metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[1,5-Bis(2-methoxyphenyl)thiocarbazonato- $\kappa^2 N^5$,S]phenylmercury(II)

Karel von Eschwege,^a* Fabian Muller^a and Alfred Muller^b*

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa

Correspondence e-mail: veschw_kg.sci@ufs.ac.za, mullera@uj.ac.za

Received 16 November 2011; accepted 17 November 2011

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.007 Å; R factor = 0.030; wR factor = 0.076; data-to-parameter ratio = 19.3.

The title compound, $[Hg(C_6H_5)(C_{15}H_{15}N_4O_2S)]$, shows the metal-phenyl moiety coordinated out of plane with the thiocarbazonate ligand by 43.84 (6)°. Important geometrical parameters include Hg-S = 2.3653 (10) Å, Hg-C = 2.058 (4) Å and S-Hg-C = 179.06 (11)°. There is a weak coordination of an N atom of the ligand to Hg [Hg-N = 2.725 (3) Å]. S···Hg interactions[3.2928 (10) Å] form chains along [001], stabilizing the crystal structure.

Related literature

For general background to thiocarbazonatomercury(II) complexes, see: Irving *et al.* (1949); Webb *et al.* (1950); Hutton *et al.* (1980); Von Eschwege *et al.* (2011); Schwoerer *et al.* (2011). For synthetic procedures relating to the title compound, see: Mirkhalaf *et al.* (1998); Von Eschwege *et al.* (2008).

Experimental

Crystal data [Hg(C₆H₅)(C₁₅H₁₅N₄O₂S)]

 $M_r = 593.06$

Monoclinic, $P2_1/c$ a = 15.2113 (16) Å b = 18.2730 (18) Å c = 7.4649 (8) Å $\beta = 90.106$ (2)° V = 2074.9 (4) Å³

Data collection

Bruker APEX DUO 4K CCD	17400 measured reflections
diffractometer	5107 independent reflections
Absorption correction: multi-scan	4107 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.042$
$T_{\min} = 0.542, \ T_{\max} = 0.746$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.030 & 264 \text{ parameters} \\ wR(F^2) = 0.076 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 1.16 \text{ e } \text{\AA}^{-3} \\ 5107 \text{ reflections} & \Delta\rho_{\min} = -0.89 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.26 \times 0.19 \times 0.01 \text{ mm}$

 $\mu = 7.54 \text{ mm}^{-1}$

T = 299 K

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Research funds of the University of Johannesburg and the National Research Foundation of South Africa are gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2138).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hutton, A. T., Irving, H. M. N. H., Nassimbeni, L. R. & Gafner, G. (1980). Acta Cryst. B36, 2064–2070.
- Irving, H., Andrew, G. & Risdon, E. J. (1949). J. Chem. Soc. pp. 541-547.
- Mirkhalaf, F., Whittaker, D. & Schiffrin, D. J. (1998). J. Electroanal. Chem. 452, 203–213.
- Schwoerer, H., Von Eschwege, K. G., Bosman, G., Krok, P. & Conradie, J. (2011). *ChemPhysChem*, **12**, 2653–2658.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Von Eschwege, K. G., Conradie, J. & Swarts, J. C. (2008). J. Phys. Chem. 112, 2211–2218.
- Von Eschwege, K. G., van As, L. & Swarts, J. C. (2011). Electrochim. Acta, 56, 10064–10068.
- Webb, J. L. A., Bhatia, I. S., Corwin, A. H. & Sharp, A. G. (1950). J. Am. Chem. Soc. 72, 91–95.

supporting information

Acta Cryst. (2011). E**67**, m1804 [https://doi.org/10.1107/S1600536811049099]

[1,5-Bis(2-methoxyphenyl)thiocarbazonato- $\kappa^2 N^1$,S]phenylmercury(II)

Karel von Eschwege, Fabian Muller and Alfred Muller

S1. Comment

Irving *et al.* (1949) and Webb *et al.* (1950) independently reported photochromicity of the thiocarbazonatomercury(II) complex. The single-crystal X-ray structure of the phenyl mercury thiocarbazonate complex was established by Hutton *et al.* (1980) and redox properties by Von Eschwege *et al.* (2011), while femtosecond laser spectroscopy resolved the short-lived time constants of the photochromic reaction (Schwoerer *et al.*, 2011). For the purpose of investigating the influence of electron donating groups on the photochromic and redox reactions of thiocarbazonatophenylmercury(II) complexes a series of electronically altered dithizones were synthesized and for the first time complexed with mercury. Deep orange-red needle crystals of the *ortho*-methoxy derivative, suitable for X-ray crystallography, were isolated from a dichloromethane solution overlaid with ethanol.

The title compound (Fig. 1, Table 1) shows the metal-phenyl moiety coordinated out of plane to the (2-methoxyphenyl)-thiocarbazonate by 43.84 (6)°. The methoxy moieties are slightly twisted out of planarity with their respective phenyl rings [C12—C13—O1—C14 = 22.0 (7)° and C19—C20—O2—C21 = 16.1 (6)°]. Important geometrical parameters include Hg—S = 2.3653 (10) Å, Hg—C = 2.058 (4) Å, and \langle S—Hg—C = 179.06 (11)°. There is a weak coordination of a N-atom of the thiocarbazonate to Hg (Hg—N = 2.725 (3) Å). S…Hg interactions stabilizes the crystal packing (Fig. 2).

S2. Experimental

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The *ortho*-methoxy derivative of dithizone, (*o*-OCH₃PhNHN)₂CS, was prepared according to a procedure reported by Mirkhalaf *et al.* (1998). The synthesis and crystallization of the title compound was done according to a procedure earlier reported by Von Eschwege *et al.* (2008).

S3. Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.98 Å (methyl), 0.95 Å (aromatic) and 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$, except for the methyl where $U_{iso}(H) = 1.5U_{eq}(C)$ was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The highest residual electron density of 1.15 e.Å⁻³ is 0.81 Å from Hg1 representing no physical meaning.

View of the title compound indicating labeling and displacement ellipsoids (drawn at a 50% probability level).

Figure 2

Partial packing diagram of the title compound viewed along the b axis illustrating the Hg…S interactions stabilizing the crystal packing.

[1,5-Bis(2-methoxyphenyl)thiocarbazonato- $\kappa^2 N^5$,S]phenylmercury(II)

Crystal data

[Hg(C₆H₅)(C₁₅H₁₅N₄O₂S)] $M_r = 593.06$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.2113 (16) Å b = 18.2730 (18) Å c = 7.4649 (8) Å $\beta = 90.106$ (2)° V = 2074.9 (4) Å³ Z = 4

Data collection

Bruker APEX DUO 4K CCD	17400 measured reflections
diffractometer	5107 independent reflections
Graphite monochromator	4107 reflections with $I > 2\sigma(I)$
Detector resolution: 8.4 pixels mm ⁻¹	$R_{\rm int} = 0.042$
φ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 19$
(SADABS; Bruker, 2008)	$k = -24 \rightarrow 24$
$T_{\min} = 0.542, \ T_{\max} = 0.746$	$l = -9 \longrightarrow 9$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.036P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 60 s/frame. A total of 894 frames were collected with a frame width of 0.5° covering up to $\theta = 28.26^{\circ}$ with 99.2% completeness accomplished.

F(000) = 1144

 $\theta = 2.7 - 25.7^{\circ}$

 $\mu = 7.54 \text{ mm}^{-1}$ T = 299 K

Plate, brown

 $0.26 \times 0.19 \times 0.01$ mm

 $D_{\rm x} = 1.895 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5470 reflections

Analytical data: *M*.p. 212 - 213 °C; λ_{max} (dichloromethane) 505 nm; δ_{H} (300 MHz, CDCl₃) 3.68, 4.03 (6 H, 2 × s, 2 × CH₃), 6.57 - 7.89 (13 H, m, 2 × C₆H₄, 1 × C₆H₅), 9.75 (1*H*, s, 1 × NH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	y	Z	$U_{ m iso}*/U_{ m eq}$	
Hg1	0.757410 (11)	0.741409 (8)	0.89423 (2)	0.04159 (7)	
S1	0.63975 (7)	0.80179 (5)	1.03894 (13)	0.0396 (2)	
C1	0.8609 (3)	0.6905 (2)	0.7679 (5)	0.0400 (9)	
C2	0.8465 (3)	0.6229 (2)	0.6869 (6)	0.0517 (11)	
H2	0.7896	0.6043	0.6847	0.062*	
C3	0.9118 (4)	0.5830 (3)	0.6110 (7)	0.0672 (14)	
Н3	0.8999	0.5377	0.5596	0.081*	
C4	0.9962 (4)	0.6106 (3)	0.6112 (6)	0.0723 (16)	
H4	1.0415	0.584	0.5587	0.087*	
C5	1.0137 (3)	0.6760 (3)	0.6869 (6)	0.0696 (15)	
H5	1.0707	0.6944	0.686	0.084*	
C6	0.9459 (3)	0.7164 (3)	0.7672 (6)	0.0560 (11)	
H6	0.9586	0.7612	0.8204	0.067*	
C7	0.5620(3)	0.73001 (19)	1.0383 (5)	0.0373 (8)	
C8	0.3652 (3)	0.8205 (2)	0.9259 (5)	0.0431 (9)	
C9	0.2994 (3)	0.7691 (2)	0.9489 (7)	0.0542 (11)	
H9	0.3123	0.7235	0.998	0.065*	
C10	0.2150 (4)	0.7859 (3)	0.8986 (8)	0.0692 (14)	
H10	0.1706	0.7515	0.9132	0.083*	
C11	0.1954 (4)	0.8535 (3)	0.8264 (7)	0.0748 (16)	
H11	0.1383	0.8637	0.7897	0.09*	
C12	0.2595 (4)	0.9059 (3)	0.8082 (7)	0.0646 (13)	
H12	0.2457	0.9516	0.7611	0.078*	
C13	0.3446 (3)	0.8903 (2)	0.8604 (6)	0.0494 (10)	
C14	0.3947 (4)	1.0137 (2)	0.8541 (7)	0.0654 (14)	
H14A	0.3669	1.0265	0.7429	0.098*	
H14B	0.4483	1.041	0.867	0.098*	
H14C	0.356	1.0251	0.9517	0.098*	
C15	0.6791 (3)	0.5672 (2)	1.1234 (5)	0.0417 (9)	
C16	0.6159 (3)	0.5142 (2)	1.1353 (6)	0.0522 (11)	
H16	0.5572	0.5272	1.1201	0.063*	
C17	0.6369 (4)	0.4415 (2)	1.1693 (6)	0.0648 (14)	
H17	0.5931	0.406	1.1747	0.078*	
C18	0.7232 (4)	0.4233 (2)	1.1947 (7)	0.0683 (16)	
H18	0.7377	0.375	1.2202	0.082*	
C19	0.7891 (4)	0.4745 (2)	1.1834 (6)	0.0593 (13)	
H19	0.8474	0.4607	1.1998	0.071*	
C20	0.7683 (3)	0.5471 (2)	1.1474 (5)	0.0507 (11)	
C21	0.9188 (4)	0.5815 (3)	1.1217 (7)	0.0700 (15)	
H21A	0.9403	0.564	1.2348	0.105*	
H21B	0.9529	0.6231	1.0849	0.105*	
H21C	0.9239	0.5435	1.0336	0.105*	
N1	0.5817 (2)	0.65684 (16)	1.0733 (4)	0.0425 (8)	
N2	0.6628 (2)	0.64165 (16)	1.0849 (4)	0.0387 (7)	
N3	0.4523 (2)	0.80730 (17)	0.9711 (4)	0.0468 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H3A	0.4893	0.8429	0.9729	0.056*	
N4	0.4790 (3)	0.73963 (16)	1.0117 (5)	0.0447 (8)	
01	0.4138 (2)	0.93781 (16)	0.8552 (5)	0.0618 (9)	
O2	0.8295 (2)	0.60215 (16)	1.1388 (4)	0.0585 (8)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Hg1	0.03951 (11)	0.04266 (10)	0.04260 (10)	0.00361 (6)	0.00085 (7)	-0.00262 (6)
S1	0.0410 (6)	0.0322 (5)	0.0458 (5)	0.0036 (4)	-0.0026 (4)	-0.0019 (4)
C1	0.040 (2)	0.046 (2)	0.0335 (17)	0.0076 (17)	0.0009 (17)	0.0040 (15)
C2	0.048 (3)	0.048 (2)	0.059 (3)	0.001 (2)	0.001 (2)	-0.0059 (19)
C3	0.077 (4)	0.059 (3)	0.066 (3)	0.016 (3)	0.007 (3)	-0.011 (2)
C4	0.075 (4)	0.085 (4)	0.057 (3)	0.036 (3)	0.008 (3)	-0.002 (3)
C5	0.033 (3)	0.112 (5)	0.064 (3)	0.005 (3)	-0.002 (2)	0.002 (3)
C6	0.049 (3)	0.068 (3)	0.051 (2)	-0.004 (2)	-0.003 (2)	-0.002 (2)
C7	0.038 (2)	0.0358 (19)	0.0384 (19)	0.0047 (16)	-0.0027 (17)	0.0005 (14)
C8	0.037 (2)	0.048 (2)	0.045 (2)	0.0062 (18)	-0.0038 (18)	-0.0074 (16)
C9	0.046 (3)	0.053 (3)	0.064 (3)	0.002 (2)	-0.003 (2)	-0.013 (2)
C10	0.037 (3)	0.086 (4)	0.085 (4)	-0.003 (3)	0.001 (3)	-0.023 (3)
C11	0.042 (3)	0.098 (4)	0.084 (4)	0.019 (3)	-0.014 (3)	-0.023 (3)
C12	0.056 (3)	0.076 (3)	0.062 (3)	0.025 (3)	-0.005 (3)	-0.005 (3)
C13	0.043 (3)	0.052 (2)	0.053 (2)	0.015 (2)	-0.003 (2)	-0.0067 (19)
C14	0.083 (4)	0.045 (3)	0.068 (3)	0.014 (2)	-0.005 (3)	0.004 (2)
C15	0.059 (3)	0.0331 (19)	0.0331 (17)	0.0093 (18)	-0.0033 (18)	0.0028 (14)
C16	0.060 (3)	0.038 (2)	0.059 (2)	0.002 (2)	-0.004 (2)	0.0056 (18)
C17	0.085 (4)	0.037 (2)	0.072 (3)	-0.004 (2)	0.004 (3)	0.009 (2)
C18	0.113 (5)	0.031 (2)	0.060 (3)	0.013 (3)	-0.001 (3)	0.0060 (19)
C19	0.074 (4)	0.045 (2)	0.059 (3)	0.021 (2)	-0.008 (3)	0.004 (2)
C20	0.068 (3)	0.042 (2)	0.041 (2)	0.013 (2)	-0.007 (2)	0.0029 (16)
C21	0.059 (4)	0.081 (4)	0.070 (3)	0.017 (3)	-0.007 (3)	0.018 (3)
N1	0.050 (2)	0.0321 (16)	0.0458 (17)	0.0046 (15)	0.0015 (16)	0.0035 (13)
N2	0.044 (2)	0.0336 (16)	0.0382 (16)	0.0050 (14)	-0.0023 (15)	0.0028 (12)
N3	0.040 (2)	0.0373 (17)	0.063 (2)	0.0039 (15)	-0.0067 (17)	-0.0015 (15)
N4	0.043 (2)	0.0369 (17)	0.054 (2)	0.0047 (15)	-0.0005 (18)	0.0004 (14)
01	0.058 (2)	0.0399 (16)	0.088 (2)	0.0125 (15)	-0.0015 (18)	0.0012 (15)
O2	0.053 (2)	0.0465 (17)	0.076 (2)	0.0043 (15)	-0.0084 (17)	0.0095 (15)

Geometric parameters (Å, °)

Hg1—C1	2.058 (4)	C12—H12	0.93
Hg1—S1	2.3653 (10)	C13—O1	1.364 (5)
S1—C7	1.766 (4)	C14—O1	1.417 (5)
C1—C6	1.378 (6)	C14—H14A	0.96
C1—C2	1.392 (6)	C14—H14B	0.96
С2—С3	1.358 (6)	C14—H14C	0.96
С2—Н2	0.93	C15—C16	1.368 (6)
C3—C4	1.380 (8)	C15—N2	1.412 (4)

С3—Н3	0.93	C15—C20	1.417 (6)
C4—C5	1.348 (7)	C16—C17	1.389 (6)
C4—H4	0.93	C16—H16	0.93
C5—C6	1.403 (7)	C17—C18	1.368 (7)
С5—Н5	0.93	C17—H17	0.93
С6—Н6	0.93	C18—C19	1.374 (7)
C7—N4	1.289 (6)	C18—H18	0.93
C7—N1	1.395 (4)	C19—C20	1.389 (5)
C8—C9	1.384 (6)	C19—H19	0.93
C8—N3	1.387 (5)	C20—O2	1.372 (5)
C8-C13	1 401 (6)	C21—O2	1 416 (6)
C9-C10	1 372 (8)	C21—H21A	0.96
С9—Н9	0.93	C21—H21B	0.96
C10-C11	1 380 (8)	C21—H21C	0.96
C10H10	0.93	N1N2	1 267 (5)
C_{11} C_{12}	1 373 (8)	N3 N/	1.207(3)
C11_H11	0.03		0.86
	0.93	N3—H3A	0.80
012-013	1.381 (7)		
C1—Ho1—S1	179.06 (11)	C12—C13—C8	1197(5)
C7— $S1$ —Hg1	99 19 (13)	01 - C14 - H14A	109.5
C_{1}	1167(4)	O1 - C14 - H14B	109.5
C6 C1 Hg1	110.7(4) 124.4(3)	$H_{14A} = C_{14} + H_{14B}$	109.5
C_{1} C_{1} H_{c1}	124.4(3) 119.7(3)	01 C14 H14C	109.5
$C_2 = C_1 = Hg_1$	110.7(5)		109.5
$C_3 = C_2 = C_1$	125.0 (5)	H14A - C14 - H14C	109.5
$C_3 = C_2 = H_2$	118.5	HI4B - CI4 - HI4C	109.5
CI = C2 = H2	118.5	C16-C15-N2	124.9 (4)
$C_2 = C_3 = C_4$	118.9 (5)	C16-C15-C20	118.7 (4)
С2—С3—Н3	120.5	N2—C15—C20	116.3 (4)
С4—С3—Н3	120.5	C15—C16—C17	121.8 (5)
C5—C4—C3	120.5 (5)	C15—C16—H16	119.1
C5—C4—H4	119.8	C17—C16—H16	119.1
C3—C4—H4	119.8	C18—C17—C16	118.6 (5)
C4—C5—C6	120.1 (5)	C18—C17—H17	120.7
C4—C5—H5	119.9	C16—C17—H17	120.7
С6—С5—Н5	119.9	C17—C18—C19	121.7 (4)
C1—C6—C5	120.7 (5)	C17—C18—H18	119.1
С1—С6—Н6	119.6	C19—C18—H18	119.1
С5—С6—Н6	119.6	C18—C19—C20	119.8 (5)
N4—C7—N1	111.7 (4)	C18—C19—H19	120.1
N4—C7—S1	123.7 (3)	C20-C19-H19	120.1
N1—C7—S1	124.5 (3)	O2—C20—C19	123.7 (5)
C9—C8—N3	122.9 (4)	O2—C20—C15	116.9 (3)
C9—C8—C13	120.0 (4)	C19—C20—C15	119.3 (5)
N3—C8—C13	117.1 (4)	O2—C21—H21A	109.5
С10—С9—С8	119.4 (5)	O2—C21—H21B	109.5
С10—С9—Н9	120.3	H21A—C21—H21B	109.5
С8—С9—Н9	120.3	O2—C21—H21C	109.5

120.6 (5) 119.7 119.7 120.6 (5) 119.7 119.7 119.6 (5) 120.2 120.2 125.7 (4)	H21A—C21—H21C H21B—C21—H21C N2—N1—C7 N1—N2—C15 N4—N3—C8 N4—N3—H3A C8—N3—H3A C7—N4—N3 C13—O1—C14 C20—O2—C21	109.5 109.5 115.6 (3) 113.3 (3) 120.4 (3) 119.8 119.8 117.3 (4) 117.7 (4) 117.4 (4)
114.7 (4)		
0.5 (7) -175.5 (4) -1.0 (8) 0.5 (8) 0.3 (8)	C15—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—O2 C18—C19—C20—C15	1.2 (7) -1.4 (8) 0.8 (8) 178.1 (4) 0.2 (6)
0.4 (6)	C16-C15-C20-O2	-178.4(4)
$\begin{array}{c} -0.8 (7) \\ -141.9 (3) \\ 40.9 (3) \\ -179.1 (4) \\ 3.2 (7) \\ -0.3 (8) \\ -1.9 (8) \\ 1.0 (8) \end{array}$	N2-C15-C20-C19 N2-C15-C20-C19 N4-C7-N1-N2 S1-C7-N1-N2 C7-N1-N2-C15 C16-C15-N2-N1 C20-C15-N2-N1 C20-C15-N2-N1 C9-C8-N3-N4	$\begin{array}{c} -0.4 \ (6) \\ -179.2 \ (4) \\ 173.9 \ (3) \\ -8.6 \ (5) \\ 179.0 \ (3) \\ 4.5 \ (5) \\ -176.8 \ (3) \\ 11.1 \ (6) \end{array}$
-177.8 (4)	C13—C8—N3—N4	-171.1 (4)
2.0 (7) 175.7 (4) -2.1 (5) -4.1 (6) 178.1 (4) 178.4 (4) -0.3 (6)	N1C7N4N3 S1C7N4N3 C8N3N4C7 C12C13O1C14 C8C13O1C14 C19C20O2C21 C15C20O2C21	-177.9 (3) 4.5 (5) 174.5 (4) 22.0 (7) -157.7 (4) 16.1 (6) -166.0 (4)
	120.6 (5) 119.7 119.7 120.6 (5) 119.7 119.7 119.6 (5) 120.2 120.2 125.7 (4) 114.7 (4) 0.5 (7) -175.5 (4) -1.0 (8) 0.5 (8) 0.3 (8) 0.4 (6) 176.1 (3) -0.8 (7) -141.9 (3) 40.9 (3) -179.1 (4) 3.2 (7) -0.3 (8) -1.9 (8) 1.0 (8) -177.8 (4) 2.0 (7) 175.7 (4) -2.1 (5) -4.1 (6) 178.4 (4) -0.3 (6)	120.6 (5) H21A-C21-H21C 119.7 H21B-C21-H21C 119.7 N2-N1-C7 120.6 (5) N1-N2-C15 119.7 N4-N3-C8 119.7 N4-N3-C8 119.7 N4-N3-C8 119.7 N4-N3-H3A 119.6 (5) C8-N3-H3A 120.2 C7-N4-N3 120.2 C13-O1-C14 125.7 (4) C20-O2-C21 114.7 (4) C16-C17-C18 -175.5 (4) C16-C17-C18-C19 -1.0 (8) C17-C18-C19-C20 0.5 (8) C18-C19-C20-O2 0.3 (8) C18-C19-C20-O2 0.3 (8) C18-C19-C20-O2 0.4 (6) C16-C15-C20-O2 176.1 (3) N2-C15-C20-O2 -0.8 (7) C16-C15-C20-C19 -141.9 (3) N2-C15-C20-C19 40.9 (3) N4-C7-N1-N2 3.2 (7) C7-N1-N2-C15 -0.3 (8) C16-C15-N2-N1 -1.9 (8) C20-C15-N2-N1 -1.9 (8) C20-C15-N2-N1 -1.9 (8) C20-C15-N2-N1 -1.9 (8) C13-C8-N3-N4