Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Z)- $\mathrm{N}-[(Z)$-3-(2,4-Dimethylphenylimino)-butan-2-ylidene]-2,4-dimethylaniline

Jianchao Yuan,* Chengping Miao, Weibing Xu and Bingnian Yuan

Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry \& Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
Correspondence e-mail: jianchaoyuan@nwnu.edu.cn
Received 15 November 2011; accepted 10 December 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.052 ; w R$ factor $=0.175 ;$ data-to-parameter ratio $=15.3$.

The asymmetric unit of the title compound, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$, contains one half -molecule which exhibits a crystallographically imposed center of symmetry. The benzene rings are inclined to the 1,4-diazabutadiene mean plane by $78.3(2)^{\circ}$.

Related literature

The title compound was synthesized as a α-diimine ligand for $\mathrm{Ni}^{\mathrm{II}}-\alpha$-diimine olefin polymerization catalysts. For applications of α-diimine ligands, see: Johnson et al. (1995); Killian et al. (1996). For the design and synthesis of new α-diimine derivatives, see: Yuan et al. (2005); Popeney \& Guan (2005, 2010); Popeney et al. (2011). The crystal structures of Re and Ni complexes with the title ligand were reported by Kia et al. (2005) and Yuan et al. (2011), respectively.

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \quad M_{r}=292.41$

Orthorhombic, Pbca
$a=13.50$ (1) £
$Z=4$
$b=7.571(6) \AA$
$c=16.738(12) \AA$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$V=1711(2) \mathrm{A}^{3}$
$T=296 \mathrm{~K}$
$0.23 \times 0.20 \times 0.14 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.985, T_{\text {max }}=0.991$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.175$
$S=1.05$
1592 reflections

> 5143 measured reflections
> 1592 independent reflections
> 1043 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (grant No. 20964003) for funding. We also thank the Key Laboratory of Eco Environment-Related Polymer Materials of the Ministry of Education and Key Laboratory of Polymer Materials of Gansu Province (Northwest Normal University) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5204).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, L. K., Killian, C. M. \& Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.
Kia, R., Mirkhani, V., Deák, A. \& Kálmán, A. (2005). Acta Cryst. E61, m566m567.
Killian, C. M., Tempel, D. J., Johnson, L. K. \& Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664-11665.
Popeney, C. S. \& Guan, Z. B. (2005). Organometallics, 24, 1145-1155.
Popeney, C. S. \& Guan, Z. B. (2010). Macromolecules, 43, 4091-4097.
Popeney, C. S., Levins, C. M. \& Guan, Z. B. (2011). Organometallics, 30, 24322452.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yuan, J. C., Mei, T. J., Gomes, P. T., Marques, M. M., Wang, X. H., Liu, Y. F., Miao, C. P. \& Xie, X. L. (2011). J. Organomet. Chem. 696, 3251-3256.
Yuan, J. C., SiIva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. \& Marques, M. M. (2005). Polymer, 46, 2122-2132.

supporting information

(Z)- N-[(Z)-3-(2,4-Dimethylphenylimino)butan-2-ylidene]-2,4-dimethylaniline Jianchao Yuan, Chengping Miao, Weibing Xu and Bingnian Yuan

S1. Comment

α-Diimine ligand nickel catalysts greatly attracted attention due to their high catalytic activity in ethylene polymerization (Johnson et al., 1995; Killian et al., 1996). Design and synthesis of the ligands is crucial (Popeney et al., 2005, 2010, 2011; Yuan et al., 2005). Herewith we present the title compound (I).
In (I) (Fig. 1), the single $\mathrm{C}-\mathrm{C}$ bond in 1,4-diazabutadiene fragment is trans-configured and situated on inversion center. The dihedral angle between the benzene ring and 1,4-diazabutadiene plane is $78.3(2)^{\circ}$. However, the transconfigured ligand can be transformed into cis-configured ligand in order to facilitate the formation of α-diimine-metal complexes, for examples, see Yuan et al. (2011) for Ni complex, and Kia et al. (2005) for Re complex.

S2. Experimental

Formic acid (1 ml) was added to a stirred solution of 2,3-butanedione ($0.052 \mathrm{~g}, 0.6 \mathrm{mmol}$) and 2,4-dimethylaniline (0.144 $\mathrm{g}, 1.2 \mathrm{mmol}$) in methanol (30 ml). The mixture was refluxed for 24 h , then cooled and the precipitate was separated by filtration. The solid was recrystallized from ethanol/dichloromethane ($v / v=8: 1$), washed and dried under vacuum. Yield: $0.160 \mathrm{~g}(82 \%)$. Crystals suitable for X-ray structure determination were grown from a solution of the title compound in a mixture of cyclohexane/dichloromethane ($1: 2, v / v$).

S3. Refinement

All hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of 0.93 and $0.96 \AA$ for aryl and methyl type H -atoms, respectively. They were included in the refinement in a riding model approximation, with U iso $=1.2-1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

The molecular structure of the title compound, with the atom-labelling scheme [symmetry code: (a) 1-x,2-y,1-z]. Displacement ellipsoids are shown at the 30% probability level.

(Z)- $\mathrm{N}-[(Z)-3-(2,4-$ Dimethylphenylimino)butan-2-ylidene]- 2,4-dimethylaniline

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$
$M_{r}=292.41$
Orthorhombic, Pbca
$a=13.50$ (1) \AA
$b=7.571$ (6) \AA
$c=16.738(12) \AA$
$V=1711(2) \AA^{3}$
$Z=4$
$F(000)=632$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.985, T_{\text {max }}=0.991$
$D_{\mathrm{x}}=1.135 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1144 reflections
$\theta=2.9-23.2^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, yellow
$0.23 \times 0.20 \times 0.14 \mathrm{~mm}$

5143 measured reflections
1592 independent reflections
1043 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-8 \rightarrow 16$
$k=-6 \rightarrow 9$
$l=-16 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.175$
$S=1.05$
1592 reflections
104 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\sigma_{0}}\right)^{2}+(0.0962 P)^{2}+0.2091 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97$ (Sheldrick, 2008), Fc $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \times \mathrm{FFc} \mathrm{F}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.009(4)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.60082(15)$	$0.9674(3)$	$0.65918(13)$	$0.0471(6)$
C2	$0.69975(15)$	$0.9165(3)$	$0.66744(13)$	$0.0464(6)$
C3	$0.72926(16)$	$0.8473(3)$	$0.74028(13)$	$0.0528(6)$

H3	0.7946	0.8104	0.7460	0.063^{*}
C4	$0.66613(18)$	$0.8305(3)$	$0.80502(13)$	$0.0548(6)$
C5	$0.56961(18)$	$0.8859(3)$	$0.79551(14)$	$0.0596(7)$
H5	0.5257	0.8782	0.8382	0.072^{*}
C6	$0.53728(17)$	$0.9527(3)$	$0.72328(15)$	$0.0579(7)$
H6	0.4717	0.9882	0.7178	0.070^{*}
C7	$0.77174(18)$	$0.9360(3)$	$0.59996(15)$	$0.0669(8)$
H7A	0.7403	0.9026	0.5508	0.100^{*}
H7B	0.8280	0.8612	0.6092	0.100^{*}
H7C	0.7931	1.0567	0.5966	0.100^{*}
C8	$0.7013(2)$	$0.7515(4)$	$0.88279(14)$	$0.0795(9)$
H8A	0.7642	0.6951	0.8747	0.119^{*}
H8B	0.6540	0.6659	0.9011	0.119^{*}
H8C	0.7081	0.8432	0.9220	0.119^{*}
C9	$0.51658(15)$	$0.9537(3)$	$0.53705(12)$	$0.0467(6)$
C10	$0.48786(19)$	$0.7641(3)$	$0.54753(15)$	$0.0662(7)$
H10A	0.5191	0.7177	0.5946	0.099^{*}
H10B	0.5088	0.6976	0.5017	0.099^{*}
H10C	0.4172	0.7555	0.5530	0.099^{*}
N1	$0.56812(12)$	$1.0428(2)$	$0.58600(11)$	$0.0516(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0501(13)$	$0.0426(12)$	$0.0487(13)$	$-0.0029(9)$	$-0.0084(10)$	$0.0010(10)$
C2	$0.0488(13)$	$0.0429(12)$	$0.0476(13)$	$0.0017(9)$	$-0.0048(9)$	$-0.0027(10)$
C3	$0.0475(12)$	$0.0526(13)$	$0.0583(14)$	$0.0050(10)$	$-0.0116(10)$	$0.0000(11)$
C4	$0.0658(15)$	$0.0504(14)$	$0.0483(14)$	$-0.0026(12)$	$-0.0108(11)$	$0.0014(11)$
C5	$0.0630(15)$	$0.0636(16)$	$0.0523(14)$	$0.0035(12)$	$0.0046(11)$	$0.0049(12)$
C6	$0.0482(12)$	$0.0610(16)$	$0.0646(15)$	$0.0054(11)$	$-0.0008(11)$	$0.0083(12)$
C7	$0.0624(15)$	$0.0685(17)$	$0.0697(16)$	$0.0067(12)$	$0.0087(12)$	$0.0054(13)$
C8	$0.0911(19)$	$0.089(2)$	$0.0584(16)$	$-0.0039(15)$	$-0.0191(14)$	$0.0118(15)$
C9	$0.0401(11)$	$0.0499(14)$	$0.0501(13)$	$0.0004(9)$	$-0.0031(9)$	$0.0045(10)$
C10	$0.0783(17)$	$0.0551(15)$	$0.0652(16)$	$-0.0118(12)$	$-0.0161(12)$	$0.0118(12)$
N1	$0.0503(11)$	$0.0505(11)$	$0.0540(12)$	$-0.0017(8)$	$-0.0086(9)$	$0.0083(9)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.378(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.397(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 1-\mathrm{N} 1$	$1.421(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
$\mathrm{C} 2-\mathrm{C} 3$	$1.385(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{C} 7$	$1.497(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.384(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 9-\mathrm{N} 1$	$1.269(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.378(3)$	$\mathrm{C} 9-\mathrm{C} 9 \mathrm{i}$	$1.494(4)$
$\mathrm{C} 4-\mathrm{C} 8$	$1.509(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.497(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.381(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9600

supporting information

C5-H5	0.9300	C10-H10B	0.9600
C6-H6	0.9300	C10-H10C	0.9600
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.7 (2)	H7A-C7- 77 B	109.5
C6- $\mathrm{C} 1-\mathrm{N} 1$	120.67 (19)	C2- $77-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.5 (2)	H7A-C7-H7C	109.5
C3-C2-C1	117.8 (2)	H7B-C7-H7C	109.5
C3-C2-C7	121.0 (2)	$\mathrm{C} 4-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
C1-C2-C7	121.2 (2)	C4-C8-H8B	109.5
C4-C3-C2	123.1 (2)	H8A-C8-H8B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.4	C4-C8-H8C	109.5
C2-C3-H3	118.4	H8A-C8-H8C	109.5
C5-C4-C3	117.6 (2)	H8B-C8-H8C	109.5
C5-C4-C8	121.2 (2)	N1-C9-C9 ${ }^{\text {i }}$	116.8 (2)
C3-C4-C8	121.2 (2)	N1-C9-C10	125.18 (19)
C4-C5-C6	120.7 (2)	C9 - C9-C10	118.0 (2)
C4-C5-H5	119.6	C9-C10-H10A	109.5
C6-C5-H5	119.6	C9-C10-H10B	109.5
C1-C6-C5	121.0 (2)	H10A-C10-H10B	109.5
C1-C6-H6	119.5	C9-C10- H 10 C	109.5
C5-C6-H6	119.5	H10A-C10-H10C	109.5
C2-C7-H7A	109.5	H10B-C10-H10C	109.5
C2-C7-H7B	109.5	C9-N1-C1	120.87 (19)
C6-C1-C2-C3	1.9 (3)	C8-C4-C5-C6	-177.9 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.55 (19)	C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.9 (4)
C6-C1-C2-C7	-178.0 (2)	N1-C1-C6-C5	-177.5 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-1.4 (3)	C4-C5-C6-C1	-0.7 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.5 (3)	C9 - $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	178.3 (2)
C7-C2-C3-C4	178.4 (2)	C10-C9-N1-C1	-2.4 (3)
C2-C3-C4-C5	0.0 (3)	C6- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	-78.8 (3)
C2-C3-C4-C8	179.0 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	104.6 (2)
C3-C4-C5-C6	1.1 (4)		

Symmetry code: (i) $-x+1,-y+2,-z+1$.

