organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cyclolinopeptide B methanol trisolvate

Gabriele Schatte,^a* Shaunivan Labiuk,^b Bonnie Li,^c Peta-Gaye Burnett,^c Martin Reaney,^c Pawel Grochulski,^b Michel Fodje,^b Jian Yang^d and Ramaswami Sammynaiken^a*

^aSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskaton, Saskatchewan, Canada S7N 5C9, ^bCanadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0X4, ^cCollege of Agriculture & Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8, and ^dCollege of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9

Correspondence e-mail: gabriele.schatte@usask.ca, r.sammynaiken@usask.ca

Received 22 November 2011; accepted 29 November 2011

Key indicators: single-crystal synchrotron study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.116; data-to-parameter ratio = 18.9.

The title compound, $C_{56}H_{83}N_9O_9S\cdot 3CH_3OH$, is a methanol trisolvate of the cyclolinopeptide $cyclo(Met^1-Leu^2-Ile^3-Pro^4-Pro^5-Phe^6-Phe^7-Val^8-Ile^9)$ (henceforth referred to as CLP-B), which was isolated from flaxseed oil. All the amino acid residues are in an L-configuration based on the *CORN* rule. The cyclic nonapeptide exhibits eight *trans* peptide bonds and one *cis* peptide bond observed between the two proline residues. The conformation is stabilized by an α -turn and two consecutive β -turns each containing a N-H···O hydrogen bond between the carbonyl group O atom of the first residue and the amide group H atom of the fourth (α -turn) or the third residue (β -turns), repectively. In the crystal, the components of the structure are linked by N-H···O and O-H···O hydrogen bonds into chains parallel to the *a* axis.

Related literature

For the isolation of cyclolinopeptides A to B, B to E, F to I and characterization by multi-dimensional NMR spectroscopy, see: Matsumoto *et al.* (2002), Morita *et al.* (1999) and Matsumoto *et al.* (2001), respectively. For the isolation of the related cyclolinopeptide A and its structure determination by single X-ray diffraction in the presence of different solvates, see: Di Blasio *et al.* (1987, 1989); Matsumoto *et al.* (2002); Quail *et al.* (2009). For the X-ray single-crystal structure of cyclolinopeptide K, see: Jadhav *et al.* (2011). For the synthesis of cyclopeptides, see: Rovero *et al.* (1991); Ghadiri *et al.* (1993). For the immuno-suppressive activity of CLP-A, see: Wieczorek *et al.* (1997). For the biomolecular interaction with human albumin of CLP-A, see: Rempel *et al.* (2010). For

details of the *CORN* rule, see: Cahn *et al.* (1966). For details of the absolute structure, see: Flack & Bernardinelli (2000).

 $V = 3122.1 (12) \text{ Å}^3$

 $\lambda = 0.68878 \text{ Å}$

 $\mu = 0.12 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int}=0.055$

Synchrotron radiation

 $0.13 \times 0.10 \times 0.10 \ \text{mm}$

177237 measured reflections

15255 independent reflections

13940 reflections with $I > 2\sigma(I)$

Z = 2

Experimental

Crystal data

 $C_{56}H_{83}N_9O_9S\cdot 3CH_4O$ $M_r = 1154.50$ Monoclinic, $P2_1$ a = 10.374 (2) Å b = 19.624 (4) Å c = 15.576 (4) Å $\beta = 100.0653$ (13)°

Data collection

300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *T*_{min} = 0.985, *T*_{max} = 0.988

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$vR(F^2) = 0.116$	independent and constrained
S = 1.12	refinement
5255 reflections	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
309 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$
2 restraints	Absolute structure: Flack (1983),
	7080 Friedel pairs
	Flack parameter: 0.09 (7)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1D \cdots O7$	0.87 (3)	2.29 (3)	3.046 (3)	145 (3)
$N2 - H2D \cdots O8$	0.87 (3)	2.11 (3)	2.923 (3)	155 (3)
$N7 - H7D \cdots O3$	0.84 (3)	2.18 (3)	2.956 (3)	153 (3)
$N8 - H8D \cdot \cdot \cdot O2^{i}$	0.83 (3)	2.52 (3)	3.274 (3)	151 (3)
N9−H9D···O60	0.91 (3)	2.00 (3)	2.896 (3)	169 (3)
$N6-H6D\cdots O70^{ii}$	0.77 (3)	2.34 (3)	3.071 (3)	159 (3)
$O60 - H60 \cdots O1^{i}$	0.95 (4)	1.79 (4)	2.705 (3)	160 (4)
O70−H70···O4 ⁱⁱⁱ	1.01 (3)	1.91 (2)	2.861 (3)	157 (3)
$O80 - H80 \cdots O9^{iv}$	0.94 (6)	1.86 (6)	2.786 (3)	165 (5)
Symmetry codes: (i)	x + 1, y, z:	(ii) $-x, y - \frac{1}{2}$	-7: (iii) $-x$.	$v + \frac{1}{2} - 7$; (iv)

Symmetry codes: (1) x + 1, y, z; (1) $-x, y - \frac{1}{2}, -z$; (11) $-x, y + \frac{1}{2}, -z$; (12) $-x, y + \frac{1}{2}, -z + 1$.

Table 2 Backbone torsion angles φ , ψ , ω and side chain torsion angle $\chi 1$ (°)in CLP-B.

	φ	ψ	ω	χ1
Met ¹	-83.2 (3)	-3.7 (3)	174.6 (2)	-56.0 (3)
Leu ²	53.4 (3)	42.8 (3)	-172.4(2)	-48.7(3)
Ile ³	-117.2(3)	99.9 (2)	172.9 (2)	-61.9(3)
Pro ⁴	-76.8(3)	157.2 (2)	-174.4(2)	32.3 (2)
Pro ⁵	-91.4(3)	-4.6(3)	-9.8(3)	34.2 (2)
Phe ⁶	-98.9(3)	-23.7(3)	-166.6(2)	-75.2(2)
Phe ⁷	-116.6(2)	72.7 (3)	-171.5(2)	-59.6(3)
Val ⁸	-63.9(3)	-43.7(3)	-162.8(2)	-66.1(19)
Ile ⁹	-69.8 (3)	-19.9 (3)	-177.1 (2)	-155.2 (2)

Data collection: *MXDC*, Macromolecular Crystallography Data Collector (Canadian Light Source, 2007); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CAMERON* (Watkin *et al.*, 1993) and *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Funding for this research was contributed by The Agriculture Development Fund (ADF) administered by the Saskatchewan Ministry of Agriculture (SMA), the Total Utililization Flax Genomics and the National Sciences and Engineering Research Council (NSERC). The data collection was performed at the Canadian Light Source (CLS), which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada and the University of Saskatchewan. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5387).

References

- Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. 5, 385–415.
- Canadian Light Source (2007). MXDC. Canadian Light Source, Saskatoon, Saskatchewan, Canada.
- Di Blasio, B., Benedetti, E., Pavone, C. & Goodman, M. (1987). *Biopolymers*, **26**, 2099–2102.
- Di Blasio, B., Benedetti, E., Pavone, C. & Temussi, P. A. (1989). J. Am. Chem. Soc. 111, 9089–9092.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Gaymes, T. J., Cebrat, M., Siemion, I. Z. & Kay, J. E. (1997). FEBS Lett. 418, 224–227.
- Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Khazanovich, N. (1993). *Nature (London)*, **366**, 324–327.
- Jadhav, P., Schatte, G., Labiuk, S., Burnett, P.-G., Li, B., Okinyo-Owiti, D., Reaney, M., Grochulski, P., Fodje, M. & Sammynaiken, R. (2011). Acta Cryst. E67, o2360–o2361.
- Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2001). *Phytochemistry*, 57, 251–260.
- Matsumoto, T., Shishido, A., Morita, H., Itokawa, H. & Takeya, K. (2002). *Tetrahedron*, 58, 5135–5140.
- Morita, H., Shishido, A., Matsumoto, T., Itokawa, H. & Takeya, K. (1999). *Tetrahedron*, 55, 967–976.
- Quail, J. W., Shen, J., Reaney, M. J. T. & Sammynaiken, R. (2009). Acta Cryst. E65, 01913–01914.
- Rempel, B., Gui, B., Maley, J., Reaney, M. & Sammynaiken, R. (2010). J. Biomed. Biotechnol. 2010, 1–8.
- Rovero, P., Quartara, L. & Fabbri, G. (1991). *Tetrahedron Lett.* **32**, 2639–2642. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wieczorek, Z., Bengsston, B., Trojnar, I. & Siemion, I. Z. (1991). Peptide Res. 4, 275–283.

supporting information

Acta Cryst. (2012). E68, o50-o51 [doi:10.1107/S1600536811051488]

Cyclolinopeptide B methanol trisolvate

Gabriele Schatte, Shaunivan Labiuk, Bonnie Li, Peta-Gaye Burnett, Martin Reaney, Pawel Grochulski, Michel Fodje, Jian Yang and Ramaswami Sammynaiken

S1. Comment

Flaxseed (bionamial name: *Linum usitatassimum*) contains mostly triglyceride oil (omega-3 fatty acids, and alphalinolenic acid *etc.*), to lesser amounts lignans and very small amounts of hydrophobic cyclolinopeptides. These *cyclo* octa-and nonapeptides have attracted significant interest because of their various biological activities, most importantly because of their immuno-suppressive activity (Wieczorek *et al.*, 1991), their cytoprotective ability, their inhibitory activity toward calcium-dependent activation of T-lymphocyte cell division (Gaymes *et al.*, 1997), and their biomolecular interaction with human albumin (Rempel *et al.*, 2010). The structures of nine different cyclolinopeptides (CLP-A to CLP-I) have been elucidated by two-dimensional FT-NMR spectroscopy (Matsumoto *et al.*, 2002; Morita *et al.*, 1999; Matsumoto *et al.*, 2001). Structure determinations of CLP-A with different co-crystallized solvent molecules have been established by single-crystal X-ray diffraction (Di Blasio *et al.*, 1987, 1989; Matsumoto *et al.*, 2002; Quail *et al.* 2009). Recently, the crystal structure of the previously unknown CLP-K has been reported (Jadhav *et al.*, 2011). The crystal structure of the previously unknown CLP-K has been reported (Jadhav *et al.*, 2011). The crystal structure of the previously unknown CLP-K has been reported (Jadhav *et al.*, 2011). The crystal structure of the previously unknown CLP-K has been reported (Jadhav *et al.*, 2011). The crystal structure of the biological activity of flaxseeds from different locations and strains.

All the amino acid residues in CLP-B are in the L configuration based on CORN rule. The L configuration of the amino acid residues in the CLP-B was determined previously using derivative chemistry (Morita et al., 1999). Applying the *Cahn-Ingold-Prelog priority rules* (Cahn *et al.*, 1966), the configuration at the chiral α -C atom of each amino acid residue is S. The standard uncertainty u = 0.07 at the Flack parameter x = 0.09 implies an enantiopure-sufficient inversiondistinguishing power and together with $|x| \le 2u$ one can conclude that the absolute structure is correct (Flack & Bernardinelli, 2000). The cyclolinopeptide exhibits eight *trans* peptide bonds with values for ω ranging from 162.8 (2) to 177.1 (2)° (see Table 2) and one *cis* peptide bond observed between the two proline residues ($\omega = -9.8$ (3)°) (see Table 2). The conformation of the cylic peptide is stabilized by an α -turn and two consecutive β -turns each containing a hydrogen bond between the carbonyl oxygen of the first residue and the amide hydrogen of the fourth (α -turn) or the third residue (β -turn), repectively. The 5 \rightarrow 1 NH···O=C contact bond (α -turn) involves the amide group of Phe⁷ and carbonyl group of Ile³ with the two *cis* bonded proline residues Pro^4 and Pro^5 being part of this *a*-turn. The *a*-turn in CLP-B is identical to the one found in CLP-K (Jadhav et al., 2011). In contrast, only one β -turn was located in the crystal structure of CLP-K, which involved the amide group of Ile³ and carbonyl group of Ile⁹ (Jadhav *et al.*, 2011). The first β -turn, a 4 \rightarrow 1 NH···O=C contact bond, is formed between the amide group of Leu² and the carbonyl group of Val⁸. The second β -turn is observed between the amide group of Met¹ and the carbonyl group of Phe⁷. The presence of these turns leads to a very twisted conformation of CLP-B with an almost V-shaped part at Pro⁵ as depicted in Fig. 2. The side chains of Met¹, Leu², Ile³, Phe⁶, Phe⁷, Val⁸, Ile⁹ all adopt the *gauche*(+) conformation based on their χ_1 torsion angles (see Table 2).

The analysis of the conformation of CLP-B in the polar solvent d₆-DMSO using NMR spectroscopy showed the presence of a γ -turn, 3 \rightarrow 1 NH···O=C contact bond, involving the amide group of Val⁸ and carbonyl group of Phe⁶ (Matsumoto *et al.*, 2002). In contrast, this γ -turn is not observed in the solid state structure of CLP-B. In fact, the nitrogen atom of the amide group in Val⁸ and the oxygen atom of carbonyl group in Phe⁶ are separated by 3.670 (3) Å, which exceeds by far the N···O contact distance of 3.07 Å based on the sum of the van der Waals radii for nitrogen and oxygen. The value for the 3 \rightarrow 1 NH···O=C contact bond was calculated to be 1.95 Å based on distance geometry (DG) calculations in combination with NMR data (Matsumoto *et al.*, 2002). However, in the crystal structure of CLP-B this distance is 3.06 (3) Å, which is too long for a NH···O=C contact bond.

The CLP-B molecules are linked *via* intermolcular NH···O=C contact bonds. In addition, the CLP-B units are connected *via* one methanol solvent molecule through hydrogen bonds involving a) one carbonyl group of one peptide and the hydrogen atom of the hydroxy group of a methanol molecule and, b) the oxygen atom of the hydroxy group of the same methanol molecule and the hydrogen atoms of the two amide groups of a symmetry related CLP-B molecule (see Table 1). These hydrogen bond interconnections are responsible for the formation of infinite one-dimensional chains parallel to the *a* axis. The remaining two methanol solvent molecules form only one hydrogen bond with either a carbonyl group or an amide group of a symmetry related ClP-B molecule.

S2. Experimental

Crystals of CLP-B were obtained *via* slow cooling of a saturated solution of CLP-B in methanol. A clear solution of CLP-B (5 mg) in (100 μ L) was obtained upon sonicating and heating the CLP-*B*/methanol solvent mixture to 323K. The solution was allowed to reach room temperature. Single small cube-like crystals of CLP-B, suitable for X-ray diffraction, were obtained within two hours.

S3. Refinement

A suitable single-crystal was removed from the solution, quickly coated with oil (Paratone 8277, Exxon), collected inside a mounted CryoLoopTM (diameter of the nylon fiber: 10 microns; loop diameter 0.1–0.2 mm) and then quickly transferred to the cold stream of the Oxford cryo-jet. The mounted CryoLoopTM had been attached prior to a copper wire (thickness, 0.6 mm; length: 18 mm) attached to a magnetic base using epoxy. Intensity data were collected at 100 K using the beamline 08B1–1 (CMCF-BM; Canadian Light Source) equipped with a ACCEL MD2 microdiffractometer and a 300 mm 16 K Rayonix MX300 HE CCD detector. The wavelength was set to 0.68878 Å and the distance between the detector and the crystal to 150 mm. The initial screening and data collection was performed with the Macromolecular Crystallography Data Collector (MXDC) graphical user interface. A series of data frames at 1° increments of ω were collected. The integrated intensity data were merged and corrected for absorption using *SADABS* (6, 1 harmonics). The final unit-cell parameters are based upon the refinement of the XYZ weighted centroids of 9745 reflections above 20 σ (I) with 4.71° < 2 θ < 60.51°.

The C-bound H atoms, with the exception of the α -C-bound H atoms, were geometrically placed (C–H = 0.98–1.00 Å) and refined as riding with U_{iso} (H) = 1.2 U_{eq} (parent atom). The hydrogen atoms of the amide groups and the the α -C-bound hydrogen atoms were located in the difference Fourier map and were allowed to refine freely. The hydrogen atoms of the hydroxyl groups of the methanol solvent molecules were located in the difference Fourier map and were allowed to refine freely.

Figure 1

Molecular structure showing the labelling scheme and the inter- and intra-molecular hydrogen bonding. Hydrogen atoms have been omitted for clarity. The non-hydrogen atoms are represented by displacement ellipsoids at the 20% probability level. Symmetry transformations used to generate equivalent atoms: (i) x + 1, y, z; (ii) -x, y - 1/2, -z; (v) -x, y - 1/2, -z + 1; (vi) x - 1, y, z + 1.

Figure 2

Secondary structure of CLP-B showing the α -turn and the two β -turns. The cartoon representation is traced along the backbone of CLP-B. Hydrogen atoms have been omitted for clarity.

Cyclolinopeptide B methanol trisolvate

Crystal data
$C_{56}H_{83}N_9O_9S{\cdot}3CH_4O$
$M_r = 1154.50$
Monoclinic, $P2_1$
Hall symbol: P 2yb
a = 10.374 (2) Å
<i>b</i> = 19.624 (4) Å
c = 15.576 (4) Å
$\beta = 100.0653 (13)^{\circ}$
$V = 3122.1 (12) \text{ Å}^3$
Z = 2

Data collection

300mm 16K Rayonix MX300 HE CCD detector with an ACCEL MD2 microdiffractometer Radiation source: Beamline 08B1-1 at the CLS Double crystal Si(111) monochromator F(000) = 1248 $D_x = 1.228 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.68878 \text{ Å}$ Cell parameters from 9745 reflections $\theta = 2.4-30.3^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.13 \times 0.10 \times 0.10 \text{ mm}$

Detector resolution: 13.8 pixels mm⁻¹ CCD rotation images, ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.985, T_{\max} = 0.988$ 177237 measured reflections 15255 independent reflections 13940 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.116$ S = 1.12 15255 reflections 809 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 3.9515P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.64$ e Å ⁻³ $\Delta\rho_{min} = -0.34$ e Å ⁻³
2 restraints Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0195 (8)
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites	Absolute structure: Flack (1983), 7080 Friedel pairs Absolute structure parameter: 0.09 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta_{\rm max} = 27.3^{\circ}, \ \theta_{\rm min} = 1.3^{\circ}$

 $h = -13 \rightarrow 13$

 $k = -26 \rightarrow 26$

 $l = -20 \rightarrow 20$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.13874 (7)	0.29912 (3)	0.57965 (4)	0.02844 (14)	
01	-0.19694 (17)	0.11300 (9)	0.52610 (11)	0.0239 (4)	
O2	-0.34076 (16)	-0.02660 (10)	0.41387 (11)	0.0235 (4)	
O3	-0.01559 (18)	-0.02475 (11)	0.22118 (13)	0.0326 (4)	
O4	-0.19208 (17)	-0.09933 (10)	0.03103 (11)	0.0243 (4)	
05	0.32126 (18)	-0.18176 (9)	0.16363 (13)	0.0292 (4)	
O6	0.47224 (17)	0.01870 (11)	0.21109 (13)	0.0317 (4)	
O7	0.15135 (17)	0.04399 (9)	0.40798 (11)	0.0232 (4)	
08	0.19776 (16)	-0.04762 (9)	0.59423 (10)	0.0205 (3)	
09	0.15096 (17)	0.10619 (10)	0.72756 (11)	0.0253 (4)	
N1	0.15582 (19)	0.11428 (10)	0.58285 (12)	0.0174 (4)	
H1D	0.192 (3)	0.0954 (17)	0.542 (2)	0.033 (8)*	
N2	-0.0484 (2)	0.02701 (10)	0.54770 (12)	0.0177 (4)	
H2D	0.034 (3)	0.0177 (16)	0.564 (2)	0.026 (8)*	
N3	-0.1505 (2)	0.00636 (10)	0.37164 (13)	0.0193 (4)	
H3D	-0.061 (3)	0.0128 (16)	0.389 (2)	0.027 (8)*	
N4	-0.18619 (19)	-0.09694 (11)	0.20855 (12)	0.0194 (4)	

N5	-0.00959 (19)	-0.16296 (10)	0.04200 (12)	0.0189 (4)
N6	0.2166 (2)	-0.08956 (10)	0.09619 (13)	0.0173 (4)
H6D	0.152 (3)	-0.0764 (13)	0.0689 (17)	0.009 (6)*
N7	0.2594 (2)	0.01660 (10)	0.22498 (12)	0.0180 (4)
H7D	0.183 (3)	0.0028 (14)	0.2062 (18)	0.015 (7)*
N8	0.3453 (2)	-0.00933 (11)	0.41386 (13)	0.0200 (4)
H8D	0.415 (3)	-0.0093 (16)	0.394 (2)	0.029 (8)*
N9	0.36326 (19)	0.02755 (10)	0.59635 (12)	0.0168 (4)
H9D	0.422 (3)	0.0447 (17)	0.565 (2)	0.032 (8)*
C1	0.0276 (2)	0.14528 (12)	0.56048 (15)	0.0187 (4)
H1	0.012 (3)	0.1732 (15)	0.6139 (19)	0.022*
C2	0.0190 (2)	0.18937 (12)	0.47889 (15)	0.0225(5)
H2A	0.0262	0.1595	0.4288	0.027*
H2B	-0.0683	0.2112	0.4670	0.027*
C3	0.1225 (3)	0.24430 (13)	0.48490 (17)	0.0263 (5)
H3A	0.1027	0.2731	0.4321	0.032*
H3B	0.2081	0.2221	0.4842	0.032*
C4	-0.0273(3)	0.32857(14)	0.5739(2)	0.0333 (6)
H4A	-0.0607	0.3455	0.5150	0.050*
H4B	-0.0291	0.3654	0.6161	0.050*
H4C	-0.0822	0.2908	0.5874	0.050*
C5	-0.0825(2)	0.09278 (12)	0.54444 (13)	0.0178 (4)
C6	-0.1436(2)	-0.02723(12)	0.52313 (14)	0.0177 (4)
H6	-0.093(3)	-0.0690(15)	0.5196 (18)	0.021*
C7	-0.2316(2)	-0.04099(13)	0.59055 (15)	0.0219 (5)
H7A	-0.2821	-0.0832	0.5737	0.026*
H7B	-0.2951	-0.0031	0.5884	0.026*
C8	-0.1594 (2)	-0.04872(13)	0.68467 (15)	0.0237 (5)
H8	-0.1116	-0.0053	0.7023	0.028*
С9	-0.2599(3)	-0.05989 (16)	0.74422 (17)	0.0317 (6)
H9A	-0.3078	-0.1023	0.7279	0.048*
H9B	-0.3215	-0.0216	0.7381	0.048*
H9C	-0.2149	-0.0629	0.8049	0.048*
C10	-0.0613 (3)	-0.10630 (16)	0.69568 (17)	0.0326 (6)
H10A	-0.0174	-0.1085	0.7567	0.049*
H10B	0.0038	-0.0983	0.6582	0.049*
H10C	-0.1066	-0.1494	0.6793	0.049*
C11	-0.2228(2)	-0.01490(12)	0.43115 (15)	0.0190 (4)
C12	-0.2052(2)	0.01339 (13)	0.27855 (14)	0.0191 (4)
H12	-0.297(3)	0.0005 (15)	0.2686 (19)	0.023*
C13	-0.1938 (2)	0.08612 (13)	0.24462 (15)	0.0225 (5)
H13	-0.0995	0.0998	0.2565	0.027*
C14	-0.2420(3)	0.08767 (16)	0.14596 (17)	0.0334 (6)
H14A	-0.3337	0.0731	0.1332	0.050*
H14B	-0.1885	0.0568	0.1173	0.050*
H14C	-0.2346	0.1341	0.1243	0.050*
C15	-0.2712 (3)	0.13593 (13)	0.29222 (16)	0.0243 (5)
H15A	-0.3659	0.1267	0.2742	0.029*

H15B	-0.2485	0 1276	0 3558	0.020*
C16	-0.2409 (3)	0.1270 0.21045 (15)	0.27420 (19)	0.02)
H16A	-0.1507	0.21045 (15)	0.27420 (19)	0.0539(0)
H16R	-0.2022	0.2396	0.2093	0.051*
	-0.2747	0.2390	0.3093	0.051*
C17	-0.1203(2)	-0.02756(12)	0.2122 0.22224(14)	0.031°
C17	-0.1293(2) -0.2208(2)	-0.03730(12) -0.11830(12)	0.23224(14) 0.21534(16)	0.0200(4)
	-0.3208(2)	-0.0837	0.21334 (10)	0.0230 (3)
П10А Ц19D	-0.3837	-0.0837	0.1900	0.028*
П10D С10	-0.3293 -0.3284(2)	-0.1200 -0.18421(12)	0.2708 0.16275 (17)	0.028°
	-0.3364(2)	-0.18421 (13)	0.10273(17)	0.0242 (3)
П19А 1110D	-0.3724	-0.1/30	0.1004	0.029*
H19B	-0.3990	-0.2137	0.1855	0.029°
	-0.2001 (2)	-0.21340(12)	0.17555 (10)	0.0236 (5)
H20A	-0.1907	-0.2461	0.1284	0.028*
H20B	-0.1//2	-0.2367	0.2324	0.028*
C21	-0.1144 (2)	-0.15029 (12)	0.17123 (15)	0.0195 (4)
H21	-0.025(3)	-0.1559 (16)	0.206 (2)	0.028 (8)*
C22	-0.10/4 (2)	-0.13400 (12)	0.07623 (14)	0.0183 (4)
C23	-0.0172 (3)	-0.16641 (13)	-0.05321 (15)	0.0233 (5)
H23A	-0.0089	-0.1205	-0.0780	0.028*
H23B	-0.1010	-0.1869	-0.0816	0.028*
C24	0.0990 (3)	-0.21170 (13)	-0.06517 (16)	0.0263 (5)
H24A	0.0743	-0.2431	-0.1151	0.032*
H24B	0.1742	-0.1836	-0.0753	0.032*
C25	0.1328 (3)	-0.25147 (13)	0.02031 (16)	0.0247 (5)
H25A	0.2262	-0.2649	0.0316	0.030*
H25B	0.0779	-0.2928	0.0192	0.030*
C26	0.1030 (2)	-0.20053 (12)	0.08920 (15)	0.0181 (4)
H26	0.079 (3)	-0.2264 (14)	0.1405 (19)	0.022*
C27	0.2231 (2)	-0.15589 (12)	0.12020 (14)	0.0189 (4)
C28	0.3345 (2)	-0.04812 (12)	0.10676 (14)	0.0174 (4)
H28	0.413 (3)	-0.0782 (15)	0.1174 (18)	0.021*
C29	0.3369 (2)	-0.00383 (12)	0.02555 (16)	0.0222 (5)
H29A	0.2502	0.0178	0.0075	0.027*
H29B	0.4027	0.0328	0.0401	0.027*
C30	0.3697 (2)	-0.04568 (12)	-0.04882 (14)	0.0201 (4)
C31	0.4968 (2)	-0.07005 (13)	-0.04352 (15)	0.0233 (5)
H31	0.5612	-0.0593	0.0058	0.028*
C32	0.5302 (3)	-0.11006 (15)	-0.10995 (16)	0.0282 (5)
H32	0.6171	-0.1268	-0.1059	0.034*
C33	0.4363 (3)	-0.12551 (15)	-0.18226 (16)	0.0286 (6)
H33	0.4586	-0.1534	-0.2273	0.034*
C34	0.3104 (3)	-0.10055 (14)	-0.18905 (16)	0.0278 (5)
H34	0.2467	-0.1106	-0.2391	0.033*
C35	0.2770 (3)	-0.06054 (13)	-0.12231 (16)	0.0242 (5)
H35	0.1905	-0.0433	-0.1270	0.029*
C36	0.3604 (2)	-0.00238 (12)	0.18722 (15)	0.0208 (5)
C37	0.2786 (2)	0.06758 (12)	0.29396 (14)	0.0196 (4)

H37	0.365 (3)	0.0789 (15)	0.3052 (19)	0.024*
C38	0.1985 (3)	0.13154 (13)	0.26756 (16)	0.0239 (5)
H38A	0.1041	0.1201	0.2555	0.029*
H38B	0.2135	0.1652	0.3156	0.029*
C39	0.2388 (2)	0.16159 (13)	0.18688 (17)	0.0232 (5)
C40	0.1646 (3)	0.15059 (13)	0.10492 (16)	0.0251 (5)
H40	0.0823	0.1283	0.0998	0.030*
C41	0.2097 (3)	0.17198 (14)	0.02960 (17)	0.0298 (6)
H41	0.1580	0.1645	-0.0263	0.036*
C42	0.3299 (3)	0.20408 (15)	0.03706 (18)	0.0318 (6)
H42	0.3616	0.2180	-0.0138	0.038*
C43	0.4036 (3)	0.21588 (16)	0.1182 (2)	0.0358 (7)
H43	0.4860	0.2380	0.1233	0.043*
C44	0.3574 (3)	0.19550 (14)	0.19253 (18)	0.0310 (6)
H44	0.4077	0.2049	0.2483	0.037*
C45	0.2524 (2)	0.03411 (12)	0.37730 (14)	0.0177 (4)
C46	0.3195 (2)	-0.05871 (12)	0.47820 (14)	0.0179 (4)
H46	0.234 (3)	-0.0841 (15)	0.4547 (18)	0.021*
C47	0.4341 (2)	-0.10966 (13)	0.49627 (15)	0.0229 (5)
H47	0.5173	-0.0831	0.5105	0.027*
C48	0.4401 (3)	-0.15251 (14)	0.41486 (18)	0.0305 (6)
H48A	0.5168	-0.1825	0.4259	0.046*
H48B	0.4469	-0.1223	0.3657	0.046*
H48C	0.3605	-0.1801	0.4008	0.046*
C49	0.4231 (3)	-0.15494 (15)	0.57389 (18)	0.0324 (6)
H49A	0.3428	-0.1821	0.5609	0.049*
H49B	0.4204	-0.1265	0.6253	0.049*
H49C	0.4990	-0.1854	0.5855	0.049*
C50	0.2898 (2)	-0.02502 (11)	0.56122 (14)	0.0168 (4)
C51	0.3364 (2)	0.05662 (12)	0.67829 (14)	0.0182 (4)
H51	0.329 (3)	0.0159 (15)	0.7161 (19)	0.022*
C52	0.4489 (2)	0.10234 (12)	0.72486 (15)	0.0211 (5)
H52	0.5333	0.0804	0.7176	0.025*
C53	0.4466 (2)	0.17364 (13)	0.68547 (17)	0.0249 (5)
H53A	0.3668	0.1974	0.6943	0.037*
H53B	0.4480	0.1701	0.6229	0.037*
H53C	0.5234	0.1992	0.7139	0.037*
C54	0.4448 (3)	0.10467 (16)	0.82280 (16)	0.0309 (6)
H54A	0.3667	0.1309	0.8317	0.037*
H54B	0.4347	0.0576	0.8436	0.037*
C55	0.5659 (3)	0.13651 (16)	0.87815 (18)	0.0332 (6)
H55A	0.6442	0.1117	0.8687	0.050*
H55B	0.5583	0.1340	0.9399	0.050*
H55C	0.5730	0.1843	0.8613	0.050*
C56	0.2060 (2)	0.09437 (12)	0.66483 (15)	0.0187 (4)
O60	0.5397 (2)	0.09999 (10)	0.50357 (16)	0.0394 (5)
H60	0.632 (4)	0.094 (2)	0.512 (3)	0.059*
C61	0.5126 (3)	0.16301 (17)	0.46285 (19)	0.0379 (7)

H61A	0.5391	0.1622	0.4055	0.057*	
H61B	0.5612	0.1988	0.4987	0.057*	
H61C	0.4185	0.1723	0.4558	0.045*	
O70	0.0046 (2)	0.50065 (13)	-0.0002 (2)	0.0543 (7)	
H70	0.087 (4)	0.4745 (17)	-0.003 (3)	0.081*	
C71	0.0460 (4)	0.54449 (19)	0.0714 (3)	0.0583 (11)	
H71A	0.0915	0.5179	0.1208	0.087*	
H71B	-0.0304	0.5669	0.0880	0.087*	
H71C	0.1055	0.5790	0.0550	0.087*	
O80	0.0463 (2)	0.68755 (16)	0.2264 (2)	0.0658 (9)	
H80	-0.009 (5)	0.654 (3)	0.244 (4)	0.099*	
C81	0.1734 (3)	0.66712 (18)	0.2587 (2)	0.0409 (7)	
H81A	0.2347	0.6949	0.2325	0.061*	
H81B	0.1840	0.6191	0.2443	0.061*	
H81C	0.1913	0.6729	0.3222	0.061*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0277 (3)	0.0223 (3)	0.0333 (3)	-0.0027 (2)	-0.0004 (3)	0.0035 (3)
01	0.0205 (8)	0.0256 (9)	0.0256 (9)	0.0034 (7)	0.0036 (7)	-0.0041 (7)
O2	0.0197 (8)	0.0341 (10)	0.0175 (8)	-0.0050 (7)	0.0051 (6)	-0.0004 (7)
O3	0.0229 (9)	0.0368 (11)	0.0421 (11)	-0.0074 (8)	0.0166 (8)	-0.0158 (9)
O4	0.0216 (8)	0.0319 (9)	0.0194 (8)	0.0074 (7)	0.0037 (6)	0.0035 (7)
O5	0.0253 (9)	0.0283 (10)	0.0321 (10)	0.0034 (7)	-0.0001 (7)	0.0098 (8)
O6	0.0176 (9)	0.0407 (11)	0.0368 (10)	-0.0023 (8)	0.0043 (7)	-0.0172 (9)
O7	0.0219 (8)	0.0311 (9)	0.0176 (8)	0.0023 (7)	0.0066 (6)	-0.0019 (7)
08	0.0209 (8)	0.0239 (8)	0.0184 (8)	-0.0038 (7)	0.0083 (6)	0.0009 (6)
09	0.0256 (9)	0.0366 (10)	0.0149 (7)	0.0056 (8)	0.0068 (6)	-0.0020 (7)
N1	0.0193 (9)	0.0193 (9)	0.0141 (8)	0.0007 (7)	0.0048 (7)	-0.0003 (7)
N2	0.0174 (9)	0.0188 (9)	0.0168 (9)	-0.0023 (7)	0.0028 (7)	-0.0020 (7)
N3	0.0184 (9)	0.0237 (10)	0.0170 (9)	-0.0015 (8)	0.0067 (7)	-0.0020 (7)
N4	0.0193 (9)	0.0242 (10)	0.0160 (9)	-0.0013 (8)	0.0064 (7)	-0.0058 (7)
N5	0.0224 (10)	0.0206 (9)	0.0145 (9)	0.0016 (8)	0.0055 (7)	-0.0016 (7)
N6	0.0164 (9)	0.0185 (9)	0.0169 (9)	0.0000 (8)	0.0028 (7)	0.0000(7)
N7	0.0171 (9)	0.0236 (10)	0.0143 (8)	-0.0009 (8)	0.0061 (7)	-0.0023 (7)
N8	0.0212 (10)	0.0242 (10)	0.0166 (9)	-0.0004 (8)	0.0089 (8)	0.0015 (8)
N9	0.0180 (9)	0.0184 (9)	0.0152 (8)	0.0005 (7)	0.0062 (7)	-0.0019 (7)
C1	0.0185 (11)	0.0211 (11)	0.0165 (10)	0.0016 (9)	0.0032 (8)	0.0003 (8)
C2	0.0277 (12)	0.0236 (12)	0.0168 (11)	0.0046 (10)	0.0055 (9)	0.0009 (9)
C3	0.0305 (13)	0.0238 (12)	0.0262 (12)	0.0017 (10)	0.0092 (10)	0.0077 (10)
C4	0.0383 (15)	0.0255 (13)	0.0374 (15)	0.0039 (11)	0.0105 (12)	0.0028 (11)
C5	0.0207 (11)	0.0233 (11)	0.0105 (9)	0.0006 (9)	0.0056 (8)	-0.0025 (8)
C6	0.0188 (10)	0.0190 (10)	0.0161 (10)	-0.0023 (9)	0.0050 (8)	-0.0019 (8)
C7	0.0192 (11)	0.0294 (12)	0.0178 (10)	-0.0040 (9)	0.0048 (8)	0.0017 (9)
C8	0.0262 (12)	0.0284 (12)	0.0177 (11)	-0.0073 (10)	0.0072 (9)	0.0008 (9)
C9	0.0320 (14)	0.0442 (16)	0.0211 (12)	0.0025 (12)	0.0110 (10)	0.0046 (11)
C10	0.0319 (14)	0.0482 (17)	0.0183 (11)	0.0027 (12)	0.0062 (10)	0.0036 (11)

C11	0.0201 (11)	0.0186 (10)	0.0187 (10)	-0.0031 (9)	0.0046 (8)	-0.0037 (8)
C12	0.0172 (10)	0.0275 (12)	0.0131 (9)	-0.0037 (9)	0.0038 (8)	-0.0056 (8)
C13	0.0242 (12)	0.0267 (12)	0.0179 (11)	-0.0007 (9)	0.0072 (9)	-0.0015 (9)
C14	0.0447 (16)	0.0378 (15)	0.0193 (12)	-0.0013 (13)	0.0096 (11)	-0.0020 (11)
C15	0.0285 (13)	0.0259 (12)	0.0196 (11)	0.0005 (10)	0.0071 (9)	-0.0008(9)
C16	0.0473 (17)	0.0262 (13)	0.0290 (13)	0.0029 (12)	0.0090 (12)	0.0014 (11)
C17	0.0196 (11)	0.0252 (12)	0.0158 (10)	-0.0043(9)	0.0046 (8)	-0.0026(9)
C18	0.0197 (11)	0.0239 (12)	0.0276 (12)	-0.0016 (9)	0.0099 (9)	-0.0032(10)
C19	0.0251(12)	0.0220(12)	0.0267(12)	-0.0034(9)	0.0078 (10)	-0.0030(9)
C20	0.0295(13)	0.0225(12)	0.0206(11)	0.0008 (10)	0.0096 (9)	0.0018 (9)
C21	0.0218(11)	0.0222(11)	0.0156 (10)	0.0045 (9)	0.0061 (8)	-0.0006(8)
C22	0.0203(11)	0.0188(10)	0.0163(10)	-0.0022(8)	0.0045 (8)	-0.0026(8)
C23	0.0203(11) 0.0298(12)	0.0292(13)	0.0105(10)	0.0022(0)	0.0012(9)	-0.0017(9)
C24	0.0290(12) 0.0342(13)	0.0292(13) 0.0271(13)	0.0205(11)	0.0013(10) 0.0021(10)	0.0032(9)	-0.0017(9)
C25	0.0312(13) 0.0294(13)	0.0271(13) 0.0204(11)	0.0209(11) 0.0260(12)	-0.0021(10)	0.0091(10)	-0.0019(9)
C26	0.0294(19) 0.0191(10)	0.0204(11) 0.0164(10)	0.0200(12) 0.0204(10)	0.0011(10) 0.0049(9)	0.0079 (8)	0.0019(9)
C20	0.0191(10)	0.0104(10) 0.0213(11)	0.0204(10)	0.0045(9)	0.0073 (8)	0.0014(9)
C28	0.0204(11) 0.0176(10)	0.0213(11) 0.0207(11)	0.0100(10)	0.0033(9)	0.0003(8)	-0.0004(3)
C20	0.0170(10) 0.0252(12)	0.0207(11) 0.0210(11)	0.0147(9) 0.0218(11)	-0.0013(9)	0.0051(8)	0.0010(8)
C29	0.0252(12)	0.0210(11)	0.0218(11) 0.0140(10)	-0.0013(9)	0.0079(9)	0.0027(9)
C30	0.0201(12) 0.0214(11)	0.0211(11) 0.0332(13)	0.0140(10)	-0.0020(9)	0.0001(8)	0.0033(8)
C31	0.0214(11) 0.0264(12)	0.0332(13)	0.0133(10) 0.0203(12)	0.0021(10)	0.0030(9)	0.0033(9)
C32	0.0204(12) 0.0342(14)	0.0397(13)	0.0203(12)	-0.0038(11)	0.0091(10)	0.0010(11) 0.0003(10)
C33	0.0342(14) 0.0218(12)	0.0364(13)	0.0134(11)	-0.0019(12)	0.0098(10)	0.0003(10)
C34 C25	0.0318(13) 0.0224(12)	0.0333(14) 0.0280(12)	0.0105(11)	-0.0048(11)	0.0043(9)	0.0043(10)
C35	0.0234(12)	0.0280(13)	0.0215(11)	-0.0031(10)	0.0045 (9)	0.0073 (9)
C36	0.0220 (11)	0.0210 (11)	0.0192 (11)	0.0032 (9)	0.0029 (9)	-0.0008 (9)
C3/	0.0226 (11)	0.0224 (11)	0.0141 (10)	-0.0032(9)	0.0042 (8)	-0.0008 (8)
C38	0.0278 (13)	0.0230 (12)	0.0229 (12)	0.0023 (10)	0.0104 (10)	0.0006 (9)
C39	0.0242 (12)	0.0204 (11)	0.0257 (12)	0.0050 (9)	0.0064 (9)	0.0044 (9)
C40	0.0252 (12)	0.0253 (12)	0.0244 (12)	-0.0015 (10)	0.0029 (10)	0.0058 (10)
C41	0.0397 (15)	0.0296 (14)	0.0196 (12)	0.0008 (12)	0.0036 (10)	0.0082 (10)
C42	0.0322 (14)	0.0363 (14)	0.0285 (13)	0.0037 (12)	0.0097 (11)	0.0122 (11)
C43	0.0285 (14)	0.0385 (16)	0.0395 (16)	-0.0061 (12)	0.0034 (12)	0.0172 (13)
C44	0.0315 (14)	0.0308 (14)	0.0289 (13)	-0.0062 (11)	0.0003 (11)	0.0066 (11)
C45	0.0210 (11)	0.0173 (10)	0.0158 (10)	-0.0018 (8)	0.0057 (8)	-0.0045 (8)
C46	0.0196 (11)	0.0188 (11)	0.0163 (10)	-0.0027 (9)	0.0059 (8)	0.0005 (8)
C47	0.0254 (12)	0.0237 (12)	0.0208 (11)	0.0027 (9)	0.0074 (9)	-0.0001 (9)
C48	0.0386 (15)	0.0273 (13)	0.0291 (13)	0.0059 (12)	0.0152 (11)	0.0009 (10)
C49	0.0435 (16)	0.0294 (13)	0.0265 (13)	0.0134 (12)	0.0124 (11)	0.0073 (11)
C50	0.0185 (10)	0.0162 (10)	0.0163 (10)	0.0038 (8)	0.0048 (8)	0.0024 (8)
C51	0.0207 (11)	0.0189 (11)	0.0147 (10)	0.0007 (9)	0.0027 (8)	-0.0009 (8)
C52	0.0197 (11)	0.0223 (11)	0.0208 (11)	-0.0009 (9)	0.0023 (8)	-0.0019 (9)
C53	0.0241 (12)	0.0243 (12)	0.0255 (12)	-0.0062 (10)	0.0023 (9)	0.0000 (10)
C54	0.0329 (14)	0.0396 (15)	0.0190 (11)	-0.0124 (12)	0.0015 (10)	0.0007 (11)
C55	0.0300 (14)	0.0441 (16)	0.0233 (13)	-0.0046 (12)	-0.0011 (10)	-0.0050 (11)
C56	0.0175 (10)	0.0202 (11)	0.0180 (10)	-0.0020 (8)	0.0022 (8)	-0.0028 (8)
O60	0.0289 (10)	0.0249 (10)	0.0703 (15)	-0.0027 (8)	0.0254 (10)	-0.0009 (10)
C61	0.0386 (16)	0.0470 (17)	0.0295 (14)	0.0136 (14)	0.0099 (12)	0.0007 (13)

supporting information

O70	0.0355 (12)	0.0381 (12)	0.093 (2)	-0.0076 (10)	0.0226 (13)	-0.0271 (13)
C71	0.057 (2)	0.0386 (18)	0.067 (2)	-0.0053 (17)	-0.0233 (19)	0.0066 (17)
O80	0.0290 (12)	0.079 (2)	0.092 (2)	0.0073 (12)	0.0186 (13)	0.0611 (17)
C81	0.0309 (15)	0.055 (2)	0.0384 (16)	0.0066 (14)	0.0109 (12)	0.0220 (15)

Geometric parameters (Å, °)

S1—C4	1.804 (3)	C21—H21	1.00 (3)	
S1—C3	1.810 (3)	C23—C24	1.534 (3)	
O1—C5	1.237 (3)	C23—H23A	0.9900	
O2—C11	1.228 (3)	C23—H23B	0.9900	
O3—C17	1.247 (3)	C24—C25	1.530 (4)	
O4—C22	1.231 (3)	C24—H24A	0.9900	
O5—C27	1.230 (3)	C24—H24B	0.9900	
O6—C36	1.227 (3)	C25—C26	1.537 (3)	
O7—C45	1.241 (3)	C25—H25A	0.9900	
O8—C50	1.243 (3)	C25—H25B	0.9900	
O9—C56	1.236 (3)	C26—C27	1.530 (3)	
N1-C56	1.350 (3)	C26—H26	1.01 (3)	
N1—C1	1.449 (3)	C28—C36	1.527 (3)	
N1—H1D	0.87 (3)	C28—C29	1.538 (3)	
N2—C5	1.337 (3)	C28—H28	1.00 (3)	
N2—C6	1.457 (3)	C29—C30	1.507 (3)	
N2—H2D	0.87 (3)	C29—H29A	0.9900	
N3—C11	1.356 (3)	C29—H29B	0.9900	
N3—C12	1.468 (3)	C30—C35	1.391 (3)	
N3—H3D	0.93 (3)	C30—C31	1.392 (3)	
N4—C17	1.329 (3)	C31—C32	1.390 (3)	
N4—C21	1.463 (3)	C31—H31	0.9500	
N4—C18	1.480 (3)	C32—C33	1.388 (4)	
N5—C22	1.351 (3)	С32—Н32	0.9500	
N5-C26	1.466 (3)	C33—C34	1.381 (4)	
N5-C23	1.473 (3)	С33—Н33	0.9500	
N6-C27	1.353 (3)	C34—C35	1.394 (4)	
N6-C28	1.454 (3)	C34—H34	0.9500	
N6—H6D	0.77 (3)	С35—Н35	0.9500	
N7—C36	1.341 (3)	C37—C45	1.521 (3)	
N7—C37	1.456 (3)	C37—C38	1.522 (3)	
N7—H7D	0.84 (3)	С37—Н37	0.91 (3)	
N8—C45	1.337 (3)	C38—C39	1.512 (3)	
N8—C46	1.452 (3)	C38—H38A	0.9900	
N8—H8D	0.83 (3)	C38—H38B	0.9900	
N9—C50	1.341 (3)	C39—C44	1.387 (4)	
N9—C51	1.468 (3)	C39—C40	1.388 (4)	
N9—H9D	0.91 (3)	C40—C41	1.401 (3)	
C1—C5	1.526 (3)	C40—H40	0.9500	
C1—C2	1.527 (3)	C41—C42	1.383 (4)	
C1—H1	1.03 (3)	C41—H41	0.9500	

C2—C3	1.513 (4)	C42—C43	1.378 (4)
C2—H2A	0.9900	C42—H42	0.9500
C2—H2B	0.9900	C43—C44	1.387 (4)
С3—НЗА	0.9900	C43—H43	0.9500
С3—Н3В	0.9900	C44—H44	0.9500
C4—H4A	0.9800	C46—C50	1.531 (3)
C4—H4B	0.9800	C46—C47	1.541 (3)
C4—H4C	0.9800	C46—H46	1.03 (3)
C6C7	1 532 (3)	C47 - C49	1.03(3) 1.521(3)
C6-C11	1.552(3) 1 541(3)	C47 - C48	1.521(3) 1 532(3)
С6—Н6	0.98(3)	C47 - H47	1.0000
C7-C8	1,533(3)	C48 - H48A	0.9800
C7H7A	0.9900	C48 - H48B	0.9800
C7 H7B	0.9900	C_{48} HASC	0.9800
C_{1}^{2}	1.510(4)		0.9800
C_{8}	1.510(4)	C_{49} H_{49} C_{49} H_{49} R_{49}	0.9800
C_{0}	1.528 (5)	C49—R49B	0.9800
	1.0000	$C_{49} = H_{49}C_{51}$	0.9800
C9—H9A	0.9800	$C_{51} = C_{50}$	1.324(3)
C9—H9B	0.9800	C51_C52	1.548 (5)
C10 HIOA	0.9800	C51—H51	1.00(3)
CIO—HIOA	0.9800	C52—C53	1.526 (3)
CIO—HIOB	0.9800	C52—C54	1.534 (3)
CIO—HIOC	0.9800	С52—Н52	1.0000
C12—C17	1.529 (3)	С53—Н53А	0.9800
C12—C13	1.534 (3)	С53—Н53В	0.9800
C12—H12	0.98 (3)	С53—Н53С	0.9800
C13—C14	1.531 (3)	C54—C55	1.528 (4)
C13—C15	1.536 (3)	C54—H54A	0.9900
С13—Н13	1.0000	C54—H54B	0.9900
C14—H14A	0.9800	С55—Н55А	0.9800
C14—H14B	0.9800	С55—Н55В	0.9800
C14—H14C	0.9800	С55—Н55С	0.9800
C15—C16	1.523 (4)	O60—C61	1.396 (4)
C15—H15A	0.9900	O60—H60	0.95 (4)
C15—H15B	0.9900	C61—H61A	0.9800
C16—H16A	0.9800	C61—H61B	0.9800
C16—H16B	0.9800	C61—H61C	0.9800
C16—H16C	0.9800	O70—C71	1.415 (4)
C18—C19	1.523 (3)	O70—H70	1.01 (3)
C18—H18A	0.9900	C71—H71A	0.9800
C18—H18B	0.9900	C71—H71B	0.9800
C19—C20	1.526 (3)	С71—Н71С	0.9800
C19—H19A	0.9900	O80—C81	1.386 (4)
C19—H19B	0.9900	O80—H80	0.94 (6)
C20—C21	1.533 (3)	C81—H81A	0.9800
C20—H20A	0.9900	C81—H81B	0.9800
С20—Н20В	0.9900	C81—H81C	0.9800
C21—C22	1.528 (3)		
	× /		

C4—S1—C3	101.41 (13)	C24—C25—H25A	111.1
C56—N1—C1	122.33 (19)	С26—С25—Н25А	111.1
C56—N1—H1D	115 (2)	С24—С25—Н25В	111.1
C1—N1—H1D	120 (2)	С26—С25—Н25В	111.1
C5—N2—C6	122.2 (2)	H25A—C25—H25B	109.0
C5—N2—H2D	117 (2)	N5—C26—C27	113.81 (19)
C6—N2—H2D	121 (2)	N5—C26—C25	102.53 (19)
C11 - N3 - C12	122.7 (2)	C27—C26—C25	109.92 (18)
C11 - N3 - H3D	119.5 (19)	N5—C26—H26	111.4 (16)
C12—N3—H3D	117.5 (19)	C27—C26—H26	109.6 (16)
C17—N4—C21	120.4 (2)	C25—C26—H26	109.4 (16)
C17—N4—C18	127.5 (2)	05—C27—N6	123.1 (2)
$C_{21} - N_{4} - C_{18}$	112.15 (19)	05-C27-C26	119.2 (2)
$C_{22} = N_{5} = C_{26}$	126.96 (19)	N6—C27—C26	117.7(2)
$C_{22} = N_5 = C_{23}$	120.3 (2)	N6-C28-C36	116.46 (18)
$C_{26} N_{5} C_{23}$	112.30(18)	N6-C28-C29	110.90 (19)
$C_{27} - N_{6} - C_{28}$	120.4 (2)	$C_{36} - C_{28} - C_{29}$	108.48 (19)
$C_{27} - N_{6} - H_{6} D$	118 (2)	N6-C28-H28	109.6 (16)
C_{28} N6—H6D	120(2)	C36—C28—H28	101.0(16)
$C_{36} N_{7} C_{37}$	1198(2)	C29—C28—H28	101.0(10) 109.9(16)
C_{36} N7—H7D	121 1 (19)	C_{30} C_{29} C_{28}	111 25 (19)
C37 - N7 - H7D	118.7(19)	C30-C29-H29A	109.4
C45 - N8 - C46	120.9(2)	C_{28} C_{29} H_{29A}	109.1
C45—N8—H8D	117(2)	C30-C29-H29B	109.1
C46 - N8 - H8D	122(2)	C28—C29—H29B	109.4
$C_{50} N_{9} C_{51}$	118 21 (19)	H29A—C29—H29B	108.0
C_{50} N9—H9D	117 (2)	C_{35} C_{30} C_{31}	119.2(2)
C_{51} N_{9} H_{9D}	124 (2)	$C_{35} = C_{30} = C_{29}$	119.2(2) 122.0(2)
N1-C1-C5	112 (2) 112 67 (19)	$C_{31} - C_{30} - C_{29}$	122.0(2) 118.7(2)
N1-C1-C2	110.83 (19)	C_{32} C_{31} C_{30}	120.5(2)
C5-C1-C2	108.24 (19)	C32—C31—H31	119.8
N1-C1-H1	107.1 (16)	C30—C31—H31	119.8
C5-C1-H1	105.9 (16)	C_{33} C_{32} C_{31}	119.3 119.7(2)
C2-C1-H1	112 1 (16)	C33—C32—H32	120.1
$C_3 - C_2 - C_1$	114.5 (2)	C31—C32—H32	120.1
C3-C2-H2A	108.6	C_{34} C_{33} C_{32}	120.3(2)
C1 - C2 - H2A	108.6	C34—C33—H33	119.8
$C_3 - C_2 - H_2B$	108.6	C32—C33—H33	119.8
C1 - C2 - H2B	108.6	C_{33} C_{34} C_{35}	119.8 (2)
$H_2A = C_2 = H_2B$	107.6	C33—C34—H34	120.1
$C_{2} = C_{3} = S_{1}$	115 94 (18)	C35—C34—H34	120.1
C2—C3—H3A	108.3	C_{30} C_{35} C_{34}	120.1 120.4(2)
S1—C3—H3A	108.3	C_{30} C_{35} H_{35}	119.8
C2-C3-H3B	108.3	C34—C35—H35	119.8
S1—C3—H3B	108.3	06-C36-N7	122.9 (2)
H3A—C3—H3B	107.4	O6-C36-C28	117.9 (2)
S1—C4—H4A	109.5	N7-C36-C28	119.0 (2)
-			(-)

S1—C4—H4B	109.5	N7—C37—C45	108.13 (19)
H4A—C4—H4B	109.5	N7—C37—C38	111.67 (19)
S1—C4—H4C	109.5	C45—C37—C38	114.59 (19)
H4A—C4—H4C	109.5	N7—C37—H37	108.2 (18)
H4B—C4—H4C	109.5	С45—С37—Н37	105.0 (18)
01—C5—N2	123.8 (2)	С38—С37—Н37	108.9 (19)
O1—C5—C1	118.8 (2)	C39—C38—C37	109.22 (19)
N2—C5—C1	117.4 (2)	С39—С38—Н38А	109.8
N2—C6—C7	114.02 (18)	С37—С38—Н38А	109.8
N2—C6—C11	110.88 (18)	С39—С38—Н38В	109.8
C7—C6—C11	112.32 (19)	С37—С38—Н38В	109.8
N2—C6—H6	106.3 (17)	H38A—C38—H38B	108.3
C7—C6—H6	106.3 (17)	C44—C39—C40	118.4 (2)
C11—C6—H6	106.4 (17)	C44—C39—C38	120.3 (2)
C6-C7-C8	115.00 (19)	C40-C39-C38	121.0(2)
C6-C7-H7A	108.5	C39—C40—C41	120.8(2)
C8—C7—H7A	108.5	C39—C40—H40	119.6
C6-C7-H7B	108.5	C41—C40—H40	119.6
C8—C7—H7B	108.5	C42-C41-C40	119.6 (2)
H7A - C7 - H7B	107.5	C42 - C41 - H41	120.2
C10-C8-C9	110.0 (2)	C40—C41—H41	120.2
C10 - C8 - C7	112.9 (2)	C43 - C42 - C41	120.1(3)
C9-C8-C7	108.9(2)	C43 - C42 - H42	120.0
C10-C8-H8	108.3	C41 - C42 - H42	120.0
C9-C8-H8	108.3	C42 - C43 - C44	120.0(3)
C7-C8-H8	108.3	C42 - C43 - H43	120.0 (5)
C8—C9—H9A	109.5	C44-C43-H43	120.0
C8—C9—H9B	109.5	C_{43} C_{44} C_{39}	120.0 121.2(3)
H9A_C9_H9B	109.5	C43—C44—H44	119.4
C8-C9-H9C	109.5	C39—C44—H44	119.1
H9A - C9 - H9C	109.5	07—C45—N8	122.0(2)
H9B-C9-H9C	109.5	07 - C45 - C37	122.0(2) 123.4(2)
C8-C10-H10A	109.5	N8-C45-C37	1146(2)
C8-C10-H10B	109.5	N8-C46-C50	117.0(2)
H_{10A} C_{10} H_{10B}	109.5	N8-C46-C47	109.24(19)
C8-C10-H10C	109.5	C_{50} C_{46} C_{47}	112 86 (19)
H_{10A} $-C_{10}$ H_{10C}	109.5	N8-C46-H46	109.2(16)
H10B-C10-H10C	109.5	C_{50} C_{46} H_{46}	107.2(10) 102.8(16)
Ω^2 _C11_N3	123.8 (2)	C47 - C46 - H46	102.0(10)
02-C11-C6	123.6 (2)	C49 - C47 - C48	110.0(10) 110.9(2)
N3 C11 C6	121.0(2) 114.5(2)	$C_{49} = C_{47} = C_{46}$	110.9(2) 111.2(2)
N_{3} C_{12} C_{17}	105 22 (19)	$C_{48} - C_{47} - C_{46}$	111.2(2) 110.3(2)
$N_3 = C_{12} = C_{13}$	105.22(19) 112.82(10)	$C_{40} = C_{47} = C_{40}$	10.3 (2)
13 - 12 - 13	112.02(19) 111.64(19)	$C_{49} = C_{47} = H_{47}$	108.1
$N_{1} = C_{12} = C_{13}$	109 3 (17)	$C_{46} - C_{47} - H_{47}$	108.1
113 - 112 - 1112 C17 C12 H12	109.3(17) 109.2(17)	$C_{47} = C_{47} = C$	100.1
C13 - C12 - H12	109.2(17) 108.6(17)	C47 - C48 - H48R	109.5
$C_{13} - C_{12} - C_{12}$	100.0(17) 100.5(2)	$H_{1} = C_{1} = C_{1$	109.5
C17 C13 C12	109.5 (2)	1170A-070-1140D	109.5

C14—C13—C15	111.4 (2)	C47—C48—H48C	109.5
C12—C13—C15	110.34 (19)	H48A—C48—H48C	109.5
C14—C13—H13	108.5	H48B—C48—H48C	109.5
C12—C13—H13	108.5	C47—C49—H49A	109.5
C15—C13—H13	108.5	C47—C49—H49B	109.5
C13—C14—H14A	109.5	H49A—C49—H49B	109.5
C13—C14—H14B	109.5	С47—С49—Н49С	109.5
H14A—C14—H14B	109.5	H49A—C49—H49C	109.5
C13—C14—H14C	109.5	H49B—C49—H49C	109.5
H14A—C14—H14C	109.5	O8—C50—N9	121.9 (2)
H14B—C14—H14C	109.5	O8—C50—C46	118.5 (2)
C16—C15—C13	113.4 (2)	N9—C50—C46	119.55 (19)
C16—C15—H15A	108.9	N9—C51—C56	111.59 (18)
C13—C15—H15A	108.9	N9—C51—C52	112.97 (19)
C16—C15—H15B	108.9	C56—C51—C52	111.15 (19)
C13—C15—H15B	108.9	N9—C51—H51	104.2 (16)
H15A—C15—H15B	107.7	C56—C51—H51	108.4 (16)
C15—C16—H16A	109.5	С52—С51—Н51	108.2 (16)
C15—C16—H16B	109.5	C53—C52—C54	111.8 (2)
H16A—C16—H16B	109.5	C53—C52—C51	112.67 (19)
C15—C16—H16C	109.5	C54—C52—C51	109.49 (19)
H16A—C16—H16C	109.5	С53—С52—Н52	107.6
H16B—C16—H16C	109.5	С54—С52—Н52	107.6
O3—C17—N4	121.5 (2)	С51—С52—Н52	107.6
O3—C17—C12	120.7 (2)	С52—С53—Н53А	109.5
N4—C17—C12	117.6 (2)	С52—С53—Н53В	109.5
N4—C18—C19	103.23 (18)	H53A—C53—H53B	109.5
N4—C18—H18A	111.1	С52—С53—Н53С	109.5
C19—C18—H18A	111.1	H53A—C53—H53C	109.5
N4—C18—H18B	111.1	H53B—C53—H53C	109.5
C19—C18—H18B	111.1	C55—C54—C52	114.2 (2)
H18A—C18—H18B	109.1	С55—С54—Н54А	108.7
C18—C19—C20	103.2 (2)	С52—С54—Н54А	108.7
C18—C19—H19A	111.1	С55—С54—Н54В	108.7
С20—С19—Н19А	111.1	С52—С54—Н54В	108.7
C18—C19—H19B	111.1	H54A—C54—H54B	107.6
С20—С19—Н19В	111.1	С54—С55—Н55А	109.5
H19A—C19—H19B	109.1	С54—С55—Н55В	109.5
C19—C20—C21	103.27 (19)	H55A—C55—H55B	109.5
С19—С20—Н20А	111.1	С54—С55—Н55С	109.5
С21—С20—Н20А	111.1	Н55А—С55—Н55С	109.5
С19—С20—Н20В	111.1	Н55В—С55—Н55С	109.5
C21—C20—H20B	111.1	O9—C56—N1	122.6 (2)
H20A—C20—H20B	109.1	O9—C56—C51	120.2 (2)
N4—C21—C22	110.41 (19)	N1-C56-C51	117.18 (19)
N4—C21—C20	102.88 (18)	С61—О60—Н60	107 (3)
C22—C21—C20	109.62 (19)	O60—C61—H61A	109.5
N4—C21—H21	110.7 (18)	O60—C61—H61B	109.5

C22—C21—H21	110.7 (17)	H61A—C61—H61B	109.5
C20—C21—H21	112.3 (18)	O60—C61—H61C	109.5
O4—C22—N5	121.1 (2)	H61A—C61—H61C	109.5
O4—C22—C21	121.3 (2)	H61B—C61—H61C	109.5
N5—C22—C21	117.4 (2)	С71—О70—Н70	101.3 (18)
N5—C23—C24	104.12 (19)	O70—C71—H71A	109.5
N5—C23—H23A	110.9	O70—C71—H71B	109.5
С24—С23—Н23А	110.9	H71A—C71—H71B	109.5
N5—C23—H23B	110.9	O70—C71—H71C	109.5
С24—С23—Н23В	110.9	H71A—C71—H71C	109.5
H23A—C23—H23B	109.0	H71B—C71—H71C	109.5
C25—C24—C23	104.82 (19)	C81—O80—H80	107 (3)
C25—C24—H24A	110.8	O80—C81—H81A	109.5
C23—C24—H24A	110.8	O80—C81—H81B	109.5
C25—C24—H24B	110.8	H81A—C81—H81B	109.5
C23—C24—H24B	110.8	O80—C81—H81C	109.5
H24A—C24—H24B	108.9	H81A—C81—H81C	109.5
C_{24} C_{25} C_{26}	103.41 (19)	H81B—C81—H81C	109.5
C56—N1—C1—C5	-83.2(3)	N5-C26-C27-O5	177.0 (2)
C56—N1—C1—C2	155.4 (2)	C25—C26—C27—O5	-68.6(3)
N1—C1—C2—C3	-56.0(3)	N5-C26-C27-N6	-4.6(3)
C5—C1—C2—C3	179.94 (19)	C25—C26—C27—N6	109.7 (2)
C1-C2-C3-S1	-51.7 (3)	C27—N6—C28—C36	-98.9(3)
C4—S1—C3—C2	-53.6 (2)	C27—N6—C28—C29	136.4 (2)
C6—N2—C5—O1	4.8 (3)	N6-C28-C29-C30	-75.2(2)
C6—N2—C5—C1	-172.38(18)	C36—C28—C29—C30	155.7 (2)
N1-C1-C5-01	178.92 (19)	C28—C29—C30—C35	109.0 (3)
C2-C1-C5-01	-58.2 (3)	C28—C29—C30—C31	-71.0(3)
N1—C1—C5—N2	-3.7 (3)	C35—C30—C31—C32	-1.4 (4)
C2—C1—C5—N2	119.2 (2)	C29—C30—C31—C32	178.6 (2)
C5—N2—C6—C7	-74.5 (3)	C30—C31—C32—C33	0.3 (4)
C5—N2—C6—C11	53.4 (3)	C31—C32—C33—C34	0.9 (4)
N2—C6—C7—C8	-48.7 (3)	C32—C33—C34—C35	-1.0(4)
C11—C6—C7—C8	-175.9(2)	C31—C30—C35—C34	1.3 (4)
C6-C7-C8-C10	-59.3 (3)	C29—C30—C35—C34	-178.7(2)
C6-C7-C8-C9	178.2 (2)	C_{33} — C_{34} — C_{35} — C_{30}	-0.1 (4)
C12 - N3 - C11 - O2	-4.0(4)	C37—N7—C36—O6	3.9 (4)
C12 - N3 - C11 - C6	172.9 (2)	C_{37} N7 C_{36} C_{28}	-171.5(2)
N2-C6-C11-O2	-140.2(2)	N6-C28-C36-O6	160.7(2)
C7-C6-C11-O2	-11.3(3)	C_{29} C_{28} C_{36} C_{6}	-73.4(3)
N2-C6-C11-N3	42.8 (3)	N6-C28-C36-N7	-237(3)
C7-C6-C11-N3	171.7 (2)	C_{29} C_{28} C_{36} N_{7}	102.3(2)
$C_{11} = N_{3} = C_{12} = C_{17}$	-117.2(2)	$C_{36} N_{7} C_{37} C_{45}$	-116.6(2)
C11 - N3 - C12 - C13	120 8 (2)	$C_{36} N_{7} C_{37} C_{38}$	1164(2)
$N_3 - C_{12} - C_{13} - C_{14}$	175 2 (2)	N7-C37-C38-C39	-59.6(3)
C17-C12-C13-C14	56 9 (3)	$C_{45} = C_{37} = C_{38} = C_{39}$	177 1 (2)
N_3 —C12—C13—C15	-619(3)	C_{37} C_{38} C_{39} C_{44}	-741(3)
113 -012-013-013	51.7 (3)	037-039-044	(J) 1.T

C17—C12—C13—C15	179.9 (2)	C37—C38—C39—C40	100.0 (3)
C14—C13—C15—C16	-68.6 (3)	C44—C39—C40—C41	1.3 (4)
C12—C13—C15—C16	169.6 (2)	C38—C39—C40—C41	-172.8 (2)
C21—N4—C17—O3	2.2 (4)	C39—C40—C41—C42	0.4 (4)
C18—N4—C17—O3	-178.2 (2)	C40—C41—C42—C43	-1.1 (4)
C21—N4—C17—C12	-174.4 (2)	C41—C42—C43—C44	0.1 (5)
C18—N4—C17—C12	5.3 (4)	C42—C43—C44—C39	1.7 (5)
N3—C12—C17—O3	-76.7 (3)	C40—C39—C44—C43	-2.3 (4)
C13—C12—C17—O3	46.0 (3)	C38—C39—C44—C43	171.8 (3)
N3-C12-C17-N4	99.9 (2)	C46—N8—C45—O7	14.8 (3)
C13—C12—C17—N4	-137.4 (2)	C46—N8—C45—C37	-162.8 (2)
C17—N4—C18—C19	169.4 (2)	N7—C37—C45—O7	-104.9 (3)
C21—N4—C18—C19	-10.9 (3)	C38—C37—C45—O7	20.4 (3)
N4—C18—C19—C20	30.8 (2)	N7—C37—C45—N8	72.7 (2)
C18—C19—C20—C21	-39.5 (2)	C38—C37—C45—N8	-162.1 (2)
C17—N4—C21—C22	-76.8 (3)	C45—N8—C46—C50	-63.9 (3)
C18—N4—C21—C22	103.5 (2)	C45—N8—C46—C47	169.9 (2)
C17—N4—C21—C20	166.3 (2)	N8—C46—C47—C49	170.4 (2)
C18—N4—C21—C20	-13.4 (2)	C50—C46—C47—C49	44.4 (3)
C19—C20—C21—N4	32.3 (2)	N8—C46—C47—C48	-66.1 (3)
C19—C20—C21—C22	-85.2 (2)	C50-C46-C47-C48	167.9 (2)
C26—N5—C22—O4	174.6 (2)	C51—N9—C50—O8	2.7 (3)
C23—N5—C22—O4	-13.3 (3)	C51—N9—C50—C46	-177.10 (19)
C26—N5—C22—C21	-9.8 (3)	N8—C46—C50—O8	136.5 (2)
C23—N5—C22—C21	162.3 (2)	C47—C46—C50—O8	-99.3 (2)
N4—C21—C22—O4	-27.3 (3)	N8—C46—C50—N9	-43.7 (3)
C20—C21—C22—O4	85.4 (3)	C47—C46—C50—N9	80.5 (3)
N4—C21—C22—N5	157.2 (2)	C50—N9—C51—C56	-69.8 (3)
C20-C21-C22-N5	-90.2 (2)	C50—N9—C51—C52	164.1 (2)
C22—N5—C23—C24	-171.6 (2)	N9-C51-C52-C53	79.7 (2)
C26—N5—C23—C24	1.6 (3)	C56—C51—C52—C53	-46.6 (3)
N5—C23—C24—C25	20.4 (3)	N9—C51—C52—C54	-155.2 (2)
C23—C24—C25—C26	-34.1 (3)	C56—C51—C52—C54	78.4 (2)
C22—N5—C26—C27	-91.4 (3)	C53—C52—C54—C55	-65.8 (3)
C23—N5—C26—C27	96.0 (2)	C51—C52—C54—C55	168.6 (2)
C22—N5—C26—C25	150.0 (2)	C1—N1—C56—O9	-6.1 (4)
C23—N5—C26—C25	-22.7 (2)	C1—N1—C56—C51	174.6 (2)
C24—C25—C26—N5	34.2 (2)	N9—C51—C56—O9	160.7 (2)
C24—C25—C26—C27	-87.1 (2)	C52—C51—C56—O9	-72.2 (3)
C28—N6—C27—O5	11.7 (3)	N9—C51—C56—N1	-19.9 (3)
C28—N6—C27—C26	-166.60 (19)	C52—C51—C56—N1	107.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
N1—H1 <i>D</i> …O7	0.87 (3)	2.29 (3)	3.046 (3)	145 (3)
N2—H2D····O8	0.87 (3)	2.11 (3)	2.923 (3)	155 (3)
N7—H7 <i>D</i> …O3	0.84 (3)	2.18 (3)	2.956 (3)	153 (3)

supporting information

N8—H8D····O2 ⁱ	0.83 (3)	2.52 (3)	3.274 (3)	151 (3)
N9—H9 <i>D</i> ···O60	0.91 (3)	2.00 (3)	2.896 (3)	169 (3)
N6—H6D····O70 ⁱⁱ	0.77 (3)	2.34 (3)	3.071 (3)	159 (3)
O60—H60…O1 ⁱ	0.95 (4)	1.79 (4)	2.705 (3)	160 (4)
O70—H70…O4 ⁱⁱⁱ	1.01 (3)	1.91 (2)	2.861 (3)	157 (3)
O80—H80…O9 ^{iv}	0.94 (6)	1.86 (6)	2.786 (3)	165 (5)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, *y*-1/2, –*z*; (iii) –*x*, *y*+1/2, –*z*; (iv) –*x*, *y*+1/2, –*z*+1.