organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4,6-Dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide

A. S. Praveen,^a Jerry P. Jasinski,^b* James A. Golen,^b H. S. Yathirajan^a and B. Narayana^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 18 December 2011; accepted 18 December 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.132; data-to-parameter ratio = 24.0.

In the title compound, $C_{15}H_{17}N_3O_3$, the dihedral angle between the pyrimidine and benzene rings is 87.0 (7)°. In the crystal, molecules are linked into inversion dimers with $R_2^2(8)$ graph-set motifs by a pair of N-H···O hydrogen bonds. Weak C-H···O hydrogen bonds and intermolecular π - π interactions [centroid–centroid distance = 3.544 (1) Å] are also observed.

Related literature

For the pyrimidine ring in vitamins, see: Cox (1968). For barbitone, the first barbiturate hypnotic sedative, see: Russell (1945). For the similarity of related *N*-substituted 2-aryl-acetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin *et al.* (2008). For the coordination abilities of amides, see: Wu *et al.* (2008, 2010). For related structures, see: John *et al.* (2010); Nogueira *et al.* (2010); Praveen *et al.* (2011); Selig *et al.* (2010); Wen *et al.* (2010). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{lll} C_{15} H_{17} N_3 O_3 & \gamma = 69.186 \ (8)^{\circ} \\ M_r = 287.32 & V = 730.30 \ (10) \ \text{\AA}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.1536 \ (6) \ \text{\AA} & \text{Mo } K\alpha \ \text{radiation} \\ b = 8.2070 \ (7) \ \text{\AA} & \mu = 0.09 \ \text{mm}^{-1} \\ c = 13.8259 \ (10) \ \text{\AA} & T = 173 \ \text{K} \\ \alpha = 74.420 \ (7)^{\circ} & 0.42 \times 0.34 \times 0.22 \ \text{mm} \\ \beta = 86.540 \ (6)^{\circ} \end{array}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2010) $T_{\rm min} = 0.961, T_{\rm max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ H atoms treated by a mixture of
independent and constrained
refinement $WR(F^2) = 0.132$ refinement
refinement4735 reflections $\Delta \rho_{max} = 0.37 \text{ e Å}^{-3}$
 $\Delta \rho_{min} = -0.22 \text{ e Å}^{-3}$

8350 measured reflections

 $R_{\rm int} = 0.020$

4735 independent reflections

3887 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N3 - H3N \cdots O3^{i} \\ C3 - H3 \cdots O2^{ii} \end{array}$	0.875 (15)	1.979 (15)	2.8535 (12)	176.0 (14)
	0.93	2.52	3.4459 (12)	177

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y + 2, -z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

ASP thanks the UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5034).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Cox, R. A. (1968). Q. Rev. Chem. Soc. 22, 499-526.
- John, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2048.
- Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.
- Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945– 950.
- Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, 0177.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.

Russell, J. A. (1945). Annu. Rev. Biochem. 14, 309-332.

- Selig, R., Schollmeyer, D., Albrecht, W. & Laufer, S. (2010). Acta Cryst. E66, o1132.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wen, Y.-H., Qin, H.-Q. & Wen, H.-L. (2010). Acta Cryst. E66, 03294.
- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2012). E68, o226-o227 [doi:10.1107/S1600536811054493]

N-(4,6-Dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide

A. S. Praveen, Jerry P. Jasinski, James A. Golen, H. S. Yathirajan and B. Narayana

S1. Comment

The pyrimidine ring is found in vitamins like thiamine, riboflavin and folic acid (Cox, 1968). Barbitone, the first barbiturate hypnotic sedative and anticonvulsant, is a pyrimidine derivative (Russell, 1945). N-Substituted 2-aryl-acetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzyl-penicillin (Mijin *et al.*, 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010).

Crystal structures of some acetamidederivatives, *viz.*, 2-[(5,7-dibromoquinolin-8-yl)oxy]-N-(2-methoxyphenyl)acetamide (Wen *et al.*, 2010), N-(4-bromophenyl)-2-(2-thienyl)acetamide (Nogueira *et al.*, 2010), N-[4-(benzylsulfamoyl)phenyl]acetamide (John *et al.*, 2010), 2-(4-fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo [2,1-b] [1,3]thiazol-5-yl]pyridin-2-yl}acetamide (Selig *et al.*, 2010) and recently from our laboratories, N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen *et al.*, 2011) have been reported. As part of our ongoing studies of amides, the title compound is synthesized and its crystal structure is reported.

In the crystal structure of the title compound, $C_{15}H_{17}N_3O_3$, the dihedral angle between the pyrimidine and benzene rings is 93.0 (7)° (Fig. 1). Bond lengths are in normal ranges (Allen *et al.*, 1987). Crystal packing is stabilized by N—H···O hydrogen bonds forming an $R^2_2(8)$ graph-set motif (Fig. 2). Weak C—H···O (Table 1) and π — π intermolecular interactions [centroid-centroid distance = 3.544 (1) Å] are also observed.

S2. Experimental

To a stirred solution of (3-methylphenyl)acetic acid (1 g, 6.65 mmol), triethylamine (1.34 g, 13.31 mmol) and 4,6-dimethoxypyrimidin-2-amine (1.02 g, 6.65 mmol) in dichloromethane (10 ml), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (1.52 g, 7.93 mmol) was added at 273 K. Reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction, the reaction mixture was poured to ice cold water and the layers were separated. Organic layer was washed with 10% aq.NaHCO₃ solution (10 ml), brine (10 ml), dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to obtain the crude product which was triturated with ethanol and filtered to afford 1.62 g of the title compound (I) as a white solid in 84% yield. Single crystals were grown from ethanol by the slow evaporation method (m.p. 381-382 K).

S3. Refinement

Atom H3N was located in a difference Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93 Å (CH), 0.97 Å (CH₂) or 0.96 Å (CH₃). The U_{iso} (H) values were set to 1.2 (CH, CH₂) or 1.5 CH₃) times U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the *c* axis. Dashed line represent N—H···O hydrogen bonds forming an $R^2_2(8)$ graph-set motif. The remaining H atoms have been removed for clarity.

N-(4,6-Dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide

Crystal data	
$C_{15}H_{17}N_3O_3$	$\beta = 86.540 \ (6)^{\circ}$
$M_r = 287.32$	$\gamma = 69.186 \ (8)^{\circ}$
Triclinic, $P\overline{1}$	$V = 730.30 (10) \text{ Å}^3$
Hall symbol: -P 1	Z = 2
a = 7.1536 (6) Å	F(000) = 304
b = 8.2070 (7) Å	$D_{\rm x} = 1.306 {\rm Mg} {\rm m}^{-3}$
c = 13.8259 (10) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 74.420 \ (7)^{\circ}$	Cell parameters from 3427 reflections

 $\theta = 3.1 - 32.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 K

Data collection	
Oxford Diffraction Xcalibur Eos Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1500 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010) $T_{min} = 0.961, T_{max} = 0.980$	8350 measured reflections 4735 independent reflections 3887 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 32.3^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 12$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.132$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.02 4735 reflections	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F^2) + (0.0664P)^2 + 0.156P]$
0 restraints Primary atom site location: structure-invariant	where $P = (F_o^2 + 2F_c^2)/3$ ($\Delta/\sigma)_{\text{max}} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$

Chunk, colorless

 $0.42 \times 0.34 \times 0.22 \text{ mm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.53082 (13)	0.72818 (11)	-0.19967 (6)	0.03281 (19)	
O2	0.68411 (13)	0.78056 (10)	0.11132 (7)	0.03380 (19)	
03	1.08112 (15)	-0.05781 (10)	0.12226 (7)	0.0384 (2)	
N1	0.71599 (12)	0.47480 (11)	-0.07942 (6)	0.02315 (17)	
N2	0.79478 (12)	0.50033 (10)	0.08008 (6)	0.02230 (17)	
N3	0.90035 (13)	0.22301 (11)	0.03696 (7)	0.02455 (18)	
H3N	0.902 (2)	0.177 (2)	-0.0136 (11)	0.029 (3)*	
C1	0.5650(2)	0.60945 (19)	-0.26389 (9)	0.0382 (3)	
H1A	0.7060	0.5570	-0.2723	0.057*	
H1B	0.4987	0.6768	-0.3282	0.057*	
H1C	0.5130	0.5152	-0.2340	0.057*	
C2	0.61661 (14)	0.65189 (13)	-0.10610 (8)	0.0241 (2)	

C3	0 59691 (16)	0 76447 (13)	-0.04444(8)	0.0276(2)
С5 Н3	0.5240	0.8880	-0.0642	0.0270 (2)
C4	0.5247 0.69324 (15)	0.67809 (13)	0.0042	0.033 0.02425 (19)
C5	0.09324(13) 0.70884(13)	0.07809(13)	0.04902(0)	0.02425(17)
CS CC	0.79004(13)	0.40009(12)	0.01340(7)	0.02070(10)
0	0.80040 (19)	0.69559 (16)	0.20397 (9)	0.0340 (2)
H6A	0.7555	0.6020	0.2436	0.051*
H6B	0.7846	0.7839	0.2404	0.051*
H6C	0.9389	0.6440	0.1900	0.051*
C7	0.99644 (15)	0.09987 (13)	0.12367 (8)	0.0244 (2)
C8	0.99476 (16)	0.15771 (13)	0.21836 (8)	0.0254 (2)
H8A	1.0698	0.2384	0.2088	0.030*
H8B	0.8580	0.2239	0.2317	0.030*
C9	1.08408 (16)	-0.00098 (13)	0.30737 (8)	0.0268 (2)
C10	0.96179 (18)	-0.06648 (14)	0.37637 (8)	0.0291 (2)
H10	0.8237	-0.0125	0.3662	0.035*
C11	1.0405 (2)	-0.21160 (16)	0.46093 (9)	0.0365 (3)
C12	1.2469 (2)	-0.28988 (17)	0.47418 (10)	0.0465 (3)
H12	1.3028	-0.3863	0.5299	0.056*
C13	1.3710 (2)	-0.22672 (19)	0.40569 (13)	0.0509 (4)
H13	1.5091	-0.2811	0.4158	0.061*
C14	1.29121 (19)	-0.08320 (17)	0.32224 (11)	0.0395 (3)
H14	1.3754	-0.0418	0.2763	0.047*
C15	0.9033 (3)	-0.2773 (2)	0.53551 (11)	0.0532 (4)
H15A	0.8517	-0.3510	0.5095	0.080*
H15B	0.7944	-0.1755	0.5467	0.080*
H15C	0.9765	-0.3474	0.5978	0.080*

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0345 (4)	0.0291 (4)	0.0288 (4)	-0.0088 (3)	-0.0081 (3)	0.0008 (3)
0.0394 (4)	0.0197 (3)	0.0398 (5)	-0.0029 (3)	-0.0054 (3)	-0.0126 (3)
0.0558 (5)	0.0174 (3)	0.0345 (4)	-0.0007 (3)	-0.0127 (4)	-0.0084 (3)
0.0225 (4)	0.0204 (4)	0.0253 (4)	-0.0070 (3)	-0.0003 (3)	-0.0044 (3)
0.0225 (4)	0.0166 (3)	0.0269 (4)	-0.0053 (3)	0.0003 (3)	-0.0064 (3)
0.0291 (4)	0.0165 (3)	0.0264 (4)	-0.0042 (3)	-0.0036 (3)	-0.0072 (3)
0.0366 (6)	0.0473 (7)	0.0269 (5)	-0.0117 (5)	-0.0025 (4)	-0.0072 (5)
0.0207 (4)	0.0226 (4)	0.0264 (5)	-0.0082 (3)	-0.0015 (3)	-0.0007 (4)
0.0272 (5)	0.0162 (4)	0.0343 (5)	-0.0042 (3)	-0.0032 (4)	-0.0021 (4)
0.0231 (4)	0.0177 (4)	0.0315 (5)	-0.0058 (3)	0.0008 (4)	-0.0077 (4)
0.0192 (4)	0.0170 (4)	0.0257 (4)	-0.0065 (3)	0.0009 (3)	-0.0049 (3)
0.0396 (6)	0.0300 (5)	0.0348 (6)	-0.0103 (5)	-0.0018 (5)	-0.0148 (4)
0.0264 (5)	0.0181 (4)	0.0277 (5)	-0.0061 (3)	-0.0028 (4)	-0.0061 (3)
0.0285 (5)	0.0194 (4)	0.0254 (5)	-0.0042 (4)	-0.0018 (4)	-0.0066 (3)
0.0311 (5)	0.0195 (4)	0.0272 (5)	-0.0044 (4)	-0.0052 (4)	-0.0067 (4)
0.0358 (5)	0.0253 (5)	0.0268 (5)	-0.0091 (4)	-0.0025 (4)	-0.0092 (4)
0.0591 (8)	0.0274 (5)	0.0258 (5)	-0.0168 (5)	-0.0020 (5)	-0.0084 (4)
0.0640 (9)	0.0279 (6)	0.0379 (7)	-0.0077 (6)	-0.0185 (6)	-0.0002 (5)
	$\begin{array}{c} U^{11} \\ \hline 0.0345 (4) \\ 0.0394 (4) \\ 0.0558 (5) \\ 0.0225 (4) \\ 0.0225 (4) \\ 0.0291 (4) \\ 0.0291 (4) \\ 0.0366 (6) \\ 0.0207 (4) \\ 0.0272 (5) \\ 0.0231 (4) \\ 0.0192 (4) \\ 0.0396 (6) \\ 0.0264 (5) \\ 0.0285 (5) \\ 0.0311 (5) \\ 0.0358 (5) \\ 0.0591 (8) \\ 0.0640 (9) \end{array}$	U^{11} U^{22} 0.0345 (4) 0.0291 (4) 0.0394 (4) 0.0197 (3) 0.0558 (5) 0.0174 (3) 0.0225 (4) 0.0204 (4) 0.0225 (4) 0.0166 (3) 0.0291 (4) 0.0165 (3) 0.0291 (4) 0.0165 (3) 0.0207 (4) 0.0226 (4) 0.0272 (5) 0.0162 (4) 0.0272 (5) 0.0162 (4) 0.0272 (5) 0.0177 (4) 0.0231 (4) 0.0170 (4) 0.0396 (6) 0.0300 (5) 0.0264 (5) 0.0181 (4) 0.0311 (5) 0.0195 (4) 0.0358 (5) 0.0274 (5) 0.0640 (9) 0.0279 (6)	U^{11} U^{22} U^{33} 0.0345 (4)0.0291 (4)0.0288 (4)0.0394 (4)0.0197 (3)0.0398 (5)0.0558 (5)0.0174 (3)0.0345 (4)0.0225 (4)0.0204 (4)0.0253 (4)0.0225 (4)0.0166 (3)0.0269 (4)0.0291 (4)0.0165 (3)0.0264 (4)0.0366 (6)0.0473 (7)0.0269 (5)0.0207 (4)0.0226 (4)0.0264 (5)0.0272 (5)0.0162 (4)0.0343 (5)0.0231 (4)0.0177 (4)0.0315 (5)0.0192 (4)0.0170 (4)0.0257 (4)0.0396 (6)0.0300 (5)0.0348 (6)0.0264 (5)0.0181 (4)0.0277 (5)0.0285 (5)0.0195 (4)0.0272 (5)0.0311 (5)0.0195 (4)0.0272 (5)0.0358 (5)0.0273 (5)0.0268 (5)0.0591 (8)0.0274 (5)0.0258 (5)0.0640 (9)0.0279 (6)0.0379 (7)	U^{11} U^{22} U^{33} U^{12} 0.0345 (4)0.0291 (4)0.0288 (4) $-0.0088 (3)$ 0.0394 (4)0.0197 (3)0.0398 (5) $-0.0029 (3)$ 0.0558 (5)0.0174 (3)0.0345 (4) $-0.0007 (3)$ 0.0225 (4)0.0204 (4)0.0253 (4) $-0.0070 (3)$ 0.0225 (4)0.0166 (3)0.0269 (4) $-0.0053 (3)$ 0.0291 (4)0.0165 (3)0.0264 (4) $-0.0042 (3)$ 0.0366 (6)0.0473 (7)0.0269 (5) $-0.0117 (5)$ 0.0207 (4)0.0226 (4)0.0264 (5) $-0.0082 (3)$ 0.0272 (5)0.0162 (4)0.0343 (5) $-0.0042 (3)$ 0.0231 (4)0.0177 (4)0.0315 (5) $-0.0058 (3)$ 0.0192 (4)0.0170 (4)0.0257 (4) $-0.0065 (3)$ 0.0264 (5)0.0181 (4)0.0277 (5) $-0.0061 (3)$ 0.0285 (5)0.0194 (4)0.0254 (5) $-0.0042 (4)$ 0.0311 (5)0.0195 (4)0.0272 (5) $-0.0044 (4)$ 0.0358 (5)0.0253 (5)0.0268 (5) $-0.0091 (4)$ 0.0591 (8)0.0274 (5)0.0258 (5) $-0.0168 (5)$ 0.0640 (9)0.0279 (6)0.0379 (7) $-0.0077 (6)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

supporting information

C13	0.0398 (7)	0.0373 (7)	0.0596 (9)	0.0001 (5)	-0.0188 (6)	-0.0012 (6)
C14	0.0319 (6)	0.0319 (6)	0.0466 (7)	-0.0050 (5)	-0.0050 (5)	-0.0044 (5)
C15	0.0867 (12)	0.0447 (8)	0.0335 (7)	-0.0317 (8)	0.0095 (7)	-0.0086 (6)

Geometric parameters (Å, °)

01—C2	1.3528 (12)	С6—Н6С	0.9600
01—C1	1.4376 (16)	C7—C8	1.5058 (14)
O2—C4	1.3404 (12)	C8—C9	1.5038 (14)
O2—C6	1.4338 (14)	C8—H8A	0.9700
O3—C7	1.2235 (12)	C8—H8B	0.9700
N1-C2	1.3279 (12)	C9—C10	1.3865 (16)
N1—C5	1.3356 (12)	C9—C14	1.3947 (16)
N2—C5	1.3298 (12)	C10-C11	1.3991 (16)
N2-C4	1.3373 (12)	C10—H10	0.9300
N3—C7	1.3734 (13)	C11—C12	1.386 (2)
N3—C5	1.3897 (12)	C11—C15	1.507 (2)
N3—H3N	0.875 (15)	C12—C13	1.384 (2)
C1—H1A	0.9600	C12—H12	0.9300
C1—H1B	0.9600	C13—C14	1.3842 (19)
C1—H1C	0.9600	C13—H13	0.9300
С2—С3	1.3843 (15)	C14—H14	0.9300
С3—С4	1.3839 (15)	C15—H15A	0.9600
С3—Н3	0.9300	C15—H15B	0.9600
С6—Н6А	0.9600	C15—H15C	0.9600
С6—Н6В	0.9600		
C2C1	116.20 (9)	O3—C7—C8	121.00 (9)
C4—O2—C6	117.71 (8)	N3—C7—C8	120.60 (8)
C2—N1—C5	115.15 (8)	C9—C8—C7	111.97 (8)
C5—N2—C4	114.87 (9)	C9—C8—H8A	109.2
C7—N3—C5	132.24 (9)	C7—C8—H8A	109.2
C7—N3—H3N	114.9 (10)	C9—C8—H8B	109.2
C5—N3—H3N	112.9 (10)	C7—C8—H8B	109.2
O1—C1—H1A	109.5	H8A—C8—H8B	107.9
01—C1—H1B	109.5	C10—C9—C14	119.05 (10)
H1A—C1—H1B	109.5	C10—C9—C8	120.50 (10)
01—C1—H1C	109.5	C14—C9—C8	120.45 (10)
H1A—C1—H1C	109.5	C9—C10—C11	121.81 (11)
H1B—C1—H1C	109.5	C9—C10—H10	119.1
N1-C2-01	118.26 (9)	C11-C10-H10	119.1
N1—C2—C3	124.09 (9)	C12-C11-C10	117.89 (12)
O1—C2—C3	117.65 (9)	C12—C11—C15	121.62 (12)
C4—C3—C2	114.49 (9)	C10-C11-C15	120.48 (13)
С4—С3—Н3	122.8	C13—C12—C11	121.00 (11)
С2—С3—Н3	122.8	C13—C12—H12	119.5
N2-C4-O2	118.59 (9)	C11—C12—H12	119.5
N2-C4-C3	124.04 (9)	C14—C13—C12	120.53 (13)

O2—C4—C3	117.37 (9)	C14—C13—H13	119.7
N2—C5—N1	127.35 (8)	С12—С13—Н13	119.7
N2—C5—N3	120.21 (9)	C13—C14—C9	119.71 (13)
N1—C5—N3	112.44 (8)	C13—C14—H14	120.1
O2—C6—H6A	109.5	C9—C14—H14	120.1
O2—C6—H6B	109.5	С11—С15—Н15А	109.5
H6A—C6—H6B	109.5	C11—C15—H15B	109.5
O2—C6—H6C	109.5	H15A—C15—H15B	109.5
H6A—C6—H6C	109.5	C11—C15—H15C	109.5
H6B—C6—H6C	109.5	H15A—C15—H15C	109.5
O3—C7—N3	118.39 (9)	H15B—C15—H15C	109.5
C5—N1—C2—O1	179.26 (8)	C7—N3—C5—N1	-176.03 (10)
C5—N1—C2—C3	0.03 (14)	C5—N3—C7—O3	-177.41 (11)
C1-O1-C2-N1	-3.14 (14)	C5—N3—C7—C8	3.42 (17)
C1—O1—C2—C3	176.14 (9)	O3—C7—C8—C9	-6.82 (15)
N1—C2—C3—C4	1.02 (15)	N3—C7—C8—C9	172.33 (9)
O1—C2—C3—C4	-178.21 (9)	C7—C8—C9—C10	-101.24 (11)
C5—N2—C4—O2	-179.18 (9)	C7—C8—C9—C14	79.42 (13)
C5—N2—C4—C3	0.40 (14)	C14—C9—C10—C11	0.61 (16)
C6—O2—C4—N2	5.94 (15)	C8—C9—C10—C11	-178.73 (10)
C6—O2—C4—C3	-173.67 (10)	C9-C10-C11-C12	-0.16 (17)
C2—C3—C4—N2	-1.26 (15)	C9—C10—C11—C15	178.87 (11)
C2—C3—C4—O2	178.33 (9)	C10-C11-C12-C13	-0.20 (19)
C4—N2—C5—N1	0.87 (14)	C15-C11-C12-C13	-179.23 (13)
C4—N2—C5—N3	179.79 (9)	C11—C12—C13—C14	0.1 (2)
C2—N1—C5—N2	-1.08 (14)	C12—C13—C14—C9	0.4 (2)
C2—N1—C5—N3	179.93 (8)	C10—C9—C14—C13	-0.70 (19)
C7—N3—C5—N2	4.91 (16)	C8—C9—C14—C13	178.65 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
N3—H3 <i>N</i> ···O3 ⁱ	0.875 (15)	1.979 (15)	2.8535 (12)	176.0 (14)
C3—H3···O2 ⁿ	0.93	2.52	3.4459 (12)	177

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+2, -z.