

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,8-Dibromo-15-cyano-2,11-dithia[3.3]paracyclophane

Hua Zhang* and Wenju Liu

Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zhhua2011@126.com

Received 12 October 2011; accepted 15 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.059; wR factor = 0.152; data-to-parameter ratio = 16.2.

In the title compound [systematic name: 13,15-dibromo-3,10dithiatricyclo[10.2.2.2^{5,8}]octadeca-1(14),5,7,12,15,17-hexaene-6-carbonitrile], C₁₇H₁₃Br₂NS₂, the mean planes of the benzene rings are almost parallel, making a dihedral angle of $1.1 (2)^{\circ}$, and the distance between the ring centroids is 3.294 (3) Å, which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicating a strong $\pi - \pi$ interaction. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Related literature

For the preparation of the title compound, see: Wang et al. (2006). For related structures, see: Clément et al. (2009); Jin & Lu (2010).

Experimental

Crystal data

$C_{17}H_{13}Br_2NS_2$	$\gamma = 76.275 \ (2)^{\circ}$
$M_r = 455.22$	V = 834.4 (2) Å ³
Triclinic, P1	Z = 2
a = 6.9433 (11) Å	Mo $K\alpha$ radiation
b = 9.0591 (14) Å	$\mu = 5.10 \text{ mm}^{-1}$
c = 13.888 (2) Å	$T = 298 { m K}$
$\alpha = 79.825 \ (2)^{\circ}$	$0.2 \times 0.2 \times 0.2$ mm
$\beta = 85.047 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	3395 independent reflections
diffractometer	2589 reflections with $I > 2\sigma(I)$
5570 measured reflections	$R_{\rm int} = 0.098$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	209 parameters
$wR(F^2) = 0.152$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 1.39 \text{ e } \text{\AA}^{-3}$
3395 reflections	$\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Dr Xiang-Gao Meng for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2128).

References

- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clément, S., Guyard, L., Knorr, M., Däschlein, C. & Strohmann, C. (2009). Acta Cryst. E65, 0528.
- Jin, G. & Lu, Y. (2010). Acta Cryst. E66, o2144.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, W., Xu, J., Zhang, X. & Lai, Y. H. (2006). Macromolecules, 39, 7277-7285

supporting information

Acta Cryst. (2011). E67, o3413 [https://doi.org/10.1107/S1600536811048458]

5,8-Dibromo-15-cyano-2,11-dithia[3.3]paracyclophane

Hua Zhang and Wenju Liu

S1. Comment

The benzene dimer of [2,2]paracyclophane is know to play a significant role in chiral catalysis, molecular electronics, and organic solar cells. However, the [3,3]paracyclophane building blocks, which are synthetically more accessible, have received less attention (Clément *et al.*, 2009; Jin & Lu, 2010). Here we report the crystal structure of the title compound, a novel dithia[3,3]paracyclophane bearing cyano and bromido groups.

In the structure of the title compound, $C_{17}H_{13}Br_2N_1S_2$, the mean planes of the benzene rings are almost parallel with a dihedral angle of 1.1 (2)° and the distance between the centroids of the rings is 3.294 (3) Å, values obtained by the program *PLATON* (Spek, 2009), which is shorter than the normal packing distance of aromatic rings (about 3.4 Å), indicates a strong π - π interaction. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

S2. Experimental

A solution with equimolar amounts of 2,5-dibromo-1,4-bis(mercaptomethyl)benzene (3.26 g, 10 mmol) and 1,4-dibromomethyl-2-cyanobenzene (2.89, 10 mmol) in degassed THF (500 mL) was added dropwise under N₂ over 12 hours to a refluxing solution of potassium carbonate (6.9 g, 50 mmol) in EtOH (1.5*L*). After additional 2 hours at the reflux temperature (473 K), the mixture was cooled down and the solvent was removed. The resulting residue was treated with CH_2Cl_2 (500 mL) and water (500 mL). The organic phase was separated, and the aqueous phase extracted with CH_2Cl_2 (three times). The combined organic layers were dried over Na₂SO₄, then the solvent was removed, and the resulting solid was chromatographed on silica gel using CH_2Cl_2 /petroleum ether (1:1, *v*/*v*) as eluent. The product was further purified by recrystallization from toluene (Wang *et al.*, 2006).

S3. Refinement

All H atoms were positioned with idealized geometry using a riding model, with C—H = 0.93Å for aromatic H atoms, with C—H = 0.97 Å for methylene H atoms, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The S atom of one bridging chain is disorderd over two positions with site occupancies of 0.605 (4) and 0.395 (4) for the major and minor components, respectively.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

13,15-dibromo-3,10-dithiatricyclo[10.2.2.2^{5,8}]octadeca- 1(14),5,7,12,15,17-hexaene-6-carbonitrile

Crystal data

$C_{17}H_{13}Br_2NS_2$	F(000) = 448
$M_r = 455.22$	$D_{\rm x} = 1.812 {\rm ~Mg~m^{-3}}$
Triclinic, $P\overline{1}$	$D_{\rm m} = 1.812 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	$D_{\rm m}$ measured by not measured
a = 6.9433 (11) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.0591 (14) Å	Cell parameters from 2268 reflections
c = 13.888 (2) Å	$\theta = 2.6 - 26.9^{\circ}$
$\alpha = 79.825 \ (2)^{\circ}$	$\mu = 5.10 \text{ mm}^{-1}$
$\beta = 85.047 \ (3)^{\circ}$	T = 298 K
$\gamma = 76.275 \ (2)^{\circ}$	Block, colourless
V = 834.4 (2) Å ³	$0.2 \times 0.2 \times 0.2 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans 5570 measured reflections 3395 independent reflections	2589 reflections with $I > 2\sigma(I)$ $R_{int} = 0.098$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 11$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.152$	neighbouring sites
S = 0.99	H-atom parameters constrained
3395 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0859P)^2]$
209 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.39$ e Å ⁻³
direct methods	$\Delta ho_{ m min} = -0.79$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.19006 (10)	0.46219 (7)	0.63111 (4)	0.0629 (2)	
Br2	0.19842 (8)	-0.21517 (6)	0.88825 (4)	0.0464 (2)	
C1	0.1424 (6)	0.2546 (5)	0.8092 (3)	0.0361 (10)	
C2	0.1398 (7)	0.1089 (6)	0.8587 (3)	0.0356 (10)	
H2	0.0889	0.0972	0.9230	0.043*	
C3	0.2114 (7)	-0.0199 (5)	0.8146 (3)	0.0339 (10)	
C4	0.2923 (7)	-0.0096 (6)	0.7187 (3)	0.0369 (11)	
C5	0.2780 (7)	0.1387 (6)	0.6673 (4)	0.0415 (11)	
Н5	0.3207	0.1511	0.6016	0.050*	
C6	0.2027 (7)	0.2682 (6)	0.7104 (3)	0.0368 (10)	
C7	0.0888 (8)	0.3899 (6)	0.8638 (4)	0.0453 (12)	
H7A	-0.0409	0.3925	0.8965	0.054*	
H7B	0.0795	0.4841	0.8170	0.054*	
C8	0.4903 (8)	0.4041 (6)	0.8808 (4)	0.0415 (11)	
H8A	0.4578	0.4927	0.8296	0.050*	
H8B	0.5828	0.4251	0.9223	0.050*	
C9	0.5938 (6)	0.2654 (5)	0.8335 (3)	0.0348 (10)	

supporting information

C10	0.6660 (7)	0.2871 (6)	0.7371 (3)	0.0379 (11)	
H10	0.6646	0.3858	0.7037	0.045*	
C11	0.7408 (7)	0.1592 (6)	0.6908 (3)	0.0356 (10)	
C12	0.7430 (7)	0.0109 (6)	0.7372 (3)	0.0364 (10)	
C13	0.6858 (7)	-0.0087 (6)	0.8371 (3)	0.0373 (10)	
H13	0.6966	-0.1074	0.8724	0.045*	
C14	0.6140 (7)	0.1168 (6)	0.8829 (3)	0.0364 (10)	
H14	0.5777	0.1013	0.9493	0.044*	
C15	0.8063 (8)	0.1878 (7)	0.5885 (4)	0.0468 (12)	
C16	0.7960 (8)	-0.1264 (6)	0.6838 (4)	0.0482 (13)	
H16A	0.9294	-0.1836	0.6994	0.058*	0.395 (4)
H16B	0.7961	-0.0895	0.6138	0.058*	0.395 (4)
H16C	0.8168	-0.2192	0.7323	0.058*	0.605 (4)
H16D	0.9207	-0.1252	0.6467	0.058*	0.605 (4)
C17	0.3949 (8)	-0.1478 (7)	0.6717 (4)	0.0516 (14)	
H17A	0.4111	-0.1128	0.6019	0.062*	0.395 (4)
H17B	0.3062	-0.2178	0.6798	0.062*	0.395 (4)
H17C	0.3017	-0.1686	0.6305	0.062*	0.605 (4)
H17D	0.4250	-0.2359	0.7234	0.062*	0.605 (4)
N1	0.8583 (9)	0.2087 (7)	0.5092 (4)	0.0690 (15)	
S1	0.26512 (19)	0.38462 (15)	0.95384 (9)	0.0416 (3)	
S2	0.6293 (3)	-0.2551 (2)	0.71362 (17)	0.0475 (7)	0.605 (4)
S2′	0.6129 (6)	-0.1365 (5)	0.6023 (2)	0.0512 (11)	0.395 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.0747 (5)	0.0392 (4)	0.0662 (4)	-0.0073 (3)	-0.0055 (3)	0.0078 (3)
Br2	0.0501 (3)	0.0295 (3)	0.0566 (3)	-0.0066(2)	0.0044 (2)	-0.0060(2)
C1	0.025 (2)	0.026 (2)	0.056 (3)	0.0008 (18)	-0.0029 (19)	-0.012 (2)
C2	0.030 (2)	0.035 (3)	0.043 (2)	-0.006(2)	0.0038 (18)	-0.012 (2)
C3	0.030 (2)	0.026 (2)	0.044 (2)	-0.0042 (19)	0.0019 (18)	-0.007(2)
C4	0.028 (2)	0.039 (3)	0.046 (3)	-0.007(2)	0.0014 (19)	-0.016 (2)
C5	0.035 (3)	0.048 (3)	0.041 (3)	-0.007(2)	-0.002 (2)	-0.006(2)
C6	0.031 (2)	0.030 (2)	0.048 (3)	-0.0033 (19)	-0.0022 (19)	-0.006 (2)
C7	0.040 (3)	0.033 (3)	0.060 (3)	0.001 (2)	0.002 (2)	-0.016 (2)
C8	0.039 (3)	0.029 (3)	0.056 (3)	-0.005 (2)	0.008 (2)	-0.016 (2)
C9	0.027 (2)	0.031 (3)	0.046 (3)	-0.0044 (19)	0.0043 (18)	-0.012 (2)
C10	0.035 (2)	0.031 (3)	0.048 (3)	-0.008(2)	0.001 (2)	-0.007 (2)
C11	0.027 (2)	0.039 (3)	0.039 (2)	-0.006(2)	0.0017 (18)	-0.008(2)
C12	0.026 (2)	0.038 (3)	0.044 (3)	-0.002 (2)	0.0026 (18)	-0.012 (2)
C13	0.032 (2)	0.031 (3)	0.044 (3)	0.000 (2)	0.0033 (19)	-0.005 (2)
C14	0.032 (2)	0.037 (3)	0.038 (2)	-0.006 (2)	0.0046 (18)	-0.006 (2)
C15	0.047 (3)	0.047 (3)	0.044 (3)	-0.005 (3)	0.005 (2)	-0.012 (2)
C16	0.039 (3)	0.040 (3)	0.066 (3)	-0.005 (2)	0.016 (2)	-0.023 (3)
C17	0.050 (3)	0.043 (3)	0.066 (3)	-0.009 (3)	0.007 (3)	-0.027 (3)
N1	0.088 (4)	0.063 (4)	0.055 (3)	-0.021 (3)	0.014 (3)	-0.009 (3)
S 1	0.0478 (7)	0.0338 (7)	0.0433 (7)	-0.0065 (6)	0.0111 (5)	-0.0165 (5)

supporting information

S2	0.0434 (12)	0.0253 (11)	0.0718 (15)	-0.0028 (9)	0.0121 (10)	-0.0163 (10)
S2′	0.056 (2)	0.058 (2)	0.0412 (18)	-0.0094 (18)	0.0122 (15)	-0.0259 (16)

Geometric parameters (Å, °)

- · · · ·	*		
Br1—C6	1.889 (5)	C11—C12	1.381 (7)
Br2—C3	1.899 (5)	C11—C15	1.451 (7)
C1—C2	1.379 (6)	C12—C13	1.401 (7)
C1—C6	1.393 (7)	C12—C16	1.515 (7)
C1—C7	1.510 (7)	C13—C14	1.370 (7)
C2—C3	1.381 (7)	C13—H13	0.9300
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.397 (6)	C15—N1	1.126 (7)
C4—C5	1.391 (7)	C16—S2′	1.802 (7)
C4—C17	1.512 (7)	C16—S2	1.805 (5)
C5—C6	1.383 (7)	C16—H16A	0.9700
С5—Н5	0.9300	C16—H16B	0.9700
C7—S1	1.811 (5)	C16—H16C	0.9700
С7—Н7А	0.9700	C16—H16D	0.9700
С7—Н7В	0.9700	C17—S2′	1.737 (6)
С8—С9	1.519 (7)	C17—S2	1.774 (6)
C8—S1	1.816 (5)	C17—H17A	0.9700
C8—H8A	0.9700	C17—H17B	0.9700
C8—H8B	0.9700	C17—H17C	0.9700
C9—C14	1.380 (7)	C17—H17D	0.9700
C9—C10	1.385 (6)	S2—H16C	1.4691
C10-C11	1.396 (7)	S2—H17D	1.3851
C10—H10	0.9300		
C2-C1-C6	117.4 (4)	C12—C16—S2′	115.1 (4)
C2—C1—C7	119.6 (4)	C12—C16—S2	113.9 (4)
C6—C1—C7	123.0 (4)	S2'—C16—S2	56.8 (2)
C1—C2—C3	121.3 (4)	C12—C16—H16A	108.8
С1—С2—Н2	119.3	S2'—C16—H16A	135.9
С3—С2—Н2	119.3	S2—C16—H16A	108.8
C2—C3—C4	121.9 (4)	C12—C16—H16B	108.8
C2—C3—Br2	118.2 (3)	S2'—C16—H16B	54.2
C4—C3—Br2	119.9 (4)	S2—C16—H16B	108.8
C5—C4—C3	115.8 (4)	H16A—C16—H16B	107.7
C5—C4—C17	120.5 (4)	C12—C16—H16C	108.1
C3—C4—C17	123.7 (5)	S2'—C16—H16C	108.4
C6—C5—C4	122.3 (4)	S2—C16—H16C	54.4
С6—С5—Н5	118.8	H16A—C16—H16C	59.6
C4—C5—H5	118.8	H16B—C16—H16C	143.1
C5—C6—C1	120.6 (4)	C12—C16—H16D	108.8
C5—C6—Br1	117.6 (4)	S2'—C16—H16D	108.7
C1—C6—Br1	121.7 (4)	S2—C16—H16D	137.0
C1—C7—S1	113.7 (4)	H16A—C16—H16D	50.1

С1—С7—Н7А	108.8	H16B—C16—H16D	60.1
S1—C7—H7A	108.8	H16C—C16—H16D	107.4
C1—C7—H7B	108.8	C4—C17—S2′	117.2 (4)
S1—C7—H7B	108.8	C4—C17—S2	118.4 (4)
H7A—C7—H7B	107.7	S2′—C17—S2	58.5 (2)
C9—C8—S1	115.4 (3)	C4—C17—H17A	107.7
С9—С8—Н8А	108.4	S2'—C17—H17A	51.6
S1—C8—H8A	108.4	S2—C17—H17A	107.7
С9—С8—Н8В	108.4	C4—C17—H17B	107.7
S1—C8—H8B	108.4	S2'—C17—H17B	134.1
H8A—C8—H8B	107.5	S2—C17—H17B	107.7
C14-C9-C10	118.5 (4)	H17A—C17—H17B	107.1
$C_{14} - C_{9} - C_{8}$	121.9 (4)	C4-C17-H17C	108.2
C10-C9-C8	1196(4)	S2'-C17-H17C	108.3
C9-C10-C11	119.2 (4)	S2	132.5
C9-C10-H10	120.4	H17A - C17 - H17C	63 7
C11_C10_H10	120.4	H17B - C17 - H17C	45.3
C_{12} C_{11} C_{10}	120.4 122.2(4)	C4-C17-H17D	107.8
C_{12} C_{11} C_{15}	122.2(4) 120.3(5)	S2'C17H17D	107.0
C10-C11-C15	1173(4)	S2H17D	50.9
$C_{11} - C_{12} - C_{13}$	117.3(4) 117.2(4)	$H_{17} = C_{17} = H_{17} = H_{17}$	144 4
$C_{11} = C_{12} = C_{13}$	117.2 (+) 122.7 (4)	H17B C17 H17D	64 1
$C_{12} = C_{12} = C_{16}$	122.7(4) 120.1(4)	$H_{17} = C_{17} = H_{17}$	107.1
$C_{13} = C_{12} = C_{10}$	120.1(4) 120.3(4)	1117C - C17 - 1117D	107.1 103.7(2)
C14 - C13 - C12	120.3 (4)	$C_{17} = C_{16}$	105.7(2) 106.1(2)
$C_{14} = C_{13} = H_{13}$	119.0	C17 = S2 = C10	100.1 (5)
$C_{12} = C_{13} = H_{13}$	119.0	$C_{1} = S_{2} = H_{10}C_{10}$	133.9
$C_{13} = C_{14} = C_{9}$	122.0 (4)	116-52-117D	152.0
C_{13} C_{14} H_{14}	119.0	H10C = S2 = H1/D	107.9 (2)
C9—C14—H14	119.0	C17 - S2 - C16	107.8 (3)
NI-CIS-CII	1/9.4 (7)		
C6—C1—C2—C3	5.8 (7)	C10-C11-C12-C16	171.0 (5)
C7—C1—C2—C3	-171.8 (4)	C15-C11-C12-C16	-5.2 (7)
C1—C2—C3—C4	0.9 (7)	C11—C12—C13—C14	5.8 (7)
C1—C2—C3—Br2	-179.2 (3)	C16—C12—C13—C14	-171.8 (5)
C2—C3—C4—C5	-6.2 (7)	C12—C13—C14—C9	0.5 (7)
Br2—C3—C4—C5	174.0 (3)	C10-C9-C14-C13	-6.2 (7)
C2—C3—C4—C17	172.2 (5)	C8—C9—C14—C13	172.1 (5)
Br2—C3—C4—C17	-7.6 (6)	C11—C12—C16—S2'	-71.3 (6)
C3—C4—C5—C6	4.9 (7)	C13—C12—C16—S2'	106.1 (5)
C17—C4—C5—C6	-173.7 (5)	C11—C12—C16—S2	-134.3 (4)
C4—C5—C6—C1	1.8 (7)	C13—C12—C16—S2	43.1 (6)
C4—C5—C6—Br1	-179.4 (3)	C5—C4—C17—S2′	41.4 (7)
C2—C1—C6—C5	-7.2 (7)	C3—C4—C17—S2′	-137.1 (5)
C7—C1—C6—C5	170.4 (5)	C5—C4—C17—S2	108.4 (5)
C2C1C6Br1	174.1 (3)	C3—C4—C17—S2	-70.0 (6)
C7—C1—C6—Br1	-8.4 (6)	C1—C7—S1—C8	65.3 (4)
C2—C1—C7—S1	66.7 (5)	C9—C8—S1—C7	-70.7 (4)

C6—C1—C7—S1	-110.8 (5)	C4—C17—S2—C16	-64.2 (5)
S1—C8—C9—C14	-41.7 (6)	S2'—C17—S2—C16	42.0 (3)
S1-C8-C9-C10	136.6 (4)	C12—C16—S2—C17	64.3 (5)
C14—C9—C10—C11	5.4 (7)	S2'-C16-S2-C17	-41.1 (3)
C8—C9—C10—C11	-172.9 (4)	C4—C17—S2′—C16	65.6 (5)
C9—C10—C11—C12	0.9 (7)	S2—C17—S2′—C16	-42.6 (3)
C9—C10—C11—C15	177.2 (4)	C12—C16—S2′—C17	-60.5 (5)
C10-C11-C12-C13	-6.5 (7)	S2—C16—S2′—C17	42.6 (3)
C15—C11—C12—C13	177.3 (4)		