organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(S)-4-Phenyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)-1,3-thiazole

Sunayna Pawar,^a Pralav Bhatt,^b Thavendran Govender,^a Hendrik G. Kruger^b and Glenn E. M. Maguire^b*

^aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and ^bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa

Correspondence e-mail: maguireg@ukzn.ac.za

Received 7 September 2011; accepted 6 December 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.084; data-to-parameter ratio = 18.9.

In the title compound, $C_{18}H_{16}N_2S$, the N-containing ring adopts a half-chair configuration. The crystal packing features $C-H\cdots N$ contacts. There is no $\pi-\pi$ stacking within the crystal structure.

Related literature

The title compound is a potential ligand for the asymmetric Henry reaction. For the application of these ligands as catalysts, see: Chakka *et al.* (2010); Kawthekar *et al.* (2010); Peters *et al.* (2010); Naicker *et al.* (2010). For related structures, see: Naicker *et al.* (2011*a,b*).

Experimental

Crystal data $C_{18}H_{16}N_2S$ $M_r = 292.39$ Trigonal, $P3_2$ a = 16.223 (1) Å c = 4.8130 (3) Å V = 1097.0 (1) Å³

Z = 3Mo K α radiation $\mu = 0.22$ mm⁻¹ T = 173 K $0.20 \times 0.10 \times 0.09$ mm

Data collection

Bruker Kappa DUO APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\rm min} = 0.958, T_{\rm max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	
$wR(F^2) = 0.084$	
S = 1.03	
3676 reflections	
194 parameters	
1 restraint	

14735 measured reflections 3676 independent reflections 3205 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
1832 Friedel pairs
Flack parameter: -0.02 (6)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11\cdots N1^i$	0.95	2.54	3.341 (3)	142
Symmetry code: (i) -				

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Hong Su of the University of Capetown for the data collection and structure refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2110).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakka, S. K., Peters, B. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). *Tetrahedron Asymmetry*, **21**, 2295–2301.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). *Tetrahedron Asymmetry*, 21, 846– 852.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, 067.
- Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.
- Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). *Tetrahedron Asymmetry*, 21, 2859–2867.
- Peters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). *Tetrahedron Asymmetry*, 21, 679–, 687.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o176 [doi:10.1107/S1600536811052585]

(S)-4-Phenyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)-1,3-thiazole

Sunayna Pawar, Pralav Bhatt, Thavendran Govender, Hendrik G. Kruger and Glenn E. M. Maguire

S1. Comment

Tetrahydroisoquinoline is a core structure in various natural and pharmaceutically active compounds, displaying a broad spectrum of activity. Molecules with a C₁-symmetric tetrahydroisoquinoline backbone have been studied for various catalytic reactions such as allylic alkylation (Blanc *et al.*,2003), Henry reactions (Kawthekar *et al.*, 2010), asymmetric hydrogenation reactions (Chakka *et al.*,2010; Peters *et al.*, 2010) and Diels-Alder reactions (Naicker *et al.*,2010). The title compound is one of the ligands used for asymmetric Henry reaction, its' catalytic activity is currently under investigation. The chiral carbon (C9) has been assigned an *S* configuration from two-dimensional NMR measurements.

In the title compound, the piperidine ring of the tetrahydroisoquinolinone unit adopts a half chair (Fig 1). This hetrocyclic ring within similar structures displays either a half chair or half boat conformation (Naicker *et al.* 2011*a*; 2011*b*). From the crystal structure it is evident that the *N*-containing six membered ring assumes a half chair conformation [Q = 0.483 (2) Å, θ = 50.1 (2)° and φ = 321.8 (3)°]. The torsion angle for C1—N1—C9—C10 is -171.72 (14)°. From the plain formed by the atoms C1—C2—C7—C8—C9—N1 the maximum displacement from planarity for N1 is 0.297 Å and for C9 0.331 Å (Fig. 1). This is similar to our previously reported structures which also assume half chair conformations (Naicker *et al.*, 2011*a*; 2011*b*). The crystal packing contains C—H…N contacts of distance 3.341 (3) Å (see Fig. 2) (Table 1). There is no π - π stacking within the crystal structure.

S2. Experimental

The *N*-protected thiazole (3 mmol) was dissolved in THF (15 ml), to this 12 *M* HCl (15 ml) was added slowly and the reaction mixture was stirred at room temperature for 2 h. THF was evaporated under vacuum. The reaction was monitored by TLC using EtOAc/Hexane (20:80, $R_f = 0.5$). The reaction mixture was slowly poured into aqueous saturated NaHCO₃ solution, the mixture was then extracted with CH₂Cl₂ (3 *x* 30 ml). The combined organic layer was dried over MgSO₄. The solvent was evaporated under reduced pressure, the residue was purified by column chromatography on silica gel (deactivated with 5% Et₃N) with Et₃N/EtOAc/Hexane (5/8/100) as the eluent to afford the thiazole as a yellow solid (0.27 g, yield 95%). *M*.p. = 357–360 K.

Recrystallization from tetrahydrofuran at room temperature afforded colourless crystals suitable for X-ray analysis.

S3. Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except H1N, were positioned geometrically with C—H distances ranging from 0.95 Å to 1.00 Å and refined as riding on their parent atoms with U_{iso} (H) = 1.2 - 1.5 U_{eq} (C).

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The hydrogen atoms have been omitted for clarity.

Figure 2

CH···N interactions along the b axis.

(S)-4-Phenyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)-1,3-thiazole

Crystal data $C_{18}H_{16}N_2S$ $M_r = 292.39$ Trigonal, P3₂ Hall symbol: P 32 a = 16.223 (1) Å c = 4.8130 (3) Å V = 1097.0 (1) Å³ Z = 3F(000) = 462

 $D_x = 1.328 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14735 reflections $\theta = 2.5-28.4^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 173 KNeedle, yellow $0.20 \times 0.10 \times 0.09 \text{ mm}$ Data collection

Bruker Kappa DUO APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $0.5^{\circ} \varphi$ scans and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008) $T_{\min} = 0.958, T_{\max} = 0.981$ <i>Refinement</i>	14735 measured reflections 3676 independent reflections 3205 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.5^\circ$ $h = -21 \rightarrow 21$ $k = -21 \rightarrow 21$ $l = -6 \rightarrow 6$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H atoms treated by a mixture of independent
$wR(F^2) = 0.084$	and constrained refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.1159P]$
3676 reflections	where $P = (F_o^2 + 2F_c^2)/3$
194 parameters	$(\Delta/\sigma)_{max} < 0.001$
1 restraint	$\Delta\rho_{max} = 0.23$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.22$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 1832 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: -0.02 (6)

Special details

Experimental. Half sphere of data collected using the Bruker *SAINT* software package. Crystal to detector distance = 30 mm; combination of φ and ω scans of 0.5°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.00297 (4)	0.88075 (3)	0.01223 (14)	0.04813 (15)	
N1	-0.22129 (10)	0.70793 (10)	0.1094 (3)	0.0316 (3)	
H1N	-0.2357 (14)	0.6647 (15)	-0.032 (4)	0.036 (5)*	
N2	-0.01656 (9)	0.71580 (9)	-0.0576 (3)	0.0287 (3)	
C1	-0.30267 (13)	0.67560 (13)	0.2960 (4)	0.0359 (4)	
H1A	-0.3603	0.6569	0.1825	0.043*	
H1B	-0.2926	0.7298	0.4142	0.043*	
C2	-0.32126 (11)	0.59286 (11)	0.4831 (4)	0.0287 (3)	
C3	-0.40599 (13)	0.54595 (12)	0.6353 (4)	0.0359 (4)	
Н3	-0.4520	0.5655	0.6174	0.043*	
C4	-0.42359 (13)	0.47165 (13)	0.8110 (4)	0.0393 (4)	
H4	-0.4816	0.4402	0.9122	0.047*	
C5	-0.35671 (14)	0.44283 (12)	0.8399 (4)	0.0385 (4)	

Н5	-0.3688	0.3915	0.9599	0.046*
C6	-0.27209 (13)	0.48947 (12)	0.6927 (4)	0.0323 (4)
H6	-0.2260	0.4702	0.7145	0.039*
C7	-0.25347 (12)	0.56434 (11)	0.5129 (3)	0.0272 (3)
C8	-0.16028 (11)	0.61485 (12)	0.3565 (4)	0.0290 (3)
H8A	-0.1630	0.5759	0.1945	0.035*
H8B	-0.1080	0.6222	0.4791	0.035*
C9	-0.13971 (12)	0.71258 (12)	0.2570 (4)	0.0307 (4)
Н9	-0.1268	0.7538	0.4244	0.037*
C10	-0.05355 (12)	0.75944 (11)	0.0730 (4)	0.0300 (3)
C11	0.08088 (13)	0.87065 (13)	-0.2040 (4)	0.0388 (4)
H11	0.1314	0.9222	-0.3007	0.047*
C12	0.06065 (11)	0.77863 (11)	-0.2186 (4)	0.0297 (3)
C13	0.11195 (12)	0.74191 (12)	-0.3839 (4)	0.0304 (4)
C14	0.08499 (13)	0.64602 (13)	-0.3768 (4)	0.0362 (4)
H14	0.0336	0.6036	-0.2616	0.043*
C15	0.13257 (14)	0.61174 (14)	-0.5369 (5)	0.0433 (4)
H15	0.1135	0.5460	-0.5304	0.052*
C16	0.20739 (14)	0.67241 (16)	-0.7052 (5)	0.0468 (5)
H16	0.2398	0.6489	-0.8150	0.056*
C17	0.23454 (16)	0.76791 (16)	-0.7122 (5)	0.0506 (5)
H17	0.2860	0.8102	-0.8275	0.061*
C18	0.18785 (15)	0.80224 (15)	-0.5542 (4)	0.0435 (5)
H18	0.2076	0.8681	-0.5611	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0455 (3)	0.0274 (2)	0.0703 (3)	0.0174 (2)	0.0198 (3)	0.0061 (2)
N1	0.0336 (7)	0.0316 (7)	0.0329 (8)	0.0188 (6)	0.0027 (6)	-0.0008 (6)
N2	0.0263 (7)	0.0257 (7)	0.0299 (7)	0.0099 (6)	0.0002 (6)	0.0010 (6)
C1	0.0344 (9)	0.0346 (9)	0.0433 (10)	0.0208 (8)	0.0042 (8)	0.0016 (8)
C2	0.0280 (8)	0.0268 (8)	0.0284 (8)	0.0116 (7)	-0.0020 (7)	-0.0058 (7)
C3	0.0294 (8)	0.0337 (9)	0.0423 (10)	0.0141 (7)	0.0030 (8)	-0.0054 (8)
C4	0.0344 (9)	0.0319 (9)	0.0413 (10)	0.0088 (7)	0.0103 (8)	-0.0014 (8)
C5	0.0463 (11)	0.0280 (8)	0.0348 (10)	0.0138 (8)	0.0055 (8)	0.0025 (7)
C6	0.0372 (9)	0.0299 (8)	0.0300 (9)	0.0169 (7)	-0.0014 (7)	-0.0031 (7)
C7	0.0291 (8)	0.0255 (7)	0.0243 (8)	0.0117 (6)	-0.0010 (6)	-0.0058 (6)
C8	0.0303 (8)	0.0295 (8)	0.0290 (8)	0.0163 (7)	0.0008 (7)	-0.0004 (7)
C9	0.0321 (8)	0.0278 (8)	0.0314 (9)	0.0143 (7)	0.0012 (7)	-0.0026 (7)
C10	0.0293 (8)	0.0241 (8)	0.0332 (9)	0.0106 (6)	-0.0004 (7)	0.0027 (7)
C11	0.0307 (9)	0.0323 (9)	0.0492 (11)	0.0127 (7)	0.0090 (8)	0.0062 (8)
C12	0.0246 (7)	0.0282 (8)	0.0324 (9)	0.0102 (6)	-0.0018 (7)	0.0026 (7)
C13	0.0259 (7)	0.0331 (8)	0.0292 (9)	0.0126 (7)	-0.0028 (7)	0.0006 (7)
C14	0.0316 (9)	0.0334 (9)	0.0422 (10)	0.0152 (7)	0.0045 (8)	0.0038 (8)
C15	0.0432 (10)	0.0385 (10)	0.0516 (12)	0.0230 (9)	0.0000 (9)	-0.0032 (9)
C16	0.0408 (10)	0.0552 (12)	0.0475 (12)	0.0263 (10)	0.0019 (9)	-0.0101 (10)
C17	0.0432 (11)	0.0513 (12)	0.0493 (13)	0.0177 (10)	0.0186 (10)	0.0060 (10)

C18	0.0424 (10)	0.0369 (10)	0.0456 (11)	0.0157 (8)	0.0133 (9)	0.0078 (9)	
Geome	Geometric parameters (Å, °)						
S1-C	11	1.707 (2)		С7—С8		1.512 (2)	
S1—C	10	1.7306 (1	7)	С8—С9		1.525 (2)	
N1—C	1	1.460 (2)		C8—H8A		0.9900	
N1—C	9	1.470 (2)		C8—H8B		0.9900	
N1—H	1N	0.92 (2)		C9—C10		1.501 (2)	
N2—C	10	1.297 (2)		С9—Н9		1.0000	
N2—C	12	1.390 (2)		C11—C12		1.361 (2)	
C1—C	2	1.516 (2)		C11—H11		0.9500	
С1—Н	1A	0.9900		C12—C13		1.475 (2)	
С1—Н	1B	0.9900		C13—C14		1.390 (2)	
С2—С	7	1.397 (2)		C13—C18		1.393 (3)	
С2—С	3	1.400 (2)		C14—C15		1.389 (3)	
С3—С	4	1.380 (3)		C14—H14		0.9500	
С3—Н	3	0.9500		C15—C16		1.380 (3)	
C4—C	5	1.387 (3)		С15—Н15		0.9500	
С4—Н	4	0.9500		C16—C17		1.383 (3)	
С5—С	6	1.386 (3)		C16—H16		0.9500	
С5—Н	5	0.9500		C17—C18		1.372 (3)	
С6—С	7	1.396 (2)		C17—H17		0.9500	
С6—Н	6	0.9500		C18—H18		0.9500	
C11—5	S1—C10	89.46 (9)		H8A—C8—H8B		108.0	
C1—N	1—С9	110.51 (1	3)	N1-C9-C10		109.12 (13)	
C1—N	1—H1N	110.0 (13)	N1—C9—C8		112.02 (13)	
C9—N	1—H1N	106.0 (13	5)	С10—С9—С8		112.09 (13)	
C10—1	N2—C12	111.30 (1	4)	N1—C9—H9		107.8	
N1—C	1—C2	115.29 (1	4)	С10—С9—Н9		107.8	
N1—C	1—H1A	108.5		С8—С9—Н9		107.8	
С2—С	1—H1A	108.5		N2-C10-C9		125.27 (15)	
N1—C	1—H1B	108.5		N2-C10-S1		114.34 (13)	
С2—С	1—H1B	108.5		C9—C10—S1		120.36 (12)	
H1A—	-C1—H1B	107.5		C12—C11—S1		110.66 (14)	
С7—С	2—С3	119.19 (1	6)	C12—C11—H11		124.7	
С7—С	2—C1	120.86 (1	4)	S1—C11—H11		124.7	
С3—С	2—C1	119.92 (1	5)	C11—C12—N2		114.22 (16)	
C4—C	3—С2	120.90 (1	7)	C11—C12—C13		126.56 (16)	
C4—C	3—Н3	119.5		N2-C12-C13		119.21 (14)	
С2—С	3—Н3	119.5		C14—C13—C18		118.28 (17)	
С3—С	4—C5	120.06 (1	7)	C14—C13—C12		120.88 (16)	
С3—С	4—H4	120.0		C18—C13—C12		120.83 (16)	
С5—С	4—H4	120.0		C15—C14—C13		120.51 (17)	
С6—С	5—C4	119.54 (1	7)	C15—C14—H14		119.7	
С6—С	5—Н5	120.2		С13—С14—Н14		119.7	
C4—C	5—Н5	120.2		C16—C15—C14		120.46 (19)	

supporting information

C5—C6—C7	121.10 (17)	C16—C15—H15	119.8
C5—C6—H6	119.5	C14—C15—H15	119.8
C7—C6—H6	119.5	C15—C16—C17	119.16 (19)
C6—C7—C2	119.21 (15)	C15—C16—H16	120.4
C6—C7—C8	120.20 (15)	C17—C16—H16	120.4
C2—C7—C8	120.58 (15)	C18—C17—C16	120.65 (19)
C7—C8—C9	111.08 (13)	C18—C17—H17	119.7
C7—C8—H8A	109.4	C16—C17—H17	119.7
C9—C8—H8A	109.4	C16—C17—H17	120.93 (19)
C7—C8—H8B	109.4	C17—C18—C13	119.5
C9—C8—H8B	109.4	C17—C18—H18	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -43.4 (2) \\ 12.8 (2) \\ -169.22 (16) \\ -0.7 (3) \\ -178.73 (16) \\ 0.3 (3) \\ 0.4 (3) \\ -0.8 (3) \\ 0.4 (3) \\ 179.40 (16) \\ 0.3 (2) \\ 178.32 (16) \\ -178.67 (15) \\ -0.6 (2) \\ -160.07 (15) \\ 18.9 (2) \\ -171.71 (14) \\ 63.57 (18) \\ -50.29 (18) \\ -173.34 (13) \\ 177.80 (16) \\ -0.32 (18) \\ -104.95 (19) \end{array}$	$\begin{array}{c} C8-C9-C10-N2\\ N1-C9-C10-S1\\ C8-C9-C10-S1\\ C11-S1-C10-N2\\ C11-S1-C10-C9\\ C10-S1-C11-C12\\ S1-C11-C12-N2\\ S1-C11-C12-N2\\ S1-C11-C12-C13\\ C10-N2-C12-C13\\ C10-N2-C12-C13\\ C10-N2-C12-C13\\ C11-C12-C13-C14\\ N2-C12-C13-C14\\ N2-C12-C13-C18\\ N2-C12-C13-C18\\ C18-C13-C14-C15\\ C12-C13-C14-C15\\ C12-C13-C14-C15\\ C13-C14-C15-C16\\ C14-C15-C16-C17\\ C15-C16-C17-C18\\ C16-C17-C18-C13\\ C14-C13-C18-C17\\ C12-C13-C18-C17\\ C12-C13$	$19.7 (2) \\73.07 (17) \\-162.25 (13) \\0.18 (15) \\-178.05 (15) \\0.02 (16) \\-0.2 (2) \\179.92 (14) \\0.3 (2) \\-179.78 (15) \\178.82 (19) \\-1.0 (2) \\-2.1 (3) \\178.05 (16) \\-0.3 (3) \\178.84 (17) \\0.0 (3) \\0.1 (3) \\0.0 (3) \\-0.2 (3) \\0.4 (3) \\-178.8 (2)$

Hydrogen bond	geometry (Å	0)
11yurogen-bonu	geometry (A,	/

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11···N1 ⁱ	0.95	2.54	3.341 (3)	142

Symmetry code: (i) -y+1, x-y+2, z-1/3.