

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(Pyridin-3-ylamino)methyl]phenol

Jing Xu,^a Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 4 November 2011; accepted 7 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.137; data-to-parameter ratio = 16.4.

In the title compound, $C_{12}H_{12}N_2O$, the aromatic rings at either ends of the $-CH_2-NH-$ link are twisted by 68.79 (7)°. In the crystal, the hydroxy substituent is a hydrogen-bond donor to the N atom of the pyridine ring of an adjacent molecule, and the hydrogen bond generates a chain along the *b* axis; it is also a hydrogen-bond acceptor to the amino group of another adjacent molecule. The two hydrogen bonds lead to the formation of a layer structure.

Related literature

For the *N*-salicylidene-3-aminopyridine precursor, see: Csaszar (1990); Kaya & Guelel (2005); Robert *et al.* (2009). For a related structure, see: Xu *et al.* (2011).

Experimental

 $\begin{array}{l} Crystal \ data \\ C_{12}H_{12}N_2O \\ M_r = 200.24 \\ Monoclinic, \ P2_1/c \\ a = 5.8386 \ (11) \ {\rm \AA} \\ b = 13.399 \ (3) \ {\rm \AA} \\ c = 13.169 \ (3) \ {\rm \AA} \\ \beta = 90.519 \ (6)^\circ \end{array}$

 $V = 1030.1 \text{ (4) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.21 \times 0.12 \times 0.12 \text{ mm}$ organic compounds

Data collection

```
Rigaku R-AXIS RAPID IP
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\min} = 0.983, T_{\max} = 0.990
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.137$	
S = 1.08	
2358 reflections	
144 parameters	
2 restraints	

9845 measured reflections 2358 independent reflections 1879 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.26~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.18~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H10\cdots N2^{i}$ $N1-H1n\cdots O1^{ii}$	0.86(1) 0.88(1)	1.80 (1) 2.38 (1)	2.6568 (16) 3.2296 (17)	175 (2) 163 (1)
C	1 1	1. (2) 1		

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalClear* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023), Heilongjiang University (Hdtd2010–04) and the University of Malaya.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5384).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Csaszar, J. (1990). Acta Chim. Hung. 127, 277-286.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kaya, I. & Guelel, R. (2005). Int. J. Polym. Anal. Charact. 10, 109-122.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas,
- USA. Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). *Chem. Eur. J.* **15**, 4327–4342.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, 03258.

supporting information

Acta Cryst. (2011). E67, o3259 [https://doi.org/10.1107/S160053681104685X]

2-[(Pyridin-3-ylamino)methyl]phenol

Jing Xu, Shan Gao and Seik Weng Ng

S1. Comment

There are numerous studies on the Schiff bases derived by condensing salicyldehyde and an aromatic amine. In this study, the azomethine double-bond of *N*-salicylidene-3-aminopyridine (Csaszar, 1990; Kaya & Guelel, 2005; Robert *et al.* 2009) is reduced by sodium borohydride to yield the title secondary amine (Scheme I). The two aromatic rings at either ends of the $-CH_2-NH-$ link of $C_{12}H_{12}N_2O$ are twisted by 68.79 (7)° (Fig. 1). The hydroxy substituent is hydrogen-bond donor to the N atom of the pyridyl ring of an adjacent molecule, and the hydrogen bond generates a linear chain along the *b*-axis. It is also hydrogen-bond acceptor to the amino group of another adjacent molecule; the two hydrogen bonds lead to the formation of a layer structure (Table 1).

S2. Experimental

A solution of 3-aminopyridine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Colorless crystals were obtained by recrystallization from methanol; yield 80%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å and O–H 0.84±0.01 Å; their temperature factors were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{12}H_{12}N_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-[(Pyridin-3-ylamino)methyl]phenol

Crystal data

C₁₂H₁₂N₂O $M_r = 200.24$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.8386 (11) Å b = 13.399 (3) Å c = 13.169 (3) Å $\beta = 90.519 (6)^{\circ}$ $V = 1030.1 (4) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.983, T_{\max} = 0.990$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.137$ S = 1.08 F(000) = 424 $D_x = 1.291 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5377 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KPrism, colorless $0.21 \times 0.12 \times 0.12 \text{ mm}$

9845 measured reflections 2358 independent reflections 1879 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -7 \rightarrow 7$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 16$

2358 reflections144 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement

$$\begin{split} &w = 1/[\sigma^2(F_o^{\ 2}) + (0.0752P)^2 + 0.0952P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.001 \\ & \Delta\rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3} \\ & \Delta\rho_{\text{min}} = -0.18 \text{ e } \text{\AA}^{-3} \end{split}$$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O1	1.17862 (17)	0.30493 (7)	0.38420 (7)	0.0517 (3)
H1O	1.249 (3)	0.2486 (9)	0.3790 (12)	0.073 (5)*
N1	0.6391 (2)	0.42170 (9)	0.32008 (9)	0.0512 (3)
H1N	0.534 (2)	0.3813 (10)	0.3444 (11)	0.059 (4)*
N2	0.61025 (18)	0.63154 (8)	0.14353 (8)	0.0493 (3)
C1	1.0374 (2)	0.30367 (9)	0.46539 (9)	0.0396 (3)
C2	1.0673 (2)	0.23629 (11)	0.54458 (10)	0.0499 (3)
H2	1.1882	0.1911	0.5429	0.060*
C3	0.9202 (3)	0.23577 (13)	0.62516 (10)	0.0591 (4)
Н3	0.9407	0.1897	0.6773	0.071*
C4	0.7428 (3)	0.30289 (14)	0.62928 (11)	0.0669 (5)
H4	0.6418	0.3022	0.6835	0.080*
C5	0.7166 (3)	0.37110 (12)	0.55208 (11)	0.0597 (4)
Н5	0.5982	0.4173	0.5557	0.072*
C6	0.8605 (2)	0.37334 (9)	0.46929 (9)	0.0431 (3)
C7	0.8270 (2)	0.44915 (10)	0.38681 (11)	0.0484 (3)
H7A	0.7961	0.5138	0.4169	0.058*
H7B	0.9664	0.4547	0.3477	0.058*
C8	0.5640 (2)	0.48446 (9)	0.24474 (9)	0.0416 (3)
C9	0.6833 (2)	0.57012 (10)	0.21638 (10)	0.0449 (3)
H9	0.8200	0.5850	0.2499	0.054*
C10	0.4163 (2)	0.61131 (11)	0.09441 (11)	0.0545 (4)
H10	0.3659	0.6543	0.0434	0.065*
C11	0.2877 (2)	0.52808 (12)	0.11717 (11)	0.0586 (4)
H11	0.1522	0.5152	0.0819	0.070*
C12	0.3611 (2)	0.46471 (11)	0.19197 (10)	0.0528 (4)
H12	0.2755	0.4083	0.2077	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0596 (6)	0.0440 (5)	0.0517 (6)	0.0094 (4)	0.0165 (5)	0.0042 (4)
N1	0.0588 (7)	0.0428 (6)	0.0519 (6)	-0.0104 (5)	-0.0083(5)	0.0094 (5)
N2	0.0515 (6)	0.0442 (6)	0.0522 (6)	-0.0019 (5)	0.0093 (5)	0.0090 (5)
C1	0.0424 (6)	0.0385 (6)	0.0380 (6)	0.0015 (5)	0.0016 (5)	-0.0046 (5)
C2	0.0494 (7)	0.0527 (8)	0.0476 (7)	0.0131 (6)	0.0022 (6)	0.0037 (6)
C3	0.0645 (9)	0.0721 (10)	0.0408 (7)	0.0146 (7)	0.0030 (6)	0.0107 (6)
C4	0.0663 (9)	0.0880 (12)	0.0467 (8)	0.0213 (8)	0.0168 (7)	0.0033 (7)
C5	0.0570 (8)	0.0670 (10)	0.0551 (8)	0.0241 (7)	0.0097 (7)	-0.0013 (7)

supporting information

~ -						0.0040(5)
C6	0.0448 (6)	0.0413 (7)	0.0432 (6)	0.0053 (5)	-0.0032 (5)	-0.0040(5)
C7	0.0465 (7)	0.0396 (7)	0.0589 (8)	0.0025 (5)	-0.0045 (6)	0.0019 (6)
C8	0.0473 (6)	0.0377 (6)	0.0400 (6)	-0.0011 (5)	0.0038 (5)	-0.0009 (5)
C9	0.0403 (6)	0.0434 (7)	0.0511 (7)	-0.0022 (5)	0.0045 (5)	0.0029 (5)
C10	0.0592 (8)	0.0578 (8)	0.0465 (7)	0.0034 (6)	0.0008 (6)	0.0120 (6)
C11	0.0558 (8)	0.0701 (10)	0.0498 (8)	-0.0095 (7)	-0.0094 (6)	0.0057 (7)
C12	0.0584 (8)	0.0518 (8)	0.0481 (7)	-0.0169 (6)	-0.0026 (6)	0.0037 (6)

Geometric parameters (Å, °)

01—C1	1.3562 (15)	C4—H4	0.9300
01—H10	0.86(1)	C5—C6	1.383 (2)
N1-C8	1.3695 (16)	С5—Н5	0.9300
N1—C7	1.4472 (17)	C6—C7	1.4986 (17)
N1—H1N	0.88 (1)	С7—Н7А	0.9700
N2-C10	1.3269 (18)	С7—Н7В	0.9700
N2-C9	1.3312 (16)	C8—C12	1.3936 (18)
C1—C2	1.3892 (18)	C8—C9	1.3953 (18)
C1—C6	1.3933 (17)	С9—Н9	0.9300
C2—C3	1.371 (2)	C10-C11	1.379 (2)
C2—H2	0.9300	C10—H10	0.9300
C3—C4	1.373 (2)	C11—C12	1.366 (2)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.374 (2)	C12—H12	0.9300
C1 01 U10	110.2 (12)	$C_1 C_1 C_7$	121 20 (12)
CI = 0I = HIO	110.5(12)	CI = CO = C/	121.29 (12)
$C_{0} N_{1} U_{1}$	121.31(11)	NI = C7 = U7A	111.17 (11)
C8—NI—HIN	114.9 (10)	NI - C / - H / A	109.4
C/—NI—HIN	117.6 (10)	$C_0 - C_1 - H_1 A$	109.4
C10-N2-C9	119.43 (11)	NI - C - H/B	109.4
01-C1-C2	121.78 (11)		109.4
OI - CI - C6	118.47 (11)	H/A - C/ - H/B	108.0
C2—C1—C6	119.73 (12)	NI	120.65 (11)
C3—C2—C1	120.58 (12)	N1	122.81 (11)
C3—C2—H2	119.7	C12—C8—C9	116.54 (12)
C1—C2—H2	119.7	N2—C9—C8	122.96 (12)
C2—C3—C4	120.35 (13)	N2—C9—H9	118.5
С2—С3—Н3	119.8	С8—С9—Н9	118.5
С4—С3—Н3	119.8	N2-C10-C11	121.55 (12)
C3—C4—C5	119.01 (14)	N2—C10—H10	119.2
C3—C4—H4	120.5	C11—C10—H10	119.2
C5—C4—H4	120.5	C12-C11-C10	119.44 (13)
C4—C5—C6	122.24 (13)	C12—C11—H11	120.3
С4—С5—Н5	118.9	C10-C11-H11	120.3
С6—С5—Н5	118.9	C11—C12—C8	120.07 (12)
C5-C6-C1	118.05 (12)	C11—C12—H12	120.0
С5—С6—С7	120.66 (11)	C8—C12—H12	120.0

O1—C1—C2—C3	-179.14 (13)	C5—C6—C7—N1	-77.50 (16)
C6—C1—C2—C3	1.9 (2)	C1-C6-C7-N1	102.91 (14)
C1—C2—C3—C4	-0.9 (2)	C7—N1—C8—C12	-169.54 (13)
C2—C3—C4—C5	-0.7 (3)	C7—N1—C8—C9	10.6 (2)
C3—C4—C5—C6	1.2 (3)	C10—N2—C9—C8	-0.4 (2)
C4—C5—C6—C1	-0.2 (2)	N1-C8-C9-N2	-179.66 (12)
C4—C5—C6—C7	-179.76 (14)	C12—C8—C9—N2	0.5 (2)
O1—C1—C6—C5	179.63 (12)	C9—N2—C10—C11	0.2 (2)
C2-C1-C6-C5	-1.41 (19)	N2-C10-C11-C12	0.0 (2)
O1—C1—C6—C7	-0.77 (17)	C10-C11-C12-C8	0.1 (2)
C2—C1—C6—C7	178.19 (11)	N1-C8-C12-C11	179.81 (14)
C8—N1—C7—C6	174.01 (12)	C9—C8—C12—C11	-0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H10···N2 ⁱ	0.86 (1)	1.80 (1)	2.6568 (16)	175 (2)
N1—H1n···O1 ⁱⁱ	0.88 (1)	2.38 (1)	3.2296 (17)	163 (1)

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) x-1, y, z.