

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1]octan-3-one

Krzysztof Brzezinski,^a* Ryszard Lazny,^b Michal Sienkiewicz,^b Sławomir Wojtulewski^b and Zbigniew Dauter^a

^aSynchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Biosciences Division, Bldg. 202, Argonne, IL 60439, USA, and ^bInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland Correspondence e-mail: kbrzezinski@anl.gov

Received 4 November 2011; accepted 9 December 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.027; wR factor = 0.070; data-to-parameter ratio = 15.2.

The crystal of the title compound, C₂₁H₂₃NO₂, was chosen from a conglomerate formed by a racemic mixture. An intramolecular hydrogen bond is formed between hydroxy group and heterocyclic N atom of the azabicyclo[3.2.1]octan-3-one system. The crystal structure is stabilized by $C-H \cdots O$ interactions between aliphatic C-H groups and the carbonyl O atom. For the title chiral crystal, the highly redundant and accurate diffraction data set collected with low energy copper radiation gave a Flack parameter of 0.12 (18) for anomalous scattering effects originating from O atoms.

Related literature

For recent background literature on the chemistry of related tropane-derived aldols and their applications, including stereoselective syntheses of bioactive alkaloids, see: Lazny et al. (2011); Sienkiewicz et al. (2009) and references cited therein. For stereoselective syntheses of related nortropinone aldols, see: Lazny et al. (2001); Lazny & Nodzewska (2003). For a representative review of the biological activity of tropane derivatives, see: Singh (2000).

V = 1749.82 (5) Å³

 $0.65 \times 0.25 \times 0.19 \text{ mm}$

32829 measured reflections

3323 independent reflections

3276 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 0.61 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.026$

Z = 4

Experimental

Crystal data

$C_{21}H_{23}NO_2$	
$M_r = 321.40$	
Orthorhombic, $P2_12_12_1$	
a = 5.9354 (1) Å	
b = 13.3091 (2) Å	
c = 22.1511 (3) Å	

Data collection

Oxford Diffraction SuperNova Dual diffractometer Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.75, T_{\max} = 0.89$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.070$	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
S = 1.18	Absolute structure: Flack (1983),
3323 reflections	1257 Friedel pairs
218 parameters	Flack parameter: 0.12 (18)
H-atom parameters constrained	

Table 1			
Hydrogen-bond	geometry	(Å,	°)

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.84	1.99	2.7280 (13)	146
0.99	2.61	3.3414 (15)	131
0.99	2.52	3.2954 (15)	135
0.99	2.60	3.5846 (16)	173
	<i>D</i> -H 0.84 0.99 0.99 0.99	D-H H···A 0.84 1.99 0.99 2.61 0.99 2.52 0.99 2.60	$D-H$ $H \cdots A$ $D \cdots A$ 0.84 1.99 2.7280 (13) 0.99 2.61 3.3414 (15) 0.99 2.52 3.2954 (15) 0.99 2.60 3.5846 (16)

Symmetry code: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97.

This work was supported in part by the University of Bialystok (BST-125), the Polish Ministry of Science and Higher Education (grant No. N N204 546939), the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and with Federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN2612008000001E.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2429).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lazny, R. & Nodzewska, A. (2003). Tetrahedron Lett. 44, 2441-2444.

Lazny, R., Nodzewska, A. & Tomczuk, I. (2011). Tetrahedron Lett. 52, 5680–5683.

Lazny, R., Sienkiewicz, M. & Bräse, S. (2001). *Tetrahedron*, **57**, 5825–5832. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Sienkiewicz, M., Wilkaniec, U. & Lazny, R. (2009). *Tetrahedron Lett.* **50**, 7196–7198.

Singh, S. (2000). Chem. Rev. 100, 925-1024.

supporting information

Acta Cryst. (2012). E68, 0149-0150 [doi:10.1107/S1600536811053190]

(2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1]octan-3-one

Krzysztof Brzezinski, Ryszard Lazny, Michal Sienkiewicz, Sławomir Wojtulewski and Zbigniew Dauter

S1. Comment

Tropane (8-methyl-8-azabicyclo[3.2.1]octane) and nortropane (8-azabicyclo[3.2.1]octane) are known scaffolds of numerous natural alkaloids, many of which demonstrate a range of biological activities. Many synthetic derivatives and unnatural analogues of tropane alkaloids have been synthesized and studied as potential agrochemically or pharmaceutically useful agents (Singh, 2000). Diastereomerically and enantimerically pure aldols of tropinone were used as key intermediates in stereoselective synthesis of unnatural enantiomer of cocaine (*ent*-cocaine), knightinol, alkaloid KD–B and ferrugine (Sienkiewicz *et al.*, 2009). Stereoselective syntheses of nortropinone aldols (Lazny & Nodzewska, 2003; Lazny *et al.*, 2001) is more complicated and remains a challenge. Therefore synthetically equivalent *N*-benzyl-nortropinone aldols may open a route to synthetic availability of nor-analogues of potential pharmaceutical importance. Knowledge of the structure and reactivity of the *N*-benzyl analogues of tropanes is also used for modeling reactivity of nortropanes anchored through nitrogen on commonly used solid-phase supports with benzyl derived linkers. The solid-phase immobilization and subsequent transformations are typically used in combinatorial approaches to preparation of libraries of potentially bioactive substances.

The studied *N*-benzyl compound was prepared by a procedure analogous to method known for *N*-methyl aldols. The synthetic procedure gave a racemic mixture, however homochiral crystals were formed spontaneously. An enantiomorphic crystal was picked at random.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1). The Flack parameter is equal to 0.12 (18) for the crystals containing (2R)-8-benzyl-2-[(*S*)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1] octan-3-one enantiomer. The intramolecular hydrogen bond is formed between hydroxyl group and heterocyclic nitrogen atom from the azabicyclo[3.2.1]octan-3-one system. The carbonyl oxygen atom is located near equatorial hydrogen atoms of C6 and C7, as well as, the H16A atom. Intra- and intermolecular interactions are shown in Fig. 2 and summarized in Table 1.

S2. Experimental

A solution of n-butyllithium in hexane (2.4 *M*, 0.50 ml, 1.2 mmol) was added dropwise to a cooled (273 K) solution of diisopropylamine (0.168 ml, 1.2 mmol) in tetrahydrofuran (10 ml). The mixture was stirred for 30 min, then cooled to 195 K and a solution of *N*-benzylnortropinone (0.215 g, 1 mmol) in tetrahydrofuran (7 ml) was added dropwise. After stirring for 2 h, benzaldehyde (0.117 ml, 1.15 mmol) was added dropwise and the mixture was stirred for another 10 min. The reaction was quenched with saturated aq. NH₄Cl (4 ml), allowed to warm to room temperature, and extracted with dichloromethane (3 × 10 ml). The combined extracts were dried over MgSO₄ and concentrated to give the crude product. Crystallization from mixed solvent system hexane/dichloromethane gave the the major product (0.243 g, 75%) as white crystals [m.p. 372–377 K; *R*_f = 0.77 (10% methanol/dichloromethane); HR (MS-ESI): MNa+, found 344,1640,

 $C_{21}H_{23}NNaO_2$ requires 344,1626; ¹H NMR (CDCl₃): 7.43–7.21 (m, 10H), 5.11 (d, J = 3 Hz, 1H), 3.73–3.65 (m, 3H), 3.58–3.57 (m, 1H), 2.82 (ddd, $J_1 = 1.5$ Hz, $J_2 = 4.5$ Hz, $J_3 = 6$ Hz, 1H), 2.45–2.44 (m, 1H), 2.36–2.32 (m, 3H), 1.70–1.66 (m, 2H)].

S3. Refinement

All hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95–1.00 Å and O—H distances fixed at 0.84 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for hydroxyl hydrogen atom and $1.2 U_{eq}(C)$ for others.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing viewed along the *a* axis. Dashed lines represent hydrogen bonds. For clarity, only hydrogen atoms involved in the intra- and intermolecular interactions are shown.

(2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)methyl]-8- azabicyclo[3.2.1]octan-3-one

Crystal da

C₂₁H₂₃NO₂ $M_r = 321.40$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.9354 (1) Å b = 13.3091 (2) Å c = 22.1511 (3) Å V = 1749.82 (5) Å³ Z = 4

Data collection

Oxford Diffraction SuperNova Dual diffractometer Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4052 pixels mm⁻¹ ω scans F(000) = 688 $D_x = 1.220 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 23874 reflections $\theta = 3.3-73.6^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.65 \times 0.25 \times 0.19 \text{ mm}$

Absorption correction: analytical (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.75$, $T_{max} = 0.89$ 32829 measured reflections 3323 independent reflections 3276 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

$\theta_{\rm max} = 73.6^{\circ}, \ \theta_{\rm min} = 3.9^{\circ}$	$k = 0 \rightarrow 16$
$h = -7 \rightarrow 6$	$l = 0 \rightarrow 27$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.070$	$w = 1/[\sigma^2(F_o^2) + (0.0283P)^2 + 0.4297P]$
<i>S</i> = 1.18	where $P = (F_o^2 + 2F_c^2)/3$
3323 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
218 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1257 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.12 (18)
map	

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8760 (2)	0.63105 (8)	0.16890 (5)	0.0158 (2)
H1	0.9172	0.6656	0.1304	0.019*
C2	0.8530(2)	0.51680 (8)	0.15913 (5)	0.0153 (2)
H2	1.0031	0.4903	0.1462	0.018*
C3	0.7921 (2)	0.46720 (9)	0.21973 (5)	0.0169 (3)
O3	0.88275 (17)	0.38983 (7)	0.23623 (4)	0.0256 (2)
C4	0.6185 (2)	0.52123 (8)	0.25898 (5)	0.0177 (3)
H4A	0.6293	0.4967	0.3011	0.021*
H4B	0.4649	0.5066	0.2439	0.021*
C5	0.6612 (2)	0.63510 (8)	0.25734 (5)	0.0164 (2)
Н5	0.5476	0.6719	0.2823	0.020*
C6	0.9079 (2)	0.65823 (10)	0.27939 (6)	0.0202 (3)
H6A	0.9603	0.6067	0.3084	0.024*
H6B	0.9166	0.7252	0.2987	0.024*
C7	1.0516 (2)	0.65523 (9)	0.21957 (6)	0.0204 (3)
H7A	1.1253	0.7208	0.2121	0.025*
H7B	1.1686	0.6024	0.2218	0.025*
N8	0.65350 (19)	0.66906 (7)	0.19242 (4)	0.0150 (2)
09	0.45290 (16)	0.52672 (6)	0.12196 (4)	0.0204 (2)
Н9	0.4614	0.5808	0.1414	0.031*
С9	0.6768 (2)	0.49154 (9)	0.10786 (5)	0.0165 (3)
Н9С	0.7269	0.5263	0.0701	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.6686 (2)	0.38004 (9)	0.09495 (5)	0.0166 (3)
C11	0.8557 (3)	0.33441 (10)	0.06662 (5)	0.0210 (3)
H11	0.9814	0.3742	0.0551	0.025*
C12	0.8568 (3)	0.23166 (10)	0.05557 (6)	0.0238 (3)
H12	0.9833	0.2009	0.0369	0.029*
C13	0.6694 (3)	0.17393 (9)	0.07224 (6)	0.0241 (3)
H13	0.6699	0.1035	0.0652	0.029*
C14	0.4813 (3)	0.21910 (10)	0.09918 (6)	0.0226 (3)
H14	0.3537	0.1794	0.1093	0.027*
C15	0.4803 (2)	0.32179 (9)	0.11116 (5)	0.0196 (3)
H15	0.3539	0.3522	0.1301	0.023*
C16	0.6383 (2)	0.78046 (8)	0.19028 (5)	0.0171 (3)
H16A	0.7639	0.8098	0.2138	0.020*
H16B	0.4952	0.8022	0.2091	0.020*
C17	0.6486 (2)	0.81981 (8)	0.12530 (6)	0.0176 (3)
C18	0.4719 (3)	0.80051 (9)	0.08410 (6)	0.0212 (3)
H18	0.3449	0.7626	0.0969	0.025*
C19	0.4813 (3)	0.83679 (10)	0.02427 (6)	0.0252 (3)
H19	0.3614	0.8234	-0.0030	0.030*
C20	0.6690 (3)	0.89285 (10)	0.00518 (6)	0.0262 (3)
H20	0.6763	0.9177	-0.0350	0.031*
C21	0.8457 (3)	0.91194 (9)	0.04567 (6)	0.0265 (3)
H21	0.9729	0.9494	0.0326	0.032*
C22	0.8362 (3)	0.87590 (9)	0.10572 (6)	0.0227 (3)
H22	0.9564	0.8895	0.1328	0.027*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0150 (6)	0.0132 (5)	0.0194 (6)	0.0009 (5)	0.0025 (5)	-0.0001 (4)
C2	0.0143 (6)	0.0129 (5)	0.0186 (5)	0.0017 (5)	-0.0010 (5)	-0.0008 (4)
C3	0.0174 (7)	0.0140 (5)	0.0192 (6)	-0.0017 (5)	-0.0041 (5)	-0.0006 (5)
03	0.0324 (6)	0.0175 (4)	0.0269 (5)	0.0076 (4)	-0.0038 (4)	0.0032 (4)
C4	0.0197 (7)	0.0154 (5)	0.0178 (5)	0.0003 (5)	0.0000 (5)	0.0026 (4)
C5	0.0180 (7)	0.0157 (5)	0.0156 (5)	0.0014 (5)	0.0006 (5)	-0.0002 (4)
C6	0.0210 (8)	0.0187 (6)	0.0207 (6)	0.0000 (5)	-0.0046 (5)	-0.0004 (5)
C7	0.0147 (7)	0.0183 (6)	0.0283 (7)	0.0003 (5)	-0.0008 (5)	-0.0043 (5)
N8	0.0169 (6)	0.0120 (4)	0.0160 (5)	0.0020 (4)	0.0010 (4)	0.0004 (4)
09	0.0178 (5)	0.0165 (4)	0.0269 (5)	0.0037 (3)	-0.0038 (4)	-0.0048 (4)
C9	0.0179 (7)	0.0157 (5)	0.0159 (5)	0.0005 (5)	0.0003 (5)	0.0004 (4)
C10	0.0207 (7)	0.0166 (5)	0.0126 (5)	0.0006 (5)	-0.0028 (5)	-0.0009 (4)
C11	0.0220 (7)	0.0223 (6)	0.0187 (6)	-0.0001 (5)	0.0002 (5)	-0.0029 (5)
C12	0.0260 (8)	0.0246 (6)	0.0209 (6)	0.0072 (6)	-0.0024 (6)	-0.0065 (5)
C13	0.0371 (9)	0.0155 (6)	0.0196 (6)	0.0019 (6)	-0.0052 (6)	-0.0030 (5)
C14	0.0309 (8)	0.0194 (6)	0.0175 (6)	-0.0055 (6)	-0.0018 (6)	0.0006 (5)
C15	0.0228 (7)	0.0197 (6)	0.0162 (5)	-0.0005 (5)	0.0008 (5)	-0.0012 (5)
C16	0.0188 (7)	0.0118 (5)	0.0206 (6)	0.0014 (5)	-0.0005 (5)	-0.0013 (4)
C17	0.0194 (7)	0.0110 (5)	0.0224 (6)	0.0034 (5)	0.0025 (6)	0.0002 (4)

supporting information

C18	0.0228 (8)	0.0171 (6)	0.0238 (6)	0.0003 (5)	0.0003 (5)	0.0034 (5)
C19	0.0302 (8)	0.0218 (6)	0.0235 (6)	0.0036 (6)	-0.0033 (6)	0.0021 (5)
C20	0.0369 (9)	0.0192 (6)	0.0226 (6)	0.0066 (6)	0.0074 (6)	0.0049 (5)
C21	0.0261 (8)	0.0187 (6)	0.0347 (7)	0.0010 (6)	0.0113 (6)	0.0046 (5)
C22	0.0226 (8)	0.0153 (5)	0.0303 (7)	0.0009 (5)	0.0020 (6)	0.0007 (5)

Geometric parameters (Å, °)

C1—N8	1.5071 (16)	C10—C15	1.4068 (19)
C1—C2	1.5419 (15)	C10-C11	1.4127 (19)
C1—C7	1.5648 (18)	C11—C12	1.3893 (18)
C1—H1	1.0000	C11—H11	0.9500
C2—C3	1.5390 (16)	C12—C13	1.401 (2)
С2—С9	1.5801 (16)	C12—H12	0.9500
С2—Н2	1.0000	C13—C14	1.401 (2)
C3—O3	1.2180 (15)	C13—H13	0.9500
C3—C4	1.5279 (18)	C14—C15	1.3923 (17)
C4—C5	1.5368 (15)	C14—H14	0.9500
C4—H4A	0.9900	C15—H15	0.9500
C4—H4B	0.9900	C16—C17	1.5329 (16)
C5—N8	1.5082 (14)	C16—H16A	0.9900
C5—C6	1.5742 (18)	C16—H16B	0.9900
С5—Н5	1.0000	C17—C22	1.4091 (19)
C6—C7	1.5762 (18)	C17—C18	1.4140 (19)
С6—Н6А	0.9900	C18—C19	1.4116 (18)
C6—H6B	0.9900	C18—H18	0.9500
C7—H7A	0.9900	C19—C20	1.406 (2)
С7—Н7В	0.9900	C19—H19	0.9500
N8—C16	1.4861 (14)	C20—C21	1.403 (2)
О9—С9	1.4430 (16)	C20—H20	0.9500
О9—Н9	0.8400	C21—C22	1.4151 (19)
C9—C10	1.5121 (16)	C21—H21	0.9500
С9—Н9С	1.0000	С22—Н22	0.9500
N8 C1 C2	107 58 (10)	00 00 00	107.8
N8 C1 C7	107.38 (10)	C_{10} C_{9} Hoc	107.8
10-01-07	103.40(9) 111.25(10)	$C_1 C_2 C_2 H_0 C_2$	107.8
$V_2 - C_1 - C_7$	110.8	$C_2 = C_3 = 119C$	120.07 (11)
$N_0 - C_1 - H_1$	110.8	C15 - C10 - C11	120.07 (11)
C2 = C1 = H1	110.8	C13 - C10 - C9	121.20(12) 118.72(12)
$C^2 = C^2 = C^1$	10.8	C12 - C10 - C9	118.73(12) 120.22(12)
$C_3 = C_2 = C_1$	108.74(9) 112.22(10)	C12 - C11 - C10	120.33 (13)
$C_{3} - C_{2} - C_{9}$	112.55(10)		119.8
C1 - C2 - C9	111.67 (9)		119.8
$C_3 - C_2 - H_2$	108.0		119.32 (13)
$C_1 - C_2 - H_2$	108.0	C12 - C12 - H12	120.3
C_{2} H_{2}	108.0	C13 - C12 - H12	120.5
03 - 03 - 04	121.66 (11)	C12-C13-C14	120.62 (11)
U3-C3-C2	121.38 (12)	C12—C13—H13	119.7

C4—C3—C2	116.94 (10)	C14—C13—H13	119.7
C3—C4—C5	109.85 (10)	C15—C14—C13	120.37 (13)
C3—C4—H4A	109.7	C15—C14—H14	119.8
C5—C4—H4A	109.7	C13—C14—H14	119.8
C3—C4—H4B	109.7	C14—C15—C10	119.27 (13)
C5—C4—H4B	109.7	C14—C15—H15	120.4
H4A—C4—H4B	108.2	C10—C15—H15	120.4
N8—C5—C4	108.25 (9)	N8—C16—C17	111.62 (9)
N8—C5—C6	105.38 (10)	N8—C16—H16A	109.3
C4—C5—C6	109.80 (10)	C17—C16—H16A	109.3
N8—C5—H5	111.1	N8—C16—H16B	109.3
С4—С5—Н5	111.1	C17—C16—H16B	109.3
С6—С5—Н5	111.1	H16A—C16—H16B	108.0
C5—C6—C7	103.74 (10)	C22—C17—C18	118.94 (12)
С5—С6—Н6А	111.0	C22—C17—C16	120.10 (12)
С7—С6—Н6А	111.0	C18—C17—C16	120.96 (12)
С5—С6—Н6В	111.0	C19—C18—C17	120.96 (13)
С7—С6—Н6В	111.0	C19—C18—H18	119.5
Н6А—С6—Н6В	109.0	C17—C18—H18	119.5
C1—C7—C6	104.36 (10)	C20—C19—C18	119.68 (13)
C1—C7—H7A	110.9	С20—С19—Н19	120.2
С6—С7—Н7А	110.9	C18—C19—H19	120.2
С1—С7—Н7В	110.9	C21—C20—C19	119.74 (12)
С6—С7—Н7В	110.9	C21—C20—H20	120.1
H7A—C7—H7B	108.9	С19—С20—Н20	120.1
C16—N8—C1	112.14 (10)	C20—C21—C22	120.66 (13)
C16—N8—C5	109.34 (9)	C20—C21—H21	119.7
C1—N8—C5	101.69 (9)	C22—C21—H21	119.7
С9—О9—Н9	109.5	C17—C22—C21	120.02 (13)
O9—C9—C10	109.26 (11)	С17—С22—Н22	120.0
O9—C9—C2	112.65 (9)	C21—C22—H22	120.0
C10—C9—C2	111.47 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O9—H9…N8	0.84	1.99	2.7280 (13)	146
C6—H6 <i>B</i> ···O3 ⁱ	0.99	2.61	3.3414 (15)	131
C7—H7A····O3 ⁱ	0.99	2.52	3.2954 (15)	135
C16—H16A····O3 ⁱ	0.99	2.60	3.5846 (16)	173

Symmetry code: (i) -x+2, y+1/2, -z+1/2.