Sr1 $-04W$	88.3 (3)	SrI—OIW—HII	109.5
03w—Sr1—02w	73.44 (7)	Sr1—O1W—H12	109.5
$O4^{n}$ —Sr1—O2W	76.65 (7)	H11—O1W—H12	109.5
O4W'—Sr1—O2W	143.1 (2)	Sr1—O2W—H21	109.5
$O3W$ — $Sr1$ — $O3^i$	146.15 (7)	Sr1—O2W—H22	109.5
$O4^{ii}$ —Sr1—O3 ⁱ	82.38 (7)	H21—O2W—H22	109.5
O4W'—Sr1—O3 ⁱ	70.6 (3)	Sr1-O3W-H31	109.5
O2W—Sr1—O3 ⁱ	137.99 (7)	Sr1—O3W—H32	109.5
O3W—Sr1—O4W	67.3 (3)	H31—O3W—H32	109.5
04^{ii} Sr1 $04W$	80.5 (3)	Sr1H41	109.9
O4W' Sr1 $O4W$	12.6(3)	Sr1 O4W H42	109.5
$O_{2W} = S_{1} = O_{4W}$	12.0(3)	$H_{1} = 0.4 \text{W} = H_{1}^{-2}$	109.0
02w - 5n - 04w	150.8(2)	$\Pi 41 - 04W - \Pi 42$	108.4
03'-Sr1-04w	/9.5 (3)	Sr1—04w—H43	114.0
O3W—Sr1—O1W	140.76 (7)	Sr1—O4W'—H43	109.6
O4 ⁱⁱ —Sr1—O1W	89.77 (7)	H41—O4W′—H43	109.5
O4W'—Sr1—O1W	143.4 (3)	Sr1—O4W'—H44	109.5
O2W—Sr1—O1W	71.03 (7)	H43—O4W'—H44	109.5
O3 ⁱ —Sr1—O1W	72.92 (8)	H51—O5W—H52	107.9
O4W—Sr1—O1W	151.7 (3)	C10—C1—C2	120.8 (2)
O3W—Sr1—O2	92.01 (8)	C10-C1-S1	120.8 (2)
$O4^{ii}$ —Sr1—O2	158 59 (6)	$C_{2} = C_{1} = S_{1}$	118 3 (2)
04W' = Sr1 = 02	75 8 (3)	C_{3} C_{2} C_{1}	1200(3)
O^2W Sr1 O^2	12455(7)	$C_3 C_2 H_2$	120.0
O_2^{i} Sr1 O2	124.33(7)	$C_{1} = C_{2} = H_{2}$	120.0
03 - 311 - 02	70.91(7)	$C_1 = C_2 = C_1$	120.0
04w - Sr1 - 02	85.9 (3)	$C_2 - C_3 - C_4$	121.5 (3)
01w—Sr1—02	94.57 (7)	С2—С3—Н3	119.2
O3W—Sr1—O1	/6.18 (/)	С4—С3—Н3	119.2
$O4^{ii}$ —Sr1—O1	149.74 (6)	C5—C4—C3	124.3 (2)
O4W'—Sr1—O1	117.8 (4)	C5—C4—C9	118.2 (2)
O2W—Sr1—O1	73.20 (7)	C3—C4—C9	117.5 (2)
O3 ⁱ —Sr1—O1	119.14 (8)	C6—C5—C4	120.5 (2)
O4W—Sr1—O1	122.0 (4)	C6—C5—S2	117.7 (2)
O1W—Sr1—O1	78.10 (6)	C4—C5—S2	121.72 (19)
O2—Sr1—O1	51.35 (6)	C5—C6—C7	120.6 (3)
01-\$1-03	113 78 (13)	С5—С6—Н6	119 7
01 - 81 - 02	108 91 (12)	C7—C6—H6	119.7
0^{2} 5^{1} 0^{2}	112 92 (14)	$C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	112.7
03 - 31 - 02	112.03 (14)		120.3 (3)
UI-SI-CI	107.58 (13)	C8—C/—H/	119.8

O3—S1—C1	105.46 (12)	С6—С7—Н7	119.8
O2—S1—C1	107.94 (12)	C7—C8—C9	120.6 (3)
O5—S2—O4	112.99 (12)	С7—С8—Н8	119.7
O5—S2—O6	111.86 (12)	С9—С8—Н8	119.7
O4—S2—O6	110.92 (11)	C8—C9—C10	120.5 (3)
O5—S2—C5	106.59 (12)	C8—C9—C4	119.6 (2)
O4—S2—C5	107.54 (11)	C10—C9—C4	119.8 (2)
O6—S2—C5	106.53 (13)	C1—C10—C9	120.3 (2)
S1—O1—Sr1	99.67 (9)	C1—C10—H10	119.8
S1—O2—Sr1	100.05 (10)	C9—C10—H10	119.8
O3—S1—O1—Sr1	125.47 (11)	O3—S1—C1—C2	-42.8 (2)
O2—S1—O1—Sr1	-1.34 (13)	O2—S1—C1—C2	78.0 (2)
C1—S1—O1—Sr1	-118.10 (10)	C10-C1-C2-C3	-1.6 (4)
O3W—Sr1—O1—S1	104.94 (11)	S1—C1—C2—C3	176.90 (19)
O4 ⁱⁱ —Sr1—O1—S1	-173.28 (9)	C1—C2—C3—C4	0.6 (4)
O4W'—Sr1—O1—S1	39.8 (3)	C2—C3—C4—C5	-178.8(2)
O2W—Sr1—O1—S1	-178.50 (12)	C2—C3—C4—C9	1.2 (4)
O3 ⁱ —Sr1—O1—S1	-42.42 (12)	C3—C4—C5—C6	179.6 (2)
O4W—Sr1—O1—S1	53.5 (3)	C9—C4—C5—C6	-0.5 (3)
O1W—Sr1—O1—S1	-104.96 (11)	C3—C4—C5—S2	1.7 (3)
O2—Sr1—O1—S1	0.87 (8)	C9—C4—C5—S2	-178.37 (17)
O1—S1—O2—Sr1	1.35 (13)	O5—S2—C5—C6	-110.1 (2)
O3—S1—O2—Sr1	-126.00 (12)	O4—S2—C5—C6	128.4 (2)
C1—S1—O2—Sr1	117.88 (11)	O6—S2—C5—C6	9.5 (2)
O3W—Sr1—O2—S1	-71.35 (11)	O5—S2—C5—C4	67.8 (2)
$O4^{ii}$ —Sr1—O2—S1	171.05 (13)	O4—S2—C5—C4	-53.7 (2)
O4W'—Sr1—O2—S1	-145.9 (3)	O6—S2—C5—C4	-172.64 (19)
O2W—Sr1—O2—S1	-0.13 (14)	C4—C5—C6—C7	0.8 (4)
O3 ⁱ —Sr1—O2—S1	141.52 (12)	S2—C5—C6—C7	178.7 (2)
O4W—Sr1—O2—S1	-138.4 (3)	C5—C6—C7—C8	-1.1 (4)
O1W—Sr1—O2—S1	69.94 (11)	C6—C7—C8—C9	1.1 (4)
O1—Sr1—O2—S1	-0.87 (8)	C7—C8—C9—C10	-178.2(2)
O1—S1—O3—Sr1 ⁱⁱⁱ	-82.0 (3)	C7—C8—C9—C4	-0.8 (4)
O2—S1—O3—Sr1 ⁱⁱⁱ	42.7 (3)	C5—C4—C9—C8	0.5 (4)
C1—S1—O3—Sr1 ⁱⁱⁱ	160.3 (3)	C3—C4—C9—C8	-179.6 (2)
O5—S2—O4—Sr1 ^{iv}	23.0 (3)	C5-C4-C9-C10	177.9 (2)
O6—S2—O4—Sr1 ^{iv}	-103.6 (2)	C3—C4—C9—C10	-2.2 (3)
C5-S2-O4-Sr1 ^{iv}	140.3 (2)	C2-C1-C10-C9	0.6 (4)
O1—S1—C1—C10	13.9 (2)	S1—C1—C10—C9	-177.81 (19)
O3—S1—C1—C10	135.7 (2)	C8—C9—C10—C1	178.6 (2)
O2—S1—C1—C10	-103.5 (2)	C4—C9—C10—C1	1.3 (4)
O1—S1—C1—C2	-164.6 (2)		

Symmetry codes: (i) x+1/2, -y+3/2, -z+2; (ii) -x+1/2, -y+1, z-1/2; (iii) x-1/2, -y+3/2, -z+2; (iv) -x+1/2, -y+1, z+1/2.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O1w—H12···O2 ⁱⁱⁱ	0.84	2.25	2.809 (3)	124
O2w—H21···O5 ^v	0.84	2.03	2.793 (3)	151
$O2w$ —H22···O5 w^{vi}	0.84	1.95	2.763 (3)	164
O3w—H31···O6 ^{vii}	0.84	2.09	2.829 (3)	147
O3w—H32···O5w ^{vi}	0.84	1.99	2.754 (3)	151
O5w—H51···O6 ⁱⁱ	0.84	2.06	2.874 (3)	163
O5w—H52···O1w	0.84	2.02	2.831 (3)	160

Hydrogen-bond geometry (Å, °)

Symmetry codes: (ii) -x+1/2, -y+1, z-1/2; (iii) x-1/2, -y+3/2, -z+2; (v) -x-1/2, -y+1, z-1/2; (vi) -x, y-1/2, -z+3/2; (vii) x+1/2, -y+1/2, -z+2.