Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2,3,4-Trifluorophenyl)pyrrolidine-1carboxamide

Shuchen Pei, Jie Li, Boyi Qu, Li Hai and Yong Wu*

Key Laboratory of Drug Targeting of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China Correspondence e-mail: wyong@scu.edu.cn

Received 19 November 2011; accepted 29 November 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.054 ; w R$ factor $=0.151$; data-to-parameter ratio $=13.9$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$, a urea derivative, the best plane through the pyrrole ring makes a dihedral angle of $9.69(13)^{\circ}$ with the benzene ring. The amino H atom is shielded, so that it is not involved in any hydrogen-bonding interactions.

Related literature

For background to this class of compounds, see Zheng et al. (2010).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=244.22$

$$
\begin{aligned}
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.0708 \text { (4) A }
\end{aligned}
$$

$b=24.2124(15) \AA$	
$c=7.4232(6) \AA$	$\mu=0.13 \mathrm{~mm}^{-1}$
$\beta=100.508(7)^{\circ}$	$T=293 \mathrm{~K}$
$V=1072.83(13) \AA^{3}$	$0.35 \times 0.35 \times 0.25 \mathrm{~mm}$
$Z=4$	

Data collection
Oxford Diffraction Xcalibur Eos diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford
Diffraction, 2007)
$T_{\text {min }}=0.964, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.151$
$S=1.04$
2190 reflections
158 parameters

Mo $K \alpha$ radiation

$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.35 \times 0.35 \times 0.25 \mathrm{~mm}$

4465 measured reflections 2190 independent reflections 1374 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$ independent and constrained refinement
$\Delta \rho_{\max }=0.24$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: $O L E X 2$.

The authors thank the NSFC (81072532) for financial support and Professor Zhihua Mao (Sichuan University) for the X-ray measurements

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5716).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zheng, Q.-Z., Cheng, K., Zhang, X.-M., Liu, K., Jiao, Q.-C. \& Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 3207-3212.

supporting information

Acta Cryst. (2012). E68, o12 [doi:10.1107/S1600536811051385]

N-(2,3,4-Trifluorophenyl)pyrrolidine-1-carboxamide

Shuchen Pei, Jie Li, Boyi Qu, Li Hai and Yong Wu

S1. Comment

The compound N-(2,3,4-trifluorophenyl)pyrrolidine-1-carboxamide is one of urea derivatives. It has been established that urea derivatives have got a significant placein modern medicinal chemistry. Urea derivatives have been reported in the literature as anticancer agent, anticonvulsant, CXCR3 antagonist, antibacterial and so on. Our interests in synthesizing urea derivatives prompted us to develop an efficient methodology for synthesizing N-(2,3,4-trifluorophenyl)-pyrrolidine-1-carboxamide. In our synthetic work, we obtained the title compound, and its crystal structure is reported here. The three fluorine atoms of the attached benzene ring are close to being coplanar with the ring, whereas the pyrrole ring is not coplanar with the benzene ring.

S2. Experimental

The title compound was obtained as a derivative of urea. To a solution of triphosgene ($350 \mathrm{mg}, 1.19 \mathrm{mmol}$) and triethylamine ($680 \mathrm{mg}, 6.80 \mathrm{mmol}$) in anhydrous acetonitrile (5 ml) at ice bath, the solution of 2,3,4-trifluoroaniline (500 mg , 3.40 mmol) and triethylamine ($680 \mathrm{mg}, 6.80 \mathrm{mmol}$) in anhydrous acetonitrile $(5 \mathrm{ml})$ were added dropwise. The mixture was stirred for 1 h . And then the solition of tetrahydropyrrole ($240 \mathrm{mg}, 3.40 \mathrm{mmol}$) and triethylamine ($680 \mathrm{mg}, 6.80$ mmol) in anhydrous acetonitrile (5 ml) were added dropwise. The reaction mixture was then removed from the cooling bath and stirred at room temperature overnight. On completion of the reaction, the mixture was poured into water. The aqueous layer was extracted with ethyl acetate and the organic layer was separated. The organic layers were washed with brine and dried over sodium sulfate, filtered, and concentrated in vacuo. The purification of the residue by silica gel column chromatography eluting with EtOAc-petroleum ether (1:10) yielded the white solid 660 mg (yield 86.7\%) of N-(2,3,4-trifluorophenyl)pyrrolidine-1-carboxamide. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in ethyl acetate at room temperature.

S3. Refinement

H atoms bonded to C were positioned geometrically $\left(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA\right.$) and refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The amino H atom was freely refined.

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram for the title compound.

N-(2,3,4-Trifluorophenyl)pyrrolidine-1-carboxamide

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} \\
& M_{r}=244.22 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.0708(4) \AA \\
& b=24.2124(15) \AA \\
& c=7.4232(6) \AA \\
& \beta=100.508(7)^{\circ} \\
& V=1072.83(13) \AA^{3} \\
& Z=4
\end{aligned}
$$

$F(000)=504$
$D_{\mathrm{x}}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$
Cell parameters from 1445 reflections
$\theta=2.9-28.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.35 \times 0.35 \times 0.25 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.0874 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\min }=0.964, T_{\max }=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.151$
$S=1.04$
2190 reflections
158 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 4465 measured reflections
> 2190 independent reflections
> 1374 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.018$
> $\theta_{\max }=26.4^{\circ}, \theta_{\min }=2.9^{\circ}$
> $h=-7 \rightarrow 6$
> $k=-30 \rightarrow 27$
> $l=-8 \rightarrow 9$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.055 P)^{2}+0.3084 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.1373(2)$	$-0.04074(6)$	$0.1339(2)$	$0.0855(6)$
F2	$0.2120(3)$	$-0.14684(7)$	$0.2355(3)$	$0.0987(7)$
F3	$0.6185(3)$	$-0.17950(6)$	$0.4120(2)$	$0.0908(6)$
O1	$0.7849(3)$	$0.08144(8)$	$0.2954(3)$	$0.0827(6)$
N1	$0.4504(4)$	$0.03783(9)$	$0.2033(3)$	$0.0586(6)$
H1	$0.325(4)$	$0.0407(10)$	$0.159(4)$	$0.061(9)^{*}$
N2	$0.4818(3)$	$0.13161(8)$	$0.1745(3)$	$0.0577(6)$
C1	$0.3428(4)$	$-0.05587(11)$	$0.2237(3)$	$0.0577(6)$
C2	$0.3786(5)$	$-0.10989(11)$	$0.2741(4)$	$0.0626(7)$
C3	$0.5855(5)$	$-0.12546(11)$	$0.3645(4)$	$0.0649(7)$
C4	$0.7542(5)$	$-0.08815(11)$	$0.4034(4)$	$0.0676(7)$
H4	0.8950	-0.0992	0.4640	0.081^{*}
C5	$0.7159(4)$	$-0.03335(11)$	$0.3522(4)$	$0.0645(7)$
H5	0.8315	-0.0078	0.3799	$0.077 *$
C6	$0.5075(4)$	$-0.01615(10)$	$0.2603(3)$	$0.0521(6)$

C7	$0.5845(4)$	$0.08395(10)$	$0.2289(3)$	$0.0558(6)$
C8	$0.2441(4)$	$0.13970(10)$	$0.1006(4)$	$0.0637(7)$
H8A	0.1513	0.1238	0.1807	0.076^{*}
H8B	0.2032	0.1234	-0.0203	0.076^{*}
C9	$0.2219(5)$	$0.20173(12)$	$0.0924(5)$	$0.0955(11)$
H9A	0.1181	0.2128	-0.0170	0.115^{*}
H9B	0.1664	0.2153	0.1987	0.115^{*}
C10	$0.4431(5)$	$0.22379(13)$	$0.0893(5)$	$0.0987(11)$
H10A	0.4614	0.2594	0.1501	0.118^{*}
H10B	0.4652	0.2284	-0.0359	0.118^{*}
C11	$0.6072(5)$	$0.18321(11)$	$0.1877(4)$	$0.0744(8)$
H11A	0.7371	0.1800	0.1293	0.089^{*}
H11B	0.6562	0.1939	0.3146	0.089^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0581(10)$	$0.0683(10)$	$0.1208(14)$	$-0.0094(8)$	$-0.0083(9)$	$0.0058(9)$
F2	$0.0865(13)$	$0.0638(10)$	$0.1378(17)$	$-0.0188(9)$	$-0.0004(11)$	$0.0062(10)$
F3	$0.1087(15)$	$0.0639(11)$	$0.0979(14)$	$0.0123(9)$	$0.0135(10)$	$0.0105(9)$
O1	$0.0462(11)$	$0.0746(13)$	$0.1207(18)$	$-0.0060(9)$	$-0.0020(10)$	$0.0012(11)$
N1	$0.0477(13)$	$0.0583(14)$	$0.0662(15)$	$-0.0060(11)$	$0.0010(11)$	$-0.0014(10)$
N2	$0.0468(12)$	$0.0521(12)$	$0.0723(14)$	$-0.0087(10)$	$0.0060(10)$	$-0.0041(10)$
C1	$0.0524(15)$	$0.0623(16)$	$0.0570(15)$	$-0.0028(13)$	$0.0064(11)$	$-0.0034(12)$
C2	$0.0659(17)$	$0.0541(16)$	$0.0686(17)$	$-0.0082(14)$	$0.0147(13)$	$-0.0042(13)$
C3	$0.082(2)$	$0.0562(16)$	$0.0581(16)$	$0.0061(15)$	$0.0158(14)$	$-0.0003(12)$
C4	$0.0633(17)$	$0.0739(18)$	$0.0628(17)$	$0.0100(15)$	$0.0039(13)$	$0.0012(14)$
C5	$0.0563(16)$	$0.0664(17)$	$0.0675(17)$	$-0.0033(14)$	$0.0029(12)$	$-0.0041(13)$
C6	$0.0538(15)$	$0.0576(15)$	$0.0451(14)$	$-0.0014(12)$	$0.0097(11)$	$-0.0049(11)$
C7	$0.0506(15)$	$0.0584(15)$	$0.0588(15)$	$-0.0065(13)$	$0.0112(11)$	$-0.0061(12)$
C8	$0.0516(15)$	$0.0632(16)$	$0.0736(18)$	$-0.0067(13)$	$0.0045(12)$	$0.0055(13)$
C9	$0.069(2)$	$0.069(2)$	$0.144(3)$	$-0.0005(17)$	$0.007(2)$	$0.0207(19)$
C10	$0.082(2)$	$0.0619(19)$	$0.146(3)$	$-0.0105(18)$	$0.003(2)$	$0.0102(19)$
C11	$0.0585(17)$	$0.0621(17)$	$0.101(2)$	$-0.0144(14)$	$0.0086(15)$	$-0.0058(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

F1-C1	$1.353(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.388(4)$
F2—C2	$1.341(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~F} 3-\mathrm{C} 3$	$1.360(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.387(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.228(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{H} 1$	$0.77(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 6$	$1.398(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.508(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.375(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 7$	$1.338(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 8$	$1.461(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.449(4)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.457(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.367(4)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700

$\mathrm{C} 1-\mathrm{C} 6$	$1.378(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.365(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.357(4)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	$112.6(19)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$120(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$127.6(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 11$	$127.1(2)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 8$	$120.7(2)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.3(2)$
$\mathrm{F} 1-\mathrm{C} 1-\mathrm{C} 6$	$118.7(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$118.6(2)$
$\mathrm{F} 2-\mathrm{C} 2-\mathrm{C} 1$	$122.7(2)$
$\mathrm{F} 2-\mathrm{C} 2-\mathrm{C} 3$	$120.2(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.7(2)$
$\mathrm{F} 3-\mathrm{C} 3-\mathrm{C} 2$	$119.0(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{F} 3$	$118.2(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.0(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	$120.8(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	$119.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	119.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	$120.9(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	119.5
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$117.5(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$116.8(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$125.7(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2$	$122.3(2)$

$\mathrm{C} 10-\mathrm{C} 11$	$1.492(4)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9700
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9700

N2-C7-N1
N2-C8- H 8 A
N2-C8-H8B
(2)
111.2

N2-C8-C9 102.9 (2)
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 109.1$
C9—C8—H8A 111.2
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B} \quad 111.2$
C8-C9—H9A 110.3
C8-C9—H9B 110.3
H9A-C9-H9B 108.6
C10-C9—C8 106.9 (2)
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A} \quad 110.3$
C10-C9—H9B 110.3
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 110.4$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 110.4$
C9-C10-C11 106.7 (3)
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 108.6$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 110.4$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 110.4$
N2-C11-C10 103.7 (2)
N2-C11-H11A 111.0
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 111.0$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \quad 111.0$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 111.0$
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.0$

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 1$	$0.77(3)$	$2.27(3)$	$2.672(3)$	$113(2)$

