Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2-Chloro-4-nitrophenyl)maleamic acid monohydrate

K. Shakuntala, ${ }^{\text {a }}$ Marek Fronc, ${ }^{\text {b }}$ B. Thimme Gowda ${ }^{\text {a* }}$ and Jozef Kožíšek ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: gowdabt@yahoo.com

Received 3 December 2011; accepted 6 December 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.044 ; w R$ factor $=0.128 ;$ data-to-parameter ratio $=11.1$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes with a half-molecule each of N -(2-chloro-4-nitrophenyl)maleamic acid (located on a mirror plane) and water (located on a twofold rotation axis) in the asymmetric unit. The main molecule is planar by symmetry and its conformation is stabilized by an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000); Prasad et al. (2002); Shakuntala et al. (2011), on N-(aryl)methanesulfonamides, see: Jayalakshmi \& Gowda (2004) on N-(aryl)-arylsulfonamides, see: Shetty \& Gowda (2005) and on N-chloroarylsulfonamides, see: Gowda \& Kumar (2003). For modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=288.64$
Orthorhombic, Cmca
$a=6.7499$ (2) \AA
$b=20.3357$ (5) A
$c=17.1671$ (4) \AA
$V=2356.42(11) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.81 \times 0.25 \times 0.12 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark \&

Reid (1995)]

$T_{\text {min }}=0.860, T_{\text {max }}=0.965$ 14309 measured reflections 1310 independent reflections 1131 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.128$ independent and constrained refinement
$S=1.07$
1310 reflections
118 parameters
$\Delta \rho_{\max }=0.25 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.44 \mathrm{e} \mathrm{A}^{-3}$
1 restraint

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{O} 11$	0.86	2.50	$3.178(3)$	136
O2-H7W O1	0.75	1.77	$2.515(3)$	171
${\text { O11-H11 } \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{H}}$	$1.05(1)$	$2.04(2)$	$2.978(2)$	$146(3)$

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

MF and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202-10) for financial support and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5742).

References

Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gowda, B. T. \& Kumar, B. H. A. (2003). Oxid. Commun. A, 26, 403-425.
Gowda, B. T., Svoboda, I. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779790.

Jayalakshmi, K. L. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Prasad, S. M., Sinha, R. B. P., Mandal, D. K. \& Rani, A. (2002). Acta Cryst. E58, o1296-o1297.

organic compounds

Shakuntala, K., Vrábel, V., Gowda, B. T. \& Kožǐšek, J. (2011). Acta Cryst. E67, o3317.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shetty, M. \& Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o99-o100 [doi:10.1107/S1600536811052573]

N -(2-Chloro-4-nitrophenyl)maleamic acid monohydrate

K. Shakuntala, Marek Fronc, B. Thimme Gowda and Jozef Kožíšek

S1. Comment

The amide moiety is a constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000; Prasad et al., 2002; Shakuntala et al., 2011), N-(aryl)-methanesulfonamides (Jayalakshmi \& Gowda, 2004), N-(aryl)-arylsulfonamides (Shetty \& Gowda, 2005) and N-chloroarylsulfoamides (Gowda \& Kumar, 2003), in the present work, the crystal structure of N-(2-chloro-4-nitro-phenyl)-maleamic acid monohydrate(I) has been determined (Fig.1).
The conformations of the $\mathrm{N}-\mathrm{H}$ and the $\mathrm{C}=\mathrm{O}$ bonds in the amide segment are anti to each other. But the conformation of the $\mathrm{N}-\mathrm{H}$ bond is syn to the ortho- Cl atom in the phenyl ring, similar to that observed between the $\mathrm{N}-\mathrm{H}$ bond and ortho-methyl group in N -(4-Chloro-2-methylphenyl)-maleamic acid (II) (Shakuntala et al., 2011).
In the maleamic acid moiety, the amide $\mathrm{C}=\mathrm{O}$ bond is anti to the adjacent $\mathrm{C}-\mathrm{H}$ bond, while the carboxyl $\mathrm{C}=\mathrm{O}$ bond is syn to the adjacent $\mathrm{C}-\mathrm{H}$ bond. The observed rare anti conformation of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group is similar to that observed in (II). This may be due to the hydrogen bond donated to the amide carbonyl group by the carboxyl group. The C2-C3 bond length of 1.327 (4) \AA indicates the double bond character.
The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).
In (I), both the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have been observed. The packing of molecules linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into infinite chains is shown in Fig. 2.

S2. Experimental

The solution of maleic anhydride $(0.025 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated dropwise with the solution of 2-chloro-4nitroaniline $(0.025 \mathrm{~mol})$ also in toluene $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-chloro-4-nitroaniline. The resultant solid N-(2-chloro-4-nitro-phenyl)-maleamic acid monohydrate was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.
Prism like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation (0.5 g in about 30 ml of ethanol) at room temperature.

S3. Refinement

All hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and constrained to ride on their parent atoms. Amide and and $\mathrm{O}-\mathrm{H}$ atoms were seen in difference map and were refined with the $\mathrm{N}-\mathrm{H}$ distance restrained to $0.86(1) \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Figure 1
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

Packing view of the title compound. Molecular chains along a-axis are generated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which are shown as dashed lines. H atoms not involved in H-bonding have been omitted.

3-[(2-chloro-4-nitrophenyl)carbamoyl]prop-2-enoic acid monohydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=288.64$
Orthorhombic, Cmca
Hall symbol: -C 2 bc 2
$a=6.7499$ (2) \AA
$b=20.3357$ (5) \AA
$c=17.1671$ (4) \AA
$V=2356.42(11) \AA^{3}$
$Z=8$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.4340 pixels mm^{-1}
ω scans
$F(000)=1184$
$D_{\mathrm{x}}=1.627 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4659 reflections
$\theta=2.0-29.4^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.81 \times 0.25 \times 0.12 \mathrm{~mm}$

Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009),
based on expressions derived by Clark \& Reid
(1995)]
$T_{\text {min }}=0.860, T_{\text {max }}=0.965$
14309 measured reflections
1310 independent reflections
1131 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-24 \rightarrow 25$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.128$
$S=1.07$
1310 reflections
118 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark \& Reid, 1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.0000	$0.38088(14)$	$0.11375(16)$	$0.0392(7)$
C2	0.0000	$0.31306(15)$	$0.08336(18)$	$0.0456(8)$
H2A	0.0000	0.2800	0.1208	0.055^{*}
C3	0.0000	$0.29270(15)$	$0.00997(17)$	$0.0450(8)$
H3A	0.0000	0.2472	0.0048	0.054^{*}
C4	0.0000	$0.32802(18)$	$-0.06507(19)$	$0.0546(9)$
C5	0.0000	$0.44114(13)$	$0.23898(16)$	$0.0350(6)$
C6	0.0000	$0.43336(14)$	$0.32018(16)$	$0.0365(6)$
C7	0.0000	$0.48666(15)$	$0.36958(17)$	$0.0435(7)$
H7A	0.0000	0.4810	0.4233	0.052^{*}
C8	0.0000	$0.54865(15)$	$0.33704(18)$	$0.0440(8)$
C9	0.0000	$0.55845(14)$	$0.25794(19)$	$0.0425(7)$
H9A	0.0000	0.6008	0.2377	0.051^{*}
C10	0.0000	$0.50500(15)$	$0.20906(17)$	$0.0405(7)$
H10A	0.0000	0.5114	0.1554	0.049^{*}
C11	0.0000	$0.35546(4)$	$0.36046(4)$	$0.0487(3)$
N1	0.0000	$0.38484(12)$	$0.19242(14)$	$0.0431(6)$
H1A	0.0000	0.3480	0.2169	0.052^{*}
N2	0.0000	$0.60563(15)$	$0.38903(18)$	$0.0647(9)$
O1	0.0000	$0.42972(11)$	$0.07268(12)$	$0.0671(9)$
O2	0.0000	$0.39196(13)$	$-0.06678(14)$	$0.0886(12)$

H7W	0.0000	0.4070	-0.0267	0.133^{*}
O3	0.0000	$0.29773(15)$	$-0.12558(15)$	$0.0864(11)$
O4	0.0000	$0.59696(16)$	$0.45824(16)$	$0.1041(14)$
O5	0.0000	$0.65986(14)$	$0.35994(18)$	$0.1049(15)$
O11	0.2500	$0.26168(15)$	0.2500	$0.0931(11)$
H11	$0.319(5)$	$0.2243(11)$	$0.2174(17)$	0.112^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0580(18)$	$0.0330(15)$	$0.0266(13)$	0.000	0.000	$-0.0002(11)$
C2	$0.075(2)$	$0.0294(15)$	$0.0328(15)$	0.000	0.000	$0.0028(12)$
C3	$0.070(2)$	$0.0306(15)$	$0.0349(16)$	0.000	0.000	$-0.0042(12)$
C4	$0.089(3)$	$0.0443(19)$	$0.0306(16)$	0.000	0.000	$-0.0048(14)$
C5	$0.0481(16)$	$0.0313(13)$	$0.0257(13)$	0.000	0.000	$0.0002(10)$
C6	$0.0487(16)$	$0.0328(14)$	$0.0279(14)$	0.000	0.000	$0.0032(11)$
C7	$0.063(2)$	$0.0418(17)$	$0.0259(13)$	0.000	0.000	$-0.0025(12)$
C8	$0.062(2)$	$0.0360(16)$	$0.0341(15)$	0.000	0.000	$-0.0082(12)$
C9	$0.0593(19)$	$0.0311(14)$	$0.0371(16)$	0.000	0.000	$0.0002(12)$
C10	$0.0587(18)$	$0.0357(15)$	$0.0270(14)$	0.000	0.000	$0.0020(11)$
C11	$0.0793(6)$	$0.0367(4)$	$0.0301(4)$	0.000	0.000	$0.0070(3)$
N1	$0.0757(18)$	$0.0288(12)$	$0.0248(11)$	0.000	0.000	$0.0015(9)$
N2	$0.108(3)$	$0.0425(17)$	$0.0436(17)$	0.000	0.000	$-0.018(13)$
O1	$0.144(3)$	$0.0313(12)$	$0.0258(11)$	0.000	0.000	$0.0009(9)$
O2	$0.197(4)$	$0.0424(15)$	$0.0262(12)$	0.000	0.000	$0.0001(10)$
O3	$0.166(3)$	$0.0607(17)$	$0.0327(13)$	0.000	0.000	$-0.0123(12)$
O4	$0.213(4)$	$0.0621(19)$	$0.0368(15)$	0.000	0.000	$-0.0167(13)$
O5	$0.218(5)$	$0.0353(14)$	$0.0618(19)$	0.000	0.000	$-0.0111(13)$
O11	$0.145(3)$	$0.0680(19)$	$0.0664(19)$	0.000	$0.021(2)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{O} 1$	$1.218(4)$	$\mathrm{C} 6-\mathrm{Cl} 1$	$1.728(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.353(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.379(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.474(4)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.326(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.372(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	$\mathrm{C} 8-\mathrm{N} 2$	$1.463(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.475(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.373(4)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{O} 3$	$1.208(4)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9300
$\mathrm{C} 4-\mathrm{O} 2$	$1.301(4)$	$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8600
$\mathrm{C} 5-\mathrm{C} 10$	$1.397(4)$	$\mathrm{N} 2-\mathrm{O} 4$	$1.201(4)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.396(4)$	$\mathrm{N} 2-\mathrm{O} 5$	$1.211(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.403(4)$	$\mathrm{O} 2-\mathrm{H} 7 \mathrm{~W}$	0.7531
$\mathrm{C} 6-\mathrm{C} 7$	$1.376(4)$	$\mathrm{O} 11-\mathrm{H} 11$	$1.052(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$		$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	121.0

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.1(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$128.9(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	115.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	115.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$132.7(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	113.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	113.7
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 2$	$119.4(3)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$120.2(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$120.4(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{N} 1$	$123.5(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$118.1(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$118.4(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.6(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11$	$118.4(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 1$	$120.1(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$118.1(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	180.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	0.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	180.0
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	0.0
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	0.0
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 1$	180.0
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl} 1$	180.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	0.0
$\mathrm{C} 11-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	0.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	180.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$0.000(1)$

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$122.2(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$119.3(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$118.5(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$119.3(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	120.3
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	120.3
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$120.8(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.6
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	119.6
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$128.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	115.9
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	115.8
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O} 5$	$122.8(3)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 8$	$119.2(3)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 8$	$118.0(3)$
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 7 \mathrm{~W}$	112.6

0.000 (1)
180.0
0.0
180.0
0.0
0.0
180.0
0.0
180.0
180.0
0.000 (1)
0.000 (1)
180.0

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 11$	0.86	2.50	$3.178(3)$	136
$\mathrm{O} 2 — \mathrm{H} 7 W \cdots \mathrm{O} 1$	0.75	1.77	$2.515(3)$	171
$\mathrm{O}^{1} 1 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{i}}$	$1.05(1)$	$2.04(2)$	$2.978(2)$	$146(3)$

Symmetry code: (i) $-x+1 / 2,-y+1 / 2,-z$.

