# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *N*-(3-Chlorobenzoyl)-3-nitrobenzene-sulfonamide

#### P. A. Suchetan,<sup>a</sup> Sabine Foro<sup>b</sup> and B. Thimme Gowda<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and <sup>b</sup>Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 19 December 2011; accepted 20 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.105; data-to-parameter ratio = 14.1.

In the title compound,  $C_{13}H_9ClN_2O_5S$ , the dihedral angle between the two benzene rings is 83.5 (1)°. In the crystal, molecules are linked *via* N-H···O(S) hydrogen bonds into helical chains running along the *b* axis.

#### **Related literature**

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes *et al.* (2003); Gowda *et al.* (2004), on N-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), onN-(aryl)-arylsulfonamides, see: Gowda *et al.* (2003), on N-(substitutedbenzoyl)-arylsulfonamides, see: Suchetan *et al.* (2011) and on N-chloroarylamides, see: Gowda & Mahadevappa (1983).



#### **Experimental**

| Crystal data |  |
|--------------|--|
| C13H9ClN2O5S |  |

 $M_r = 340.73$ Monoclinic,  $P2_1/c$ a = 11.891 (2) Å b = 5.0577 (6) Å c = 23.488 (3) Å $\beta = 90.43 (1)^{\circ}$  $V = 1412.6 (3) \text{ Å}^{3}$ Z = 4Mo  $K\alpha$  radiation  $\mu = 0.44 \text{ mm}^{-1}$ T = 293 K

#### Data collection

| Oxford Diffraction Xcalibur       |
|-----------------------------------|
| diffractometer with a Sapphire    |
| CCD detector                      |
| Absorption correction: multi-scan |
| (CrysAlis RED; Oxford             |

Refinement  $R[F^2 > 2\sigma(F^2)] = 0.058$   $wR(F^2) = 0.105$  S = 1.202840 reflections 202 parameters 1 restraint Diffraction, 2009)  $T_{\min} = 0.822$ ,  $T_{\max} = 0.957$ 4873 measured reflections 2840 independent reflections 204 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.017$ 

 $0.46 \times 0.20 \times 0.10 \text{ mm}$ 

H atoms treated by a mixture of independent and constrained refinement  $\Delta \rho_{max} = 0.35 \text{ e } \text{ Å}^{-3}$  $\Delta \rho_{min} = -0.35 \text{ e } \text{ Å}^{-3}$ 

# Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H                                     | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------|-----------------------------------------|--------------|--------------|---------------------------|
| $N1 - H1N \cdots O2^{i}$ | 0.82 (2)                                | 2.29 (2)     | 3.100 (3)    | 169 (3)                   |
| Symmetry code: (i) –     | $x, y - \frac{1}{2}, -z + \frac{1}{2}.$ |              |              |                           |

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

BTG thanks the University Grants Commission, Government of India, New Delhi for a special grant under the UGC– BSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5758).

#### References

- Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, 01–03.
- Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
- Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.
- Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, **59**, 845–852.
- Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o3515.

# supporting information

Acta Cryst. (2012). E68, o244 [doi:10.1107/S1600536811054857]

# N-(3-Chlorobenzoyl)-3-nitrobenzenesulfonamide

# P. A. Suchetan, Sabine Foro and B. Thimme Gowda

## S1. Comment

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of our studies on the substituent effects on the structures and other aspects of *N*-(aryl)-amides (Bowes *et al.*, 2003; Gowda *et al.*, 2004), *N*-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), *N*-(aryl)-aryl-sulfonamides (Gowda *et al.*, 2003); *N*-(substitutedbenzoyl)-arylsulfonamides (Suchetan *et al.*, 2011) and *N*-chloro-aryl-sulfonamides (Gowda & Mahadevappa, 1983), in the present work, the crystal structure of *N*-(3-chlorobenzoyl)-3-nitrobenzenesulfonamide (I) has been determined (Fig.1).

The conformation between the N—H and C=O bonds in the C—SO<sub>2</sub>—NH—C(O) segment is *anti* and the N—C bond in the segment has *gauche* torsion with respect to the S=O bonds(Fig.1), similar to that observed in *N*-(benzoyl)-3-nitrobenzenesulfonamide (II)(Suchetan *et al.*, 2011). Further, in (I), the conformation between the N—H bond and the *meta*-nitro group in the sulfonyl benzene ring is *syn*, similar to that observed in (II). But the conformation of the C=O is *anti* to the *meta*-Cl atom in the benzoyl ring.

The molecule is twisted at the S—N bond with the torsional angle of -60.40 (29)°, compared to the value of -62.80 (17)° in (II).

The dihedral angle between the sulfonyl benzene ring and the  $-SO_2-NH-C-O$  segment is 77.0 (1)°, compared to the value of 79.2 (1)° in (II). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 83.5 (1)°, compared to the value of 86.7 (1)° in (II).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

# S2. Experimental

The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid (0.02 mole), 3-nitrobenzenesulfonamide (0.02 mole) and excess phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, *N*-(3-chlorobenzoyl)-3-nitrobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

#### **S3. Refinement**

The H atom of the NH group was located in a difference map and its coordinates were refined with the N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the  $U_{eq}$  of the parent atom.



# Figure 1

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.



# Figure 2

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

## N-(3-Chlorobenzoyl)-3-nitrobenzenesulfonamide

| Crystal data                  |                                                       |
|-------------------------------|-------------------------------------------------------|
| $C_{13}H_9ClN_2O_5S$          | V = 1412.6 (3) Å <sup>3</sup>                         |
| $M_r = 340.73$                | Z = 4                                                 |
| Monoclinic, $P2_1/c$          | F(000) = 696                                          |
| Hall symbol: -P 2ybc          | $D_{\rm x} = 1.602 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 11.891 (2)  Å             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 5.0577 (6) Å              | Cell parameters from 1638 reflections                 |
| c = 23.488 (3)  Å             | $\theta = 2.4 - 27.9^{\circ}$                         |
| $\beta = 90.43 \ (1)^{\circ}$ | $\mu=0.44~\mathrm{mm^{-1}}$                           |
|                               |                                                       |

| T = 293  K                                                                                                                                                                                                                                                                                                                                  | $0.46 \times 0.20 \times 0.10 \text{ mm}$                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rod, colourless                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |
| Data collection                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |
| Oxford Diffraction Xcalibur<br>diffractometer with a Sapphire CCD detector<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Rotation method data acquisition using $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis RED</i> ; Oxford Diffraction, 2009)<br>$T_{\min} = 0.822, T_{\max} = 0.957$ | 4873 measured reflections<br>2840 independent reflections<br>2204 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.017$<br>$\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.4^{\circ}$<br>$h = -14 \rightarrow 14$<br>$k = -3 \rightarrow 6$<br>$l = -14 \rightarrow 29$ |
| Refinement                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.058$<br>$wR(F^2) = 0.105$                                                                                                                                                                                                                                   | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites                                                                                                                                                  |
| S = 1.20<br>2840 reflections<br>202 parameters<br>1 restraint<br>Primary atom site location: structure-invariant                                                                                                                                                                                                                            | H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0074P)^2 + 2.6391P]$ where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.005$                                                                        |
| direct methods                                                                                                                                                                                                                                                                                                                              | $\Delta  ho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$<br>$\Delta  ho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$                                                                                                                                                           |

## Special details

**Experimental**. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Cl1 | -0.01505 (9) | 0.2312 (2)   | 0.06480 (5)  | 0.0673 (3)                  |  |
| S1  | 0.16424 (7)  | 1.19021 (16) | 0.25405 (3)  | 0.0329 (2)                  |  |
| 01  | 0.1952 (2)   | 1.4485 (5)   | 0.23632 (10) | 0.0459 (6)                  |  |
| O2  | 0.06284 (18) | 1.1510 (5)   | 0.28538 (9)  | 0.0426 (6)                  |  |
| 03  | 0.3210 (2)   | 1.0853 (6)   | 0.16263 (11) | 0.0549 (7)                  |  |
| O4  | 0.2384 (3)   | 0.4415 (6)   | 0.40468 (13) | 0.0754 (9)                  |  |
| 05  | 0.4054 (3)   | 0.4980 (8)   | 0.43876 (14) | 0.0927 (12)                 |  |
| N1  | 0.1495 (2)   | 0.9973 (5)   | 0.19807 (11) | 0.0326 (6)                  |  |
| H1N | 0.099 (2)    | 0.888 (6)    | 0.2022 (14)  | 0.039*                      |  |
| N2  | 0.3285 (3)   | 0.5553 (7)   | 0.40604 (14) | 0.0596 (10)                 |  |
| C1  | 0.2775 (3)   | 1.0595 (6)   | 0.29449 (13) | 0.0329 (7)                  |  |

| C2  | 0.2570 (3) | 0.8591 (7) | 0.33282 (14) | 0.0369 (8)  |  |
|-----|------------|------------|--------------|-------------|--|
| H2  | 0.1858     | 0.7855     | 0.3366       | 0.044*      |  |
| C3  | 0.3472 (3) | 0.7720 (7) | 0.36558 (14) | 0.0427 (9)  |  |
| C4  | 0.4536 (3) | 0.8782 (9) | 0.36104 (16) | 0.0529 (10) |  |
| H4  | 0.5124     | 0.8157     | 0.3836       | 0.063*      |  |
| C5  | 0.4710 (3) | 1.0782 (9) | 0.32241 (17) | 0.0540 (10) |  |
| Н5  | 0.5423     | 1.1519     | 0.3189       | 0.065*      |  |
| C6  | 0.3836 (3) | 1.1707 (8) | 0.28888 (15) | 0.0436 (8)  |  |
| H6  | 0.3957     | 1.3060     | 0.2628       | 0.052*      |  |
| C7  | 0.2344 (3) | 0.9602 (7) | 0.15852 (14) | 0.0373 (8)  |  |
| C8  | 0.2142 (3) | 0.7600 (7) | 0.11301 (13) | 0.0374 (8)  |  |
| C9  | 0.1165 (3) | 0.6101 (7) | 0.10919 (14) | 0.0399 (8)  |  |
| H9  | 0.0580     | 0.6387     | 0.1345       | 0.048*      |  |
| C10 | 0.1067 (3) | 0.4200 (8) | 0.06786 (14) | 0.0451 (9)  |  |
| C11 | 0.1915 (4) | 0.3747 (9) | 0.02952 (15) | 0.0571 (11) |  |
| H11 | 0.1840     | 0.2445     | 0.0018       | 0.069*      |  |
| C12 | 0.2877 (4) | 0.5261 (9) | 0.03305 (16) | 0.0607 (12) |  |
| H12 | 0.3454     | 0.4976     | 0.0072       | 0.073*      |  |
| C13 | 0.3000 (3) | 0.7185 (8) | 0.07404 (14) | 0.0473 (9)  |  |
| H13 | 0.3651     | 0.8202     | 0.0757       | 0.057*      |  |
|     |            |            |              |             |  |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0696 (7)  | 0.0659 (7)  | 0.0663 (7)  | -0.0096 (6)  | -0.0136 (5)  | -0.0209 (6)  |
| S1  | 0.0345 (4)  | 0.0284 (4)  | 0.0357 (4)  | 0.0021 (4)   | 0.0005 (3)   | -0.0003 (4)  |
| 01  | 0.0571 (16) | 0.0278 (13) | 0.0526 (15) | -0.0010 (11) | -0.0058 (12) | 0.0028 (11)  |
| O2  | 0.0355 (12) | 0.0516 (15) | 0.0408 (13) | 0.0068 (11)  | 0.0062 (10)  | -0.0020 (12) |
| O3  | 0.0418 (14) | 0.0674 (18) | 0.0557 (16) | -0.0170 (14) | 0.0096 (12)  | -0.0107 (15) |
| O4  | 0.093 (2)   | 0.062 (2)   | 0.072 (2)   | 0.0072 (19)  | 0.0132 (19)  | 0.0273 (18)  |
| O5  | 0.104 (3)   | 0.108 (3)   | 0.066 (2)   | 0.040 (2)    | -0.0120 (19) | 0.031 (2)    |
| N1  | 0.0338 (15) | 0.0324 (15) | 0.0318 (14) | -0.0039 (12) | 0.0040 (12)  | -0.0014 (12) |
| N2  | 0.081 (3)   | 0.058 (2)   | 0.0409 (18) | 0.031 (2)    | 0.0058 (19)  | 0.0080 (17)  |
| C1  | 0.0352 (17) | 0.0316 (17) | 0.0320 (16) | 0.0022 (14)  | 0.0005 (13)  | -0.0031 (15) |
| C2  | 0.0380 (18) | 0.0339 (19) | 0.0388 (18) | 0.0029 (15)  | 0.0026 (14)  | -0.0020 (15) |
| C3  | 0.054 (2)   | 0.042 (2)   | 0.0327 (17) | 0.0148 (18)  | 0.0003 (15)  | -0.0013 (16) |
| C4  | 0.047 (2)   | 0.066 (3)   | 0.045 (2)   | 0.020 (2)    | -0.0072 (17) | -0.012 (2)   |
| C5  | 0.0344 (19) | 0.072 (3)   | 0.056 (2)   | -0.002 (2)   | -0.0006 (17) | -0.010 (2)   |
| C6  | 0.0395 (19) | 0.045 (2)   | 0.046 (2)   | -0.0034 (17) | 0.0036 (16)  | -0.0016 (18) |
| C7  | 0.0375 (18) | 0.0384 (19) | 0.0360 (18) | 0.0004 (16)  | 0.0017 (15)  | 0.0049 (15)  |
| C8  | 0.0418 (18) | 0.039 (2)   | 0.0313 (17) | 0.0070 (16)  | 0.0047 (14)  | 0.0034 (15)  |
| C9  | 0.0410 (19) | 0.047 (2)   | 0.0314 (17) | 0.0049 (17)  | 0.0038 (14)  | -0.0014 (16) |
| C10 | 0.057 (2)   | 0.047 (2)   | 0.0319 (18) | 0.0084 (18)  | -0.0062 (16) | -0.0074 (17) |
| C11 | 0.077 (3)   | 0.060 (3)   | 0.035 (2)   | 0.014 (2)    | -0.0030 (19) | -0.0113 (19) |
| C12 | 0.065 (3)   | 0.076 (3)   | 0.041 (2)   | 0.015 (2)    | 0.018 (2)    | -0.005 (2)   |
| C13 | 0.049 (2)   | 0.054 (2)   | 0.0388 (19) | 0.0050 (19)  | 0.0087 (16)  | 0.0026 (19)  |

Geometric parameters (Å, °)

| Cl1—C10                | 1.736 (4)   | C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.376 (6) |
|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| S1—01                  | 1.420 (2)   | C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9300    |
| S1—O2                  | 1.431 (2)   | C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.381 (5) |
| S1—N1                  | 1.645 (3)   | С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9300    |
| S1—C1                  | 1.770 (3)   | С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9300    |
| O3—C7                  | 1.212 (4)   | C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.490 (5) |
| O4—N2                  | 1.217 (5)   | C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.390 (5) |
| O5—N2                  | 1.225 (4)   | C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.391 (4) |
| N1—C7                  | 1.390 (4)   | C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.371 (5) |
| N1—H1N                 | 0.823 (18)  | С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9300    |
| N2—C3                  | 1.468 (5)   | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.376 (5) |
| C1—C2                  | 1.378 (4)   | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.379 (6) |
| C1—C6                  | 1.388 (4)   | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300    |
| C2—C3                  | 1.387 (5)   | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.376 (5) |
| C2—H2                  | 0.9300      | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300    |
| C3—C4                  | 1.380 (5)   | C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9300    |
|                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 01—S1—O2               | 119.97 (15) | С6—С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7     |
| 01—S1—N1               | 109.70 (15) | C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.3 (4) |
| O2—S1—N1               | 104.11 (14) | С5—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.4     |
| 01—S1—C1               | 107.63 (15) | C1—C6—H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.4     |
| O2—S1—C1               | 108.23 (15) | O3—C7—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.8 (3) |
| N1—S1—C1               | 106.45 (14) | O3—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.0 (3) |
| C7—N1—S1               | 122.8 (2)   | N1—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.2 (3) |
| C7—N1—H1N              | 121 (2)     | C9—C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.5 (3) |
| S1—N1—H1N              | 112 (2)     | C9—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.1 (3) |
| O4—N2—O5               | 123.9 (4)   | C13—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.4 (3) |
| O4—N2—C3               | 118.2 (3)   | C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.6 (3) |
| O5—N2—C3               | 117.8 (4)   | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.2     |
| C2-C1-C6               | 121.7 (3)   | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.2     |
| C2C1S1                 | 119.2 (2)   | C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.5 (4) |
| C6-C1-S1               | 119.1 (3)   | C9—C10—Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.8 (3) |
| C1—C2—C3               | 117.2 (3)   | C11—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.8 (3) |
| С1—С2—Н2               | 121.4       | C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.7 (4) |
| С3—С2—Н2               | 121.4       | C10—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.7     |
| C4—C3—C2               | 122.6 (3)   | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.7     |
| C4—C3—N2               | 118.9 (3)   | C13—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.2 (4) |
| C2—C3—N2               | 118.5 (3)   | C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4     |
| C5—C4—C3               | 118.7 (3)   | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4     |
| С5—С4—Н4               | 120.7       | C12—C13—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.5 (4) |
| С3—С4—Н4               | 120.7       | C12—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.2     |
| C4—C5—C6               | 120.6 (4)   | C8—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.2     |
| C4—C5—H5               | 119.7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| Q1 Q1 N1 C7            | 55.9 (2)    | 04 05 07 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| $O_1 = S_1 = N_1 = C/$ | 55.8(5)     | $\begin{array}{c} C_4 \\ \hline \\ C_2 \\ \hline \\ C_1 \\ \hline \\ C_2 \\ \hline \\ C_2 \\ \hline \\ C_1 \\ \hline \\ C_2 \\ \hline C_2 \\$ | 0.0 (0)   |
| 02-31-101-0/           | -1/4.0(3)   | U2-U1-U0-U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1 (3)   |

| C1—S1—N1—C7 | -60.4 (3)  | S1—C1—C6—C5     | 176.8 (3)  |  |
|-------------|------------|-----------------|------------|--|
| O1—S1—C1—C2 | 157.3 (3)  | S1—N1—C7—O3     | -4.7 (5)   |  |
| O2—S1—C1—C2 | 26.2 (3)   | S1—N1—C7—C8     | 174.1 (2)  |  |
| N1—S1—C1—C2 | -85.2 (3)  | O3—C7—C8—C9     | 177.9 (3)  |  |
| O1—S1—C1—C6 | -19.5 (3)  | N1—C7—C8—C9     | -0.8 (5)   |  |
| O2—S1—C1—C6 | -150.5 (3) | O3—C7—C8—C13    | 0.0 (5)    |  |
| N1—S1—C1—C6 | 98.1 (3)   | N1—C7—C8—C13    | -178.7 (3) |  |
| C6—C1—C2—C3 | -0.2 (5)   | C13—C8—C9—C10   | 1.3 (5)    |  |
| S1—C1—C2—C3 | -176.9 (2) | C7—C8—C9—C10    | -176.5 (3) |  |
| C1—C2—C3—C4 | 0.2 (5)    | C8—C9—C10—C11   | -0.5 (5)   |  |
| C1—C2—C3—N2 | -178.9 (3) | C8—C9—C10—C11   | 178.8 (3)  |  |
| O4—N2—C3—C4 | -171.0 (4) | C9-C10-C11-C12  | -0.3 (6)   |  |
| O5—N2—C3—C4 | 8.2 (5)    | Cl1—C10—C11—C12 | -179.6 (3) |  |
| O4—N2—C3—C2 | 8.1 (5)    | C10—C11—C12—C13 | 0.3 (6)    |  |
| O5—N2—C3—C2 | -172.7 (3) | C11—C12—C13—C8  | 0.6 (6)    |  |
| C2—C3—C4—C5 | -0.1 (5)   | C9—C8—C13—C12   | -1.4 (5)   |  |
| N2—C3—C4—C5 | 179.0 (3)  | C7—C8—C13—C12   | 176.6 (3)  |  |
| C3—C4—C5—C6 | 0.0 (6)    |                 |            |  |
|             |            |                 |            |  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                           | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|----------|----------|-----------|-------------------------|
| N1—H1 <i>N</i> ···O2 <sup>i</sup> | 0.82 (2) | 2.29 (2) | 3.100 (3) | 169 (3)                 |

Symmetry code: (i) -x, y-1/2, -z+1/2.