organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-Bis(2,6-diethylphenyl)acenaphthylene-1,2-diimine

Li Wang,^a Xuyang Luo,^b Bo Gao,^a Qiaolin Wu^a* and Ying Mu^a*

^aState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and ^bSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China

Correspondence e-mail: wuql@jlu.edu.cn, ymu@jlu.edu.cn

Received 9 November 2011; accepted 8 December 2011

Key indicators: single-crystal X-ray study; T = 185 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.151; data-to-parameter ratio = 16.2.

The title compound, $C_{32}H_{32}N_2$, has crystallographic twofold rotation symmetry, with two C atoms lying on the rotation axis. The dihedral angle between the substituted benzene ring and the naphthalene ring system is 79.8 (1)°. The crystal structure is stabilized by $C-H\cdots N$ interactions, which form a chain motif along the *b*-axis direction.

Related literature

For details and applications of acenaphthenquinone-based Schiff bases and corresponding metal complexes, see: Li *et al.* (2011); Hagar *et al.* (2010); Kovach *et al.* (2011); Oleinik *et al.* (2005); Ragaini *et al.* (2006); Rosa *et al.* (2008); Small *et al.* (2007); Zhou *et al.* (2008).

Experimental

Crystal data $C_{32}H_{32}N_2$ $M_r = 444.60$

Monoclinic, C2/ca = 13.5134 (12) Å b = 8.6952 (8) Å c = 22.3532 (19) Å $\beta = 99.413 (1)^{\circ}$ $V = 2591.2 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD	7599 measured reflections
diffractometer	2538 independent reflections
Absorption correction: multi-scan	1842 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.028$
$T_{\min} = 0.984, T_{\max} = 0.986$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 157 parameters $wR(F^2) = 0.151$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.42$ e Å⁻³2538 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

Mo $K\alpha$ radiation

 $0.25 \times 0.24 \times 0.21 \text{ mm}$

 $\mu = 0.07 \text{ mm}^{-1}$

T = 185 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C4-H4\cdots N1^i$	0.95	2.43	3.379 (2)	179
Summatry and (i)	x u 1 =			

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China (grant Nos. 21004026 and 21074043).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2033).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hagar, M., Ragaini, F., Monticelli, E., Caselli, A., Macchi, P. & Casati, N. (2010). Chem. Commun. 46, 6153–6155.
- Kovach, J., Peralta, M., Brennessel, W. W. & Jones, W. D. (2011). J. Mol. Struct. 992, 33–38.
- Li, L.-D., Gomes, C. S. B., Gomes, P. T., Duarte, M. T. & Fan, Z. Q. (2011). Dalton Trans. 40, 3365–3380.
- Oleinik, I. I., Oleinik, I. V., Ivanchev, S. S. & Tolstikov, G. A. (2005). Russ. J. Org. Chem. 41, 1354–1357.
- Ragaini, F., Gasperini, M., Parma, P., Gallo, E., Casati, N. & Macchi, P. (2006). New J. Chem. 30, 1046–1057.
- Rosa, V., Aviles, T., Aullon, G., Covelo, B. & Lodeiro, C. (2008). *Inorg. Chem.* 47, 7734–7744.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Small, B. L., Rios, R., Fernandez, E. R. & Carney, M. J. (2007). Organometallics, 26, 1744–1749.
- Zhou, J., Sun, H.-J., Harms, K. & Sundermeyer, J. (2008). Z. Anorg. Allg. Chem. 634, 1517–1521.

supporting information

Acta Cryst. (2012). E68, o128 [doi:10.1107/S1600536811052901]

N,N'-Bis(2,6-diethylphenyl)acenaphthylene-1,2-diimine

Li Wang, Xuyang Luo, Bo Gao, Qiaolin Wu and Ying Mu

S1. Comment

Acenaphthenequinone-based Schiff bases and their metal complexes have been widely synthesized due to their significant applications in catalysis, coordination chemistry and supramolecular assemblies. (Ragaini *et al.*, 2006; Kovach *et al.*, 2011; Small *et al.*, 2007; Rosa *et al.*, 2008; Oleinik *et al.*, 2005; Li *et al.*, 2011; Hagar *et al.*, 2010; Zhou *et al.*, 2008.) As part of our research efforts focused on developing olefin polymerization catalysts, a novel series of Schiff-base derivatives were synthesized and evaluated as high-performance ligand systems. Herein, we report the preparation and crystal structure of new acenaphthenequinone-based Schiff base compound, derived from acenaphthenequinone and 2,6-diethylaniline.

The title molecule, Fig. 1, has crystallographic twofold rotation symmetry. The dihedral angle between the substituted benzene ring and the naphthalene fragment is 79.8 (1)°. Both lengths and angles in the title compound are in normal ranges and are comparable to those found in similar acenaphthenequinone-based Schiff base compounds (Kovach *et al.*, 2011; Rosa *et al.*, 2008).

In the packing of the crystal, there are intermolecular C—H···N interactions, which form one-dimensional chains (Fig. 2 and Table 1).

S2. Experimental

Acenaphthenequinone (1.35 g, 7.4 mmol) in 65 ml of acetonitrile was heated under reflux for 30 min and then 12 ml of acetic acid was added and heating was continued until the acenaphthenequinone had completely dissolved. To this hot solution, 2.39 g (16 mmol) of 2,6-diethylaniline was added directly and the solution was heated under reflux for a further 1.5 h. It was then cooled to room temperature and the solid filtered off to give a yellow product that was washed with hexane and air dried. Yield 2.73 g (83%). The crystals suitable for X-ray structure determination were obtained by slow solvent evaporation from an ethanolic solution at room temperature.

S3. Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.95 (aromatic carbon), 0.99 (methylene) and 0.98 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with $U_{iso}(H) = 1.2$ (1.5 for methyl) $U_{eq}(C)$.

Figure 1

View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity. [Symmetry code: (A) -x, y, 0.5 - z.]

Figure 2

The molecular packing of (I). Hydrogen bonds are indicated by dashed lines.

N,*N*'-Bis(2,6-diethylphenyl)acenaphthylene-1,2-diimine

Z = 4
F(000) = 952
$D_{\rm x} = 1.140 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\theta = 3.7 - 52.1^{\circ}$
$\mu = 0.07 \mathrm{~mm^{-1}}$
T = 185 K
Block, pale yellow
$0.25 \times 0.24 \times 0.21 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{\min} = 0.984, T_{\max} = 0.986$	7599 measured reflections 2538 independent reflections 1842 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -16 \rightarrow 14$ $k = -10 \rightarrow 10$ $l = -27 \rightarrow 24$
Refinement	~
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.151$ S = 1.02 2538 reflections 157 nonemeters	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0768P)^2 + 1.7702P]$ where $B = (E_c^2 + 2E_c^2)/2$
0 restraints Primary atom site location: structure-invariant direct methods	where $P = (P_0^2 + 2P_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.42 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Special details

Experimental. ¹H NMR (300 MHz, CDCl₃, 298 K) δ (p.p.m.): 1.13 (t, $J_{H-H} = 9.0$ Hz, 12H, CH₂CH₃), 2.49 (m, 4H, CH₂CH₃), 2.60 (m, 4H, CH₂CH₃), 6.71 (d, 2H), 7.22 (m, 6H), 7.37 (t, 2H), 7.87 (d, 2H). ¹³C NMR (75 MHz, CDCl₃, 298 K) δ (p.p.m.): 8.74, 19.58, 117.77, 118.81, 121.28, 122.94, 123.68, 124.41, 125.55, 125.86, 135.46, 143.43, 155.61 p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$		
C1	0.48604 (12)	1.10939 (19)	0.30114 (7)	0.0252 (4)		
C2	0.47262 (13)	1.1829 (2)	0.35360 (8)	0.0307 (4)		
H2	0.4629	1.1260	0.3884	0.037*		
C3	0.47366 (14)	1.3456 (2)	0.35439 (9)	0.0358 (5)		
H3	0.4654	1.3973	0.3907	0.043*		
C4	0.48623 (14)	1.4314 (2)	0.30468 (9)	0.0346 (5)		
H4	0.4857	1.5405	0.3070	0.041*		
C5	0.5000	1.3587 (3)	0.2500	0.0296 (6)		
C6	0.5000	1.1977 (3)	0.2500	0.0259 (5)		
C7	0.49133 (12)	0.94636 (19)	0.28284 (7)	0.0244 (4)		
C8	0.46314 (14)	0.8115 (2)	0.37023 (8)	0.0290 (4)		
С9	0.36277 (14)	0.8239 (2)	0.37853 (8)	0.0353 (5)		
C10	0.34091 (17)	0.7996 (3)	0.43645 (10)	0.0531 (6)		

H10	0.2735	0.8076	0.4432	0.064*	
C11	0.41560 (19)	0.7640 (3)	0.48439 (10)	0.0664 (8)	
H11	0.3997	0.7510	0.5239	0.080*	
C12	0.51299 (19)	0.7475 (3)	0.47479 (10)	0.0622 (7)	
H12	0.5635	0.7204	0.5078	0.075*	
C13	0.53893 (15)	0.7696 (3)	0.41798 (9)	0.0426 (5)	
C14	0.28009 (15)	0.8561 (3)	0.32569 (9)	0.0446 (5)	
H14A	0.2972	0.9501	0.3046	0.054*	
H14B	0.2170	0.8764	0.3415	0.054*	
C15	0.26253 (17)	0.7249 (3)	0.28009 (10)	0.0542 (6)	
H15A	0.3251	0.7018	0.2651	0.081*	
H15B	0.2110	0.7550	0.2460	0.081*	
H15C	0.2402	0.6334	0.2998	0.081*	
C16	0.64667 (17)	0.7500 (3)	0.40762 (10)	0.0571 (7)	
H16A	0.6811	0.6753	0.4374	0.068*	
H16B	0.6466	0.7075	0.3665	0.068*	
C17	0.7033 (2)	0.8979 (4)	0.41362 (14)	0.0786 (9)	
H17A	0.6698	0.9720	0.3840	0.118*	
H17B	0.7718	0.8800	0.4061	0.118*	
H17C	0.7054	0.9388	0.4547	0.118*	
N1	0.48669 (11)	0.81965 (16)	0.31083 (6)	0.0273 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0249 (9)	0.0236 (9)	0.0262 (9)	0.0001 (7)	0.0019 (7)	-0.0007 (7)
C2	0.0353 (10)	0.0303 (10)	0.0267 (10)	0.0014 (7)	0.0054 (8)	-0.0028 (8)
C3	0.0419 (11)	0.0314 (11)	0.0338 (11)	0.0024 (8)	0.0058 (8)	-0.0104 (8)
C4	0.0384 (11)	0.0214 (9)	0.0427 (12)	0.0017 (7)	0.0030 (8)	-0.0066 (8)
C5	0.0284 (13)	0.0230 (13)	0.0359 (15)	0.000	0.0006 (11)	0.000
C6	0.0236 (12)	0.0251 (13)	0.0281 (13)	0.000	0.0017 (10)	0.000
C7	0.0247 (8)	0.0239 (9)	0.0240 (9)	0.0000 (7)	0.0024 (7)	-0.0012 (7)
C8	0.0383 (10)	0.0267 (9)	0.0230 (9)	-0.0045 (7)	0.0077 (7)	-0.0004 (7)
C9	0.0373 (11)	0.0386 (11)	0.0308 (10)	-0.0032 (8)	0.0080 (8)	-0.0010 (8)
C10	0.0409 (12)	0.0832 (18)	0.0377 (12)	-0.0097 (11)	0.0141 (10)	-0.0014 (11)
C11	0.0583 (16)	0.117 (2)	0.0267 (12)	-0.0145 (14)	0.0150 (11)	0.0090 (13)
C12	0.0520 (15)	0.104 (2)	0.0286 (12)	-0.0064 (13)	0.0007 (10)	0.0142 (12)
C13	0.0409 (12)	0.0584 (14)	0.0282 (11)	-0.0055 (9)	0.0053 (9)	0.0060 (9)
C14	0.0333 (11)	0.0582 (14)	0.0427 (12)	0.0037 (9)	0.0069 (9)	0.0033 (10)
C15	0.0395 (12)	0.0708 (16)	0.0486 (14)	-0.0116 (11)	-0.0040 (10)	-0.0032 (12)
C16	0.0445 (13)	0.0889 (19)	0.0357 (12)	0.0050 (12)	0.0002 (10)	0.0137 (12)
C17	0.0503 (15)	0.098 (2)	0.086 (2)	-0.0047 (15)	0.0064 (14)	0.0121 (17)
N1	0.0327 (8)	0.0243 (8)	0.0248 (8)	0.0001 (6)	0.0043 (6)	0.0004 (6)

Geometric parameters (Å, °)

C1—C2	1.373 (2)	C10-C11	1.382 (3)
C1—C6	1.415 (2)	C10—H10	0.9500

C1—C7	1.480 (2)	C11—C12	1.375 (3)
C2—C3	1.414 (3)	C11—H11	0.9500
С2—Н2	0.9500	C12—C13	1.385 (3)
C3—C4	1.372 (3)	C12—H12	0.9500
С3—Н3	0.9500	C13—C16	1.521 (3)
C4—C5	1.415 (2)	C14—C15	1.522 (3)
C4—H4	0.9500	C14—H14A	0.9900
C5—C6	1.401 (3)	C14—H14B	0.9900
$C5-C4^{i}$	1 415 (2)	C15—H15A	0.9800
$C6-C1^{i}$	1.115(2) 1 415(2)	C15—H15B	0.9800
C7—N1	1.113(2) 1.274(2)	C15 - H15C	0.9800
$C7 - C7^{i}$	1.271(2) 1 524 (3)	C16-C17	1 491 (4)
C^{8} C^{13}	1.524(3) 1.401(3)	C_{16} H_{16A}	0.0000
$C_8 = C_{13}$	1.401(3) 1.403(3)	C16 H16B	0.9900
C8 N1	1.403(3) 1.417(2)		0.9900
$C_0 = C_1 O_1$	1.417(2) 1.200(2)	C17 = H17R	0.9800
$C_{9} = C_{10}$	1.590 (5)		0.9800
C9—C14	1.513 (3)	CI/—HI/C	0.9800
C2—C1—C6	119.40 (17)	C10—C11—H11	120.0
C2—C1—C7	134.50 (16)	C11—C12—C13	121.4 (2)
C6—C1—C7	106.10 (15)	C11—C12—H12	119.3
C1—C2—C3	118.29 (17)	C13—C12—H12	119.3
C1—C2—H2	120.9	C12—C13—C8	118.13 (19)
C3—C2—H2	120.9	C12—C13—C16	121.09 (19)
C4—C3—C2	122.42 (17)	C8-C13-C16	120.78 (17)
С4—С3—Н3	118.8	C9—C14—C15	113.50 (18)
С2—С3—Н3	118.8	C9—C14—H14A	108.9
$C_{3} - C_{4} - C_{5}$	120 52 (18)	C15-C14-H14A	108.9
C3—C4—H4	1197	C9-C14-H14B	108.9
C5-C4-H4	119.7	C15-C14-H14B	108.9
C6-C5-C4	116.53 (12)	H_{14A} $-C_{14}$ H_{14B}	107.7
$C6-C5-C4^{i}$	116.53(12)	C14 $C15$ $H15A$	107.7
$C4-C5-C4^{i}$	126.9(2)	C14 $C15$ $H15R$	109.5
$C_{4} = C_{5} = C_{4}$	120.9(2) 122.85(11)	$H_{15A} = C_{15} = H_{15B}$	109.5
$C_{5} = C_{6} = C_{1}$	122.85(11) 122.85(11)	$C_{14} C_{15} H_{15}C$	109.5
C_{3}	122.03(11) 114.3(2)	$H_{154} = C_{15} = H_{15C}$	109.5
C1 - C0 - C1	114.3(2) 122.16(15)	H15P C15 H15C	109.5
NI = C7 = C7	133.10(13) 120.06(10)		109.5
NI = C / = C / C	120.00(10) 10(.75(0))	C17 - C10 - C13	112.5 (2)
$C_1 = C_1 = C_1^2$	106.75 (9)	C12 - C16 - H16A	109.1
C13 - C8 - C9	121.42 (16)	C13— $C16$ — $H16A$	109.1
C13 - C8 - N1	118.01 (16)	C12 - C16 - H16B	109.1
C_{2} C_{2} C_{2} C_{2}	119.36 (16)	U13—U16—H16B	109.1
C10 - C9 - C8	117.95 (18)	H16A—U16—H16B	107.9
C10—C9—C14	120.84 (18)	C16—C17—H17A	109.5
C8—C9—C14	121.16 (16)	C16—C17—H17B	109.5
C11—C10—C9	121.1 (2)	H17A—C17—H17B	109.5
C11—C10—H10	119.4	C16—C17—H17C	109.5
C9—C10—H10	119.4	H17A—C17—H17C	109.5

119.9 (2)	Н17В—С17—Н17С	109.5
120.0	C7—N1—C8	122.72 (15)
-0.2 (2)	C13—C8—C9—C14	-174.83 (19)
178.84 (18)	N1—C8—C9—C14	-3.9 (3)
0.9 (3)	C8—C9—C10—C11	-0.1 (3)
-0.7 (3)	C14—C9—C10—C11	177.3 (2)
-0.04 (19)	C9—C10—C11—C12	-2.0 (4)
179.96 (19)	C10-C11-C12-C13	1.6 (4)
-179.32 (11)	C11—C12—C13—C8	0.8 (4)
0.68 (11)	C11—C12—C13—C16	-179.5 (2)
0.68 (11)	C9—C8—C13—C12	-2.9 (3)
-179.32 (11)	N1-C8-C13-C12	-173.9 (2)
-0.55 (17)	C9—C8—C13—C16	177.40 (19)
-179.85 (8)	N1-C8-C13-C16	6.4 (3)
179.45 (18)	C10—C9—C14—C15	-110.2 (2)
0.15 (8)	C8—C9—C14—C15	67.1 (3)
-1.4 (3)	C12-C13-C16-C17	-93.2 (3)
177.72 (17)	C8—C13—C16—C17	86.5 (3)
-179.52 (19)	C1—C7—N1—C8	7.1 (3)
-0.4 (2)	C7 ⁱ —C7—N1—C8	-175.03 (17)
2.6 (3)	C13—C8—N1—C7	-109.9 (2)
173.49 (18)	C9—C8—N1—C7	78.9 (2)
	$\begin{array}{c} 119.9\ (2)\\ 120.0\\ \\ -0.2\ (2)\\ 178.84\ (18)\\ 0.9\ (3)\\ \\ -0.7\ (3)\\ \\ -0.04\ (19)\\ 179.96\ (19)\\ \\ -179.32\ (11)\\ 0.68\ (11)\\ \\ -179.32\ (11)\\ \\ 0.68\ (11)\\ \\ -179.32\ (11)\\ \\ -0.55\ (17)\\ \\ -179.85\ (8)\\ 179.45\ (18)\\ \\ 0.15\ (8)\\ \\ -1.4\ (3)\\ 177.72\ (17)\\ \\ -179.52\ (19)\\ \\ -0.4\ (2)\\ \\ 2.6\ (3)\\ 173.49\ (18)\\ \end{array}$	$119.9(2)$ $H17B-C17-H17C$ 120.0 $C7-N1-C8$ $-0.2(2)$ $C13-C8-C9-C14$ $178.84(18)$ $N1-C8-C9-C14$ $0.9(3)$ $C8-C9-C10-C11$ $-0.7(3)$ $C14-C9-C10-C11$ $-0.04(19)$ $C9-C10-C11-C12$ $179.96(19)$ $C10-C11-C12-C13$ $-179.32(11)$ $C11-C12-C13-C16$ $0.68(11)$ $C9-C8-C13-C12$ $-179.32(11)$ $N1-C8-C13-C12$ $-179.32(11)$ $N1-C8-C13-C16$ $-179.85(8)$ $N1-C8-C13-C16$ $-179.45(18)$ $C10-C9-C14-C15$ $0.15(8)$ $C8-C9-C14-C15$ $-1.4(3)$ $C12-C13-C16-C17$ $-177.72(17)$ $C8-C13-C16-C17$ $-179.52(19)$ $C1-C7-N1-C8$ $-0.4(2)$ $C7^{i}-C7-N1-C8$ $2.6(3)$ $C13-C8-N1-C7$ $173.49(18)$ $C9-C8-N1-C7$

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
C15—H15A…N1	0.98	2.48	3.106 (3)	122
C16—H16 <i>B</i> …N1	0.99	2.51	2.862 (3)	101
C4—H4…N1 ⁱⁱ	0.95	2.43	3.379 (2)	179

Symmetry code: (ii) *x*, *y*+1, *z*.