

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(pyridine-2-sulfonato- $\kappa^2 N, O$)cobalt(II)

Zong-Sheng Li^a and Seik Weng Ng^{b,c}*

^aCollege of Safety and Environment Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 8 November 2011; accepted 14 November 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.067; data-to-parameter ratio = 15.0.

The title complex, $[Co(C_5H_4NO_3S)_2(H_2O)_2]$, lies on a twofold rotation axis that relates the two water molecules and the two pyridine-2-sulfonate ions. The Co^{II} atom exists in an slightly distorted octahedral environment. The N-donor atoms are *cis* to each other. In the crystal, adjacent molecules are linked by $O-H \cdots O$ hydrogen bonds into a layer motif extending along (001).

Related literature

For the isotypic manganese(II), zinc and cadmium analogs, see: Lobana *et al.* (2004); Xiao (2007); Xiao & Liu (2004).

Experimental

Crystal data [Co(C₅H₄NO₃S)₂(H₂O)₂]

 $M_r = 411.29$

I	•		
metal	-organic	com	pounds
	0.94		

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.15~\text{mm}$

 $\mu = 1.47 \text{ mm}^{-1}$

T = 296 K

Z = 4

Monoclinic, $C2/c$
a = 13.7009 (9) Å
b = 7.1127 (5) Å
c = 16.0180 (11) Å
$\beta = 106.734 (1)^{\circ}$
$V = 1494.86(18) Å^3$

Data collection

Bruker SMART APEX	4331 measured reflections
diffractometer	1695 independent reflections
Absorption correction: multi-scan	1590 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.016$
$T_{\min} = 0.710, \ T_{\max} = 0.810$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.067$	independent and constrained
S = 1.03	refinement
1695 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
113 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$
3 restraints	

Table 1		
Hydrogen-bond geometry	y (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{matrix} O1w-H11\cdots O2^i\\ O1w-H12\cdots O3^{ii} \end{matrix}$	0.83 (1) 0.83 (1)	1.90 (1) 1.88 (1)	2.735 (2) 2.703 (2)	177 (3) 172 (3)
				. (.)

Symmetry codes: (i) -x + 1, y + 1, $-z + \frac{3}{2}$; (ii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Beijing Normal University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2164).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). *Eur. J. Inorg. Chem.* pp. 356–367.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

- Xiao, Z.-J. (2007). J. Huaquio Univ. (Nat. Sci.), 28, 170-173.
- Xiao, Z.-J. & Liu, S.-X. (2004). Chin. J. Struct. Chem. 23, 798-802.

supporting information

Acta Cryst. (2011). E67, m1781 [https://doi.org/10.1107/S1600536811048203]

Diaquabis(pyridine-2-sulfonato- $\kappa^2 N$,O)cobalt(II)

Zong-Sheng Li and Seik Weng Ng

S1. Comment

Diaquabis(pyridine-2-sulfonate)cobalt(II) (Scheme I) is isostructural with the manganese, zinc (Lobana *et al.*, 2004; Xiao & Liu, 2004) and cadmium (Xiao, 2007) analogs. The molecule lies on a twofold rotation axis that relates the two water molecules and the two pyridine-2-sulfonate ions and the Co^{II} atom exist in an slightly distorted octahedral environment. The N donor atoms are *cis* to each other (Fig. 1). Adjacent molecules are linked by water O–H···O_{sulfonate} hydrogen bonds (Table 1) into a layer motif extending along (0 0 1) (Fig. 2).

S2. Experimental

Pyridine-2-sulfonic acid (0.4 mmol, 0.0641 g) was dissolved in 0.1 *M* sodium hydroxide (4 ml); cobalt(II) chloride hexahydrate (0.2 mmol, 0.0476 g) and 4,4'-bipyridine-*N*,*N*'-dioxide (0.2 mmol, 0.0446 g) were added to the solution. The clear solution was allowed to evaporate at ambient conditions, affording red block-shaped crystals after one week, in 40% yield.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to $1.2U_{eq}$ (C). The water H-atoms were located in a difference Fourier map and was refined with distance restraints of O—H = 0.83 ± 0.01 and H…H = 1.37 ± 0.01 Å. Their isotropic displacement parameters were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $[Co(H_2O)_2(C_5H_4NO_3S)_2]$ at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled ones by twofold rotational symmetry (symmetry code -*x* + 1, *y*, -*z* + 3/2).

Figure 2

The hydrogen-bonded layer structure.

Diaquabis(pyridine-2-sulfonato- $\kappa^2 N, O$)cobalt(II)

Crystal data

[Co(C₅H₄NO₃S)₂(H₂O)₂] $M_r = 411.29$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.7009 (9) Å b = 7.1127 (5) Å c = 16.0180 (11) Å $\beta = 106.734$ (1)° $V = 1494.86 (18) \text{ Å}^{3}$ Z = 4 F(000) = 836 $D_x = 1.827 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3169 reflections $\theta = 3.1-27.6^{\circ}$ $\mu = 1.47 \text{ mm}^{-1}$

T = 296 KPrism, yellow

Data collection

Bruker SMART APEX diffractometer	4331 measured reflections 1695 independent reflections
Radiation source: fine-focus sealed tube	1590 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.7^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 9$
$T_{\min} = 0.710, \ T_{\max} = 0.810$	$l = -13 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.067$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
1695 reflections	and constrained refinement
113 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0362P)^2 + 1.5779P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

 $0.25 \times 0.20 \times 0.15 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.5000	0.69090 (4)	0.7500	0.02354 (11)	
S1	0.33529 (3)	0.39913 (6)	0.66183 (2)	0.02716 (12)	
01	0.38590 (11)	0.4900 (2)	0.74481 (7)	0.0379 (3)	
O2	0.37681 (13)	0.21672 (19)	0.65256 (10)	0.0474 (4)	
03	0.22560 (11)	0.3995 (3)	0.64164 (10)	0.0504 (4)	
O1W	0.59993 (12)	0.9037 (2)	0.74438 (11)	0.0467 (4)	
H11	0.6059 (18)	1.001 (2)	0.7743 (14)	0.055 (7)*	
H12	0.6431 (16)	0.902 (3)	0.7169 (15)	0.060 (8)*	
N1	0.44352 (10)	0.6597 (2)	0.61055 (9)	0.0255 (3)	
C1	0.36597 (12)	0.5407 (2)	0.58114 (9)	0.0237 (3)	
C2	0.31435 (14)	0.5162 (3)	0.49417 (11)	0.0339 (4)	
H2	0.2589	0.4352	0.4769	0.041*	
C3	0.34772 (16)	0.6160 (3)	0.43366 (11)	0.0398 (4)	
H3	0.3149	0.6034	0.3744	0.048*	
C4	0.43020 (15)	0.7344 (3)	0.46221 (12)	0.0384 (4)	
H4	0.4551	0.7998	0.4224	0.046*	
C5	0.47534 (14)	0.7548 (3)	0.55036 (12)	0.0344 (4)	
Н5	0.5299	0.8374	0.5691	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02474 (17)	0.02440 (17)	0.02083 (16)	0.000	0.00555 (11)	0.000

supporting information

S 1	0.0294 (2)	0.0293 (2)	0.0240 (2)	-0.00801 (15)	0.00954 (16)	0.00137 (14)
01	0.0506 (8)	0.0432 (7)	0.0214 (5)	-0.0189 (6)	0.0125 (5)	-0.0010 (5)
O2	0.0711 (11)	0.0282 (7)	0.0465 (8)	0.0001 (7)	0.0228 (7)	0.0063 (6)
03	0.0306 (7)	0.0803 (12)	0.0433 (8)	-0.0137 (7)	0.0154 (6)	0.0049 (7)
O1W	0.0496 (9)	0.0409 (8)	0.0625 (9)	-0.0211 (7)	0.0367 (8)	-0.0254 (7)
N1	0.0268 (7)	0.0279 (7)	0.0218 (6)	-0.0028 (5)	0.0068 (5)	0.0036 (5)
C1	0.0262 (7)	0.0245 (7)	0.0216 (7)	0.0003 (6)	0.0088 (6)	0.0013 (6)
C2	0.0371 (9)	0.0382 (9)	0.0246 (8)	-0.0068 (8)	0.0060 (7)	-0.0044 (7)
C3	0.0489 (11)	0.0493 (11)	0.0201 (7)	0.0006 (9)	0.0081 (7)	0.0008 (7)
C4	0.0488 (11)	0.0418 (10)	0.0291 (8)	0.0012 (9)	0.0184 (8)	0.0109 (8)
C5	0.0364 (9)	0.0346 (9)	0.0335 (9)	-0.0077 (8)	0.0119 (7)	0.0070 (7)

Geometric parameters (Å, °)

Col—OlW	2.0601 (14)	O1W—H12	0.832 (9)
Co1—O1W ⁱ	2.0601 (13)	N1—C1	1.334 (2)
Co1—O1	2.1018 (13)	N1—C5	1.349 (2)
Co1—O1 ⁱ	2.1018 (13)	C1—C2	1.380 (2)
Co1—N1	2.1545 (13)	C2—C3	1.381 (3)
Co1—N1 ⁱ	2.1545 (13)	C2—H2	0.9300
S1—O2	1.4414 (15)	C3—C4	1.378 (3)
S1—O3	1.4432 (14)	С3—Н3	0.9300
S1—O1	1.4612 (13)	C4—C5	1.376 (3)
S1—C1	1.7814 (15)	C4—H4	0.9300
O1W—H11	0.833 (9)	С5—Н5	0.9300
O1W—Co1—O1W ⁱ	85.45 (9)	Co1—O1W—H11	122.9 (16)
01W—Co1—O1	173.62 (6)	Co1—O1W—H12	126.6 (16)
O1W ⁱ —Co1—O1	90.29 (6)	H11—O1W—H12	110.3 (15)
01W-Co1-01 ⁱ	90.29 (6)	C1—N1—C5	117.02 (14)
O1W ⁱ —Co1—O1 ⁱ	173.61 (6)	C1—N1—Co1	116.31 (10)
O1—Co1—O1 ⁱ	94.34 (8)	C5—N1—Co1	126.58 (12)
O1W—Co1—N1	94.31 (6)	N1—C1—C2	124.14 (15)
O1W ⁱ —Co1—N1	94.36 (6)	N1—C1—S1	115.65 (11)
01-Co1-N1	81.26 (5)	C2—C1—S1	120.12 (13)
Ol ⁱ —Col—Nl	90.69 (5)	C1—C2—C3	117.83 (17)
O1W—Co1—N1 ⁱ	94.36 (6)	C1—C2—H2	121.1
O1W ⁱ —Co1—N1 ⁱ	94.31 (6)	С3—С2—Н2	121.1
O1-Co1-N1 ⁱ	90.69 (5)	C4—C3—C2	119.14 (16)
O1 ⁱ —Co1—N1 ⁱ	81.26 (5)	С4—С3—Н3	120.4
N1—Co1—N1 ⁱ	168.19 (8)	С2—С3—Н3	120.4
O2—S1—O3	113.26 (10)	C3—C4—C5	119.23 (17)
O2—S1—O1	113.20 (9)	C3—C4—H4	120.4
O3—S1—O1	113.19 (9)	С5—С4—Н4	120.4
O2—S1—C1	104.56 (8)	N1C5C4	122.56 (17)
O3—S1—C1	106.52 (8)	N1—C5—H5	118.7
01—S1—C1	105.11 (7)	C4—C5—H5	118.7
S1	119.31 (7)		

O2—S1—O1—Co1	98.03 (11)	C5—N1—C1—C2	-3.1 (3)
O3—S1—O1—Co1	-131.35 (10)	Co1—N1—C1—C2	173.84 (14)
C1—S1—O1—Co1	-15.48 (11)	C5—N1—C1—S1	173.39 (13)
O1W ⁱ —Co1—O1—S1	104.28 (10)	Co1—N1—C1—S1	-9.71 (16)
O1 ⁱ —Co1—O1—S1	-80.13 (9)	O2—S1—C1—N1	-103.32 (14)
N1—Co1—O1—S1	9.91 (10)	O3—S1—C1—N1	136.50 (14)
N1 ⁱ —Co1—O1—S1	-161.41 (10)	O1—S1—C1—N1	16.13 (15)
O1W—Co1—N1—C1	-174.23 (12)	O2—S1—C1—C2	73.28 (16)
O1W ⁱ —Co1—N1—C1	-88.48 (12)	O3—S1—C1—C2	-46.89 (17)
O1—Co1—N1—C1	1.14 (12)	O1—S1—C1—C2	-167.27 (15)
Ol ⁱ —Col—Nl—Cl	95.43 (12)	N1—C1—C2—C3	2.6 (3)
N1 ⁱ —Co1—N1—C1	48.64 (11)	S1—C1—C2—C3	-173.66 (14)
O1W—Co1—N1—C5	2.33 (15)	C1—C2—C3—C4	0.0 (3)
O1W ⁱ —Co1—N1—C5	88.09 (15)	C2—C3—C4—C5	-2.0 (3)
O1—Co1—N1—C5	177.71 (16)	C1—N1—C5—C4	0.9 (3)
O1 ⁱ —Co1—N1—C5	-88.01 (15)	Co1—N1—C5—C4	-175.65 (14)
N1 ⁱ —Co1—N1—C5	-134.79 (15)	C3—C4—C5—N1	1.6 (3)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O1w—H11…O2 ⁱⁱ	0.83 (1)	1.90(1)	2.735 (2)	177 (3)
O1w—H12···O3 ⁱⁱⁱ	0.83 (1)	1.88 (1)	2.703 (2)	172 (3)

Symmetry codes: (ii) -*x*+1, *y*+1, -*z*+3/2; (iii) *x*+1/2, *y*+1/2, *z*.