

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-iminium chloride

Rajni Kant,^a* Vivek K. Gupta,^a Kamini Kapoor,^a Madhukar B. Deshmukh^b and Chetan S. Shripanavar^b

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 8 December 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 18.0.

The title compound, $C_9H_{12}ClN_4^+\cdot Cl^-$, is a natural metabolic product of imidacloprid [systematic name: (*E*)-1-(6-chloro-3pyridylmethyl)-*N*-nitroimidazolidin-2-ylideneamine] and was obtained by the reduction of the latter using Fe in HCl. The dihedral angle between the pyridine and imidazole rings is 62.09 (12)°. The crystal structure is stabilized by N-H···Cl and C-H···Cl interactions involving the chloride anion. The pyridine N and the chloride atoms are not involved in intermolecular interactions.

Related literature

For background to the insecticidal applications of imidacloprid, see: Kanne *et al.* (2005); Schulz-Jander *et al.* (2002); Dai *et al.* (2010); Tanner (2010). For ring conformations, see: Duax & Norton (1975). For related structures, see: Kapoor *et al.* (2011).

c = 12.4758 (4) Å

 $\alpha = 88.996 \ (3)^{\circ}$

 $\beta = 77.214 (3)^{\circ}$

 $= 79.925 (3)^{\circ}$

V = 566.98 (4) Å³

Experimental

Crystal data	
$C_9H_{12}CIN_4^+ \cdot CI^-$	
$M_r = 247.13$	
Triclinic, P1	
a = 6.4773 (3) Å	
b = 7.3091 (3) Å	

```
Z = 2
Mo K\alpha radiation
\mu = 0.55 \text{ mm}^{-1}
```

Data collection

Oxford Diffraction Xcalibur
Sapphire3 diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\min} = 0.742, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 137 parameters $wR(F^2) = 0.108$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.36$ e Å $^{-3}$ 2468 reflections $\Delta \rho_{min} = -0.34$ e Å $^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N13 - H13A \cdots Cl2 \\ N13 - H13B \cdots Cl2^{i} \\ N11 - H11 \cdots Cl2^{ii} \\ C7 - H7A \cdots Cl2^{iii} \\ C7 - H7B \cdots Cl2 \end{array}$	0.86 0.86 0.86 0.97 0.97	2.39 2.33 2.60 2.69 2.80	3.227 (2) 3.177 (2) 3.182 (2) 3.650 (2) 3.722 (2)	166 169 126 169 158

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x, y - 1, z; (iii) x - 1, y, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He also thanks the UGC for research funding under research project F. No. 37–415/2009 (J&K) (SR).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2070).

References

- Dai, Y., Ji, W., Chen, T., Zhang, W., Liu, Z., Ge, F. & Yuan, S. (2010). J. Agric. Food Chem. 58, 2419–2425.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Kanne, D. B., Dick, R. A., Tomizawa, M. & Casida, J. E. (2005). Chem. Res. Toxicol. 18, 1479–1484.
- Kapoor, K., Gupta, V. K., Kant, R., Deshmukh, M. B. & Sripanavar, C. S. (2011). X-ray Struct. Anal. Online, 27, x55–x56.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2010). CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Schulz-Jander, D. A., Leimkuehler, W. M. & Casida, J. E. (2002). Chem. Res. Toxicol. 15, 1158–1165.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tanner, G. (2010). MSc thesis, Austrian Agency for Health and Food Safety, Vienna.

14139 measured reflections 2468 independent reflections

2059 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.035$

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

supporting information

Acta Cryst. (2012). E68, o147 [doi:10.1107/S1600536811053487]

1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-iminium chloride

Rajni Kant, Vivek K. Gupta, Kamini Kapoor, Madhukar B. Deshmukh and Chetan S. Shripanavar

S1. Comment

Imidacloprid is one of the largest selling insecticides worldwide (Tanner, 2010). The discovery of imidacloprid has been referred to as a milestone in the past three decades of insecticidal research. Neonicotinoid insecticides act as antagonists on the pest synaptic nicotinic acetylcholine receptor (nAchRs) of the insect central nervous system (Tanner, 2010). The nitroguanidine moiety of imidacloprid is also a common site for metabolism *via* cleavage to the guanidine and reduction to des-nitro-imidacloprid. These metabolic modifications often result in an enhanced potency for vertebrate nAchRs and toxicity. (Kanne *et al.*, 2005; Schulz-Jander *et al.*, 2002; Dai *et al.*, 2010). The bond lengths and angles observed in (I) are normal and are comparable with related structures (Kapoor *et al.*, 2011). The imidazole ring adopts an envelope conformation with the asymmetric parameter: $\Delta Cs(C10)=3.63$ (Duax *et al.*, 1975). The dihedral angle between the C₅N pyridine and C₃N₂ imidazole ring is 62.09 (12)°. The stabilization of crystal packing (Fig.2) is influenced by intermolecular N—H···Cl and C—H···Cl hydrogen bonds involving the chloride anion (Table 1).

S2. Experimental

Imidacloprid (12.75 g, 0.05 mol) was dissolved in 30 ml alcohol, fine powdered Fe (5.59 g, 0.10 mol) metal in the proportion of 1:2 was added, followed by 40 ml of conc. HCl. The mixture was refluxed for 10 hrs and the solid product was washed and cleaned by normal organic protocols, separated out, dissolved in alcohol and by the process of slow evaporation a yellowish crystalline compound was separated out. IR (KBr) *v*max: 3233, 3083, 2923, 1690 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ : 3.55(s, 2 x CH₂), 4.62(s, CH₂), 7.36(d, J = 8.2 Hz, Py1H), 7.74(dd, J₁= 7.5 Hz, J₂ = 2.5 Hz, PyH), 8.21(s, NH), 8.32(s, Py1H) ppm. ¹³C NMR (300 MHz, CDCl₃) δ : 159, 150, 149, 139, 130, 124, 100, 47, 45 ppm. LC—MS/MS (m/*z*): 211, 193, 175, 169, 133, 126, 84.

S3. Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.97 Å; N—H distances of 0.86 Å and with $U_{iso}(H) = 1.2 \text{Ueq}(C/N)$.

Figure 1

ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed along the *a* axis. The dashed lines show the intermolecular N—H···Cl and C—H···Cl hydrogen bonds.

1-[(6-Chloropyridin-3-yl)methyl]imidazolidin-2-iminium chloride

Crystal data	
$C_9H_{12}ClN_4^+ \cdot Cl^-$	$\gamma = 79.925 \ (3)^{\circ}$
$M_r = 247.13$	$V = 566.98 (4) \text{ Å}^3$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 256
a = 6.4773 (3) Å	$D_{\rm x} = 1.448 {\rm ~Mg} {\rm ~m}^{-3}$
b = 7.3091 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 12.4758 (4) Å	Cell parameters from 7015 reflections
$\alpha = 88.996 \ (3)^{\circ}$	$\theta = 3.9 - 29.1^{\circ}$
$\beta = 77.214 \ (3)^{\circ}$	$\mu = 0.55 \mathrm{~mm^{-1}}$

T = 293 KPlate, yellow

Data collection

Duiu conection	
Oxford Diffraction Xcalibur Sapphire3 diffractometer	14139 measured reflections 2468 independent reflections
Radiation source: fine-focus sealed tube	2059 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
Detector resolution: 16.1049 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 3.9^\circ$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(CrysAlis RED; Oxford Diffraction, 2010)	$l = -15 \rightarrow 15$
$T_{\min} = 0.742, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.3165P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
2468 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
137 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.027 (4)
map	

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C12	0.86358 (8)	0.30462 (7)	0.60008 (4)	0.04939 (19)	
Cl1	0.23994 (12)	0.35819 (11)	1.17486 (5)	0.0720 (2)	
N1	0.1057 (3)	0.2611 (3)	1.00679 (16)	0.0649 (6)	
C2	0.1336 (3)	0.2148 (4)	0.89995 (19)	0.0587 (6)	
H2	0.0126	0.2007	0.8745	0.070*	
C3	0.3286 (3)	0.1868 (3)	0.82568 (15)	0.0365 (4)	
C4	0.5059 (3)	0.2069 (3)	0.86513 (18)	0.0500 (5)	
H4	0.6416	0.1874	0.8184	0.060*	
C5	0.4824 (4)	0.2558 (4)	0.97404 (19)	0.0544 (6)	
H5	0.6002	0.2700	1.0023	0.065*	
C6	0.2785 (4)	0.2826 (3)	1.03902 (16)	0.0473 (5)	
C7	0.3440 (3)	0.1424 (3)	0.70621 (15)	0.0380 (4)	

H7A	0.2113	0.1987	0.6860	0.046*
H7B	0.4600	0.1959	0.6613	0.046*
N8	0.3828 (3)	-0.0570 (2)	0.68359 (13)	0.0392 (4)
C9	0.2100 (4)	-0.1652 (3)	0.7134 (2)	0.0510 (5)
H9A	0.0927	-0.1189	0.6779	0.061*
H9B	0.1550	-0.1632	0.7923	0.061*
C10	0.3206 (4)	-0.3597 (3)	0.6710(2)	0.0566 (6)
H10A	0.3486	-0.4399	0.7308	0.068*
H10B	0.2345	-0.4152	0.6305	0.068*
N11	0.5199 (3)	-0.3268 (2)	0.59921 (15)	0.0503 (5)
H11	0.6049	-0.4064	0.5525	0.060*
C12	0.5523 (3)	-0.1553 (3)	0.61621 (15)	0.0388 (4)
N13	0.7288 (3)	-0.0930 (3)	0.57049 (15)	0.0512 (5)
H13A	0.7407	0.0194	0.5835	0.061*
H13B	0.8325	-0.1646	0.5276	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl2	0.0360 (3)	0.0522 (3)	0.0531 (3)	-0.0003 (2)	-0.0009 (2)	-0.0019 (2)
C11	0.0869 (5)	0.0993 (5)	0.0355 (3)	-0.0398 (4)	-0.0064 (3)	-0.0068 (3)
N1	0.0480 (11)	0.1002 (17)	0.0444 (11)	-0.0233 (11)	0.0042 (8)	-0.0210 (10)
C2	0.0351 (11)	0.0911 (18)	0.0490 (13)	-0.0136 (11)	-0.0034 (9)	-0.0215 (12)
C3	0.0359 (10)	0.0346 (9)	0.0362 (10)	-0.0034 (7)	-0.0042 (7)	-0.0012 (7)
C4	0.0356 (10)	0.0674 (14)	0.0445 (11)	-0.0099 (10)	-0.0025 (9)	-0.0040 (10)
C5	0.0448 (12)	0.0730 (15)	0.0499 (12)	-0.0173 (11)	-0.0145 (10)	-0.0023 (11)
C6	0.0590 (13)	0.0517 (12)	0.0330 (10)	-0.0199 (10)	-0.0059 (9)	-0.0001 (8)
C7	0.0378 (10)	0.0366 (10)	0.0361 (10)	-0.0015 (8)	-0.0045 (8)	-0.0021 (7)
N8	0.0363 (8)	0.0393 (9)	0.0390 (9)	-0.0055 (7)	-0.0023 (7)	-0.0044 (7)
C9	0.0455 (12)	0.0518 (12)	0.0554 (13)	-0.0158 (10)	-0.0048 (10)	0.0007 (10)
C10	0.0685 (15)	0.0456 (12)	0.0600 (14)	-0.0166 (11)	-0.0184 (12)	0.0011 (10)
N11	0.0540 (11)	0.0429 (10)	0.0514 (11)	0.0018 (8)	-0.0136 (8)	-0.0121 (8)
C12	0.0384 (10)	0.0437 (10)	0.0326 (9)	0.0016 (8)	-0.0106 (8)	-0.0033 (8)
N13	0.0386 (9)	0.0571 (11)	0.0497 (10)	-0.0015 (8)	0.0034 (8)	-0.0121 (8)

Geometric parameters (Å, °)

Cl1—C6	1.743 (2)	N8—C12	1.328 (2)	_
N1—C6	1.305 (3)	N8—C9	1.460 (3)	
N1—C2	1.346 (3)	C9—C10	1.522 (3)	
С2—С3	1.376 (3)	С9—Н9А	0.9700	
С2—Н2	0.9300	С9—Н9В	0.9700	
C3—C4	1.377 (3)	C10—N11	1.455 (3)	
C3—C7	1.509 (3)	C10—H10A	0.9700	
C4—C5	1.380 (3)	C10—H10B	0.9700	
C4—H4	0.9300	N11—C12	1.334 (3)	
C5—C6	1.372 (3)	N11—H11	0.8600	
С5—Н5	0.9300	C12—N13	1.313 (3)	

C7—N8	1.457 (2)	N13—H13A	0.8600
С7—Н7А	0.9700	N13—H13B	0.8600
С7—Н7В	0.9700		
C6—N1—C2	115.96 (19)	C12—N8—C9	110.48 (17)
N1—C2—C3	124.6 (2)	C7—N8—C9	121.21 (16)
N1—C2—H2	117.7	N8—C9—C10	102.83 (18)
С3—С2—Н2	117.7	N8—C9—H9A	111.2
C2—C3—C4	116.79 (19)	С10—С9—Н9А	111.2
C2—C3—C7	121.09 (18)	N8—C9—H9B	111.2
C4—C3—C7	122.09 (17)	С10—С9—Н9В	111.2
C3—C4—C5	120.0 (2)	H9A—C9—H9B	109.1
С3—С4—Н4	120.0	N11—C10—C9	102.83 (18)
C5—C4—H4	120.0	N11-C10-H10A	111.2
C6—C5—C4	117.4 (2)	C9—C10—H10A	111.2
С6—С5—Н5	121.3	N11-C10-H10B	111.2
С4—С5—Н5	121.3	C9—C10—H10B	111.2
N1—C6—C5	125.2 (2)	H10A-C10-H10B	109.1
N1—C6—C11	115.99 (17)	C12—N11—C10	110.36 (17)
C5—C6—C11	118.74 (17)	C12—N11—H11	124.8
N8—C7—C3	112.18 (15)	C10—N11—H11	124.8
N8—C7—H7A	109.2	N13—C12—N8	125.00 (19)
С3—С7—Н7А	109.2	N13—C12—N11	123.74 (18)
N8—C7—H7B	109.2	N8—C12—N11	111.26 (18)
С3—С7—Н7В	109.2	C12—N13—H13A	120.0
H7A—C7—H7B	107.9	C12—N13—H13B	120.0
C12—N8—C7	126.77 (17)	H13A—N13—H13B	120.0
C6—N1—C2—C3	1.1 (4)	C3—C7—N8—C12	-118.6 (2)
N1—C2—C3—C4	0.5 (4)	C3—C7—N8—C9	76.9 (2)
N1—C2—C3—C7	-177.6 (2)	C12—N8—C9—C10	11.1 (2)
C2—C3—C4—C5	-1.0 (3)	C7—N8—C9—C10	177.87 (18)
C7—C3—C4—C5	177.1 (2)	N8—C9—C10—N11	-14.3 (2)
C3—C4—C5—C6	0.0 (4)	C9-C10-N11-C12	13.7 (2)
C2—N1—C6—C5	-2.3 (4)	C7—N8—C12—N13	10.4 (3)
C2—N1—C6—C11	175.7 (2)	C9—N8—C12—N13	176.29 (19)
C4—C5—C6—N1	1.8 (4)	C7—N8—C12—N11	-168.74 (18)
C4—C5—C6—Cl1	-176.16 (18)	C9—N8—C12—N11	-2.9 (2)
C2—C3—C7—N8	-91.8 (2)	C10—N11—C12—N13	173.4 (2)
C4—C3—C7—N8	90.2 (2)	C10-N11-C12-N8	-7.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A	
N13—H13A····Cl2	0.86	2.39	3.227 (2)	166	
N13—H13 <i>B</i> ···Cl2 ⁱ	0.86	2.33	3.177 (2)	169	
N11—H11····Cl2 ⁱⁱ	0.86	2.60	3.182 (2)	126	

			supporting information	
C7—H7 <i>A</i> ···Cl2 ⁱⁱⁱ	0.97	2.69	3.650 (2)	169
C7—H7 <i>B</i> ···Cl2	0.97	2.80	3.722 (2)	158

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*, *z*.